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Abstract: Random forest (RF) is one of the most popular machine learning (ML) models used for
both classification and regression problems. As an ensemble model, it demonstrates high predictive
accuracy and low variance, while being easy to learn and optimize. In this study, we use RF for
short-term load forecasting (STLF), focusing on data representation and training modes. We consider
seven methods of defining input patterns and three training modes: local, global and extended global.
We also investigate key RF hyperparameters to learn about their optimal settings. The experimental
part of the work demonstrates on four STLF problems that our model, in its optimal variant, can
outperform both statistical and ML models, providing the most accurate forecasts.

Keywords: random forest; regression tree; pattern representation of time series; short-term load
forecasting

1. Introduction

Electricity demand forecasting is extremely important for energy providers to ensure
the secure, effective and economic operation of the power system. Short-term load forecast-
ing (STLF) covers a forecast horizon of a few hours to a few days. STLF is necessary for
generation resource planning to meet electricity demands and optimize the power flow
on the transmission grid to avoid overloads. As electricity demand is a major driver of
electricity prices, load forecasting plays a key role in competitive energy markets. The STLF
accuracy directly affects the financial performance of energy market participants.

The importance of accurate electricity demand forecasts for the safe, reliable and
effective operation of power systems is behind the great interest of researchers in this area.
STLF problems are complex because electricity demand time series express a nonlinear
trend, multiple seasonality, variable variance, significant random disruptions and changing
daily profile. These challenging factors place high demands on STLF models.

1.1. Related Work

Roughly, STLF methods can be divided into statistical and ML methods. The most
popular representatives of the first group are: auto-regressive integrated moving average
(ARIMA) [1], exponential smoothing (ETS) [2], linear regression [3], and Kalman filtering [4].
The main drawbacks of the statistical methods are their linear character, limited adaptability,
limited ability to deal with complex seasonal patterns, and problems with capturing long-
term dependencies in time series and introducing exogenous variables into the model [5].

ML models provide more flexibility in modeling nonlinear functions. Unlike statistical
methods, they do not require strong assumptions about the mapping function, and they
learn relationships between predictors and targets directly from historical data. Among ML
methods for forecasting, neural networks (NNs) have gained the most popularity in recent
years [6]. The multitude of architectural solutions and mechanisms to improve performance
encourage the use of NNs to solve complex forecasting problems such as STLF. Classical
NNs were investigated for suitability for STLF in [7]. To deal with triple seasonality in time
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series, patterns of the daily profiles were introduced, which filter out the trend and the
weekly and yearly seasonality (a similar approach was used in this study, where different
definitions of patterns are examined). Among the considered NN architectures, which
included Multilayer Perceptron (MLP), Radial Basis Function NN, General Regression NN
(GRNN), Fuzzy Counterpropagation NN, and Self-Organizing Maps, GRNN and MLP
stand out as performing with the highest accuracy.

In recent years, a development in the NN field has been the move towards deep
and, especially useful in forecasting, recurrent architectures [6]. Deep NNs (DNNs) are
especially beneficial in learning the most useful data representation for modeling a given
target function, while Recurrent NNs (RNNs) are beneficial in modeling complex, short-
and long-term temporal relationships in data. New mechanisms and procedures introduced
to RNNs such as delayed connections, attention, hybrid architecture, dynamic training sets,
residual connections and flexible loss functions improve their learning capabilities and
expressive power to solve forecasting problems [5]. Some examples of using DNNs and
RNNs for STLF are [8], where Convolutional NNs (CNNs) are utilized to extract load and
temperature features, which are fed as inputs into the bidirectional propagating RNN to
perform hourly electrical load forecasting [9], where a recurrent inception CNN is proposed
for STLF that combines RNN and 1-dimensional CNN [10], where RNN with attention
significantly reduced forecasting errors as compared to the current state-of-the-art results;
and [11], where deep residual networks integrate domain knowledge and researchers’
understanding of the problem and enables probabilistic load forecasting using Monte
Carlo dropout.

An effective way to increase the forecast accuracy and robustness of both statistical
and ML models is ensembling. This combines multiple models for a common response to
improve both the accuracy and stability of the final solution compared to a single model [12].
The theoretical properties of forecast combination investigated in [13] answer the question
why a simple average of forecasts often outperforms forecasts from single models. They also
prove that simple averages in many cases perform better than more complicated weighting
schemes. The beneficial effects of the forecast aggregation on STLF accuracy are shown in
many papers: in [14], several ML methods are aggregated in ensembles for one-day-ahead
wind power forecasting; in [15], to forecast an interval-valued load, ensemble of RNNs is
applied, which learns on the components of the bivariate empirical mode decomposition;
in [5], ensembling of a hybrid model, which combines ETS and RNN, leads to a significant
reduction in the forecast error; in [16], an ensemble of randomized DNN combined with a
walk-forward decomposition is proposed; in [17], a stacking ensemble approach is used
to combine DNNs, and in [18], several methods of aggregating base models (MLPs) are
considered. Stacking, used in the last two papers, is a way of combining base models via
meta-learning, i.e., a meta-model is trained on the predictions of the base models.

Alternatives to stacking are boosting and bagging. Popular representatives of these
are gradient-boosted trees and random forest (RF), respectively. Both, used as forecasting
models, are based on regression trees. It was shown in [19] that RF can compete with both
classical models and NNs in STLF. It can deal with complex time series using appropriate
data preprocessing, which produces normalized patterns of the daily profiles. Based on
this research, in this study, to improve RF performance, we extend pattern definitions and
introduce additional predictors. To enrich input information, in [20], the input patterns
are extracted from electrical, meteorological and calendar data by temporal CNN. Fed
with these patterns, a Light Gradient Boosting Machine, a type of gradient-boosted trees
algorithm, was able to forecast very volatile industrial customer loads. A novel tree-based
ensemble method called Warm-start Gradient Tree Boosting (WGTB) was proposed in [21].
It combines four different inference models and aggregates their outputs by a warm-start,
bagging and boosting, which at the same time reduces bias and variance. The result
proves the efficiency of the proposed strategy and shows an improvement in STLF accuracy
over baseline models. Another type of tree-based ensemble, eXtreme Gradient Boosting
(XGBoost), was used in [22] for forecasting electricity consumption by industrial customers.
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To deal with multiple seasonality, the time series were first decomposed using variational
mode decomposition. Then, a linear regression model was applied for the trend series and
a XGBoost regression model was applied for each fluctuation sub-series.

To close this section, we note that, according to some studies, tree-based ensembles
are not inferior to NNs in terms of forecast accuracy. In [23], the authors have examined
and reproduced a number of state-of-the-art DNNs for time series forecasting. DNNs
were compared on different datasets to a Gradient Boosting Regression Tree (GBRT). The
experimental results show that a conceptually simpler model such as GBRT can compete
and sometimes outperform modern DNNs by efficiently feature-engineering the input and
output structures of GBRT.

1.2. Motivation and Contribution

Tree-based methods are widely used as prediction models as they have very attractive
properties such as a capacity for flexible nonlinear regression, which can capture complex
interactions between variables and effectively handle multiple predictors (including exoge-
nous ones) of various types (numeric, binary, and categorical). Moreover, they are robust
against over-fitting of the training data, they are relatively simple to tune, and they are easy
to implement with the available software. Their effectiveness has been confirmed in many
forecasting competitions, for example those carried out on the Kaggle platform [24].

The excellent performance of tree-based approaches was demonstrated in the 2020 M5
forecasting competition. The top places in this competition, in terms of both accuracy and
uncertainty, were dominated by entries that used tree-based ML methods such as gradient-
boosted trees [25]. Four out of the five winning models used a variant of the tree-based
method and most of the other top 50 best-performing models adopted similar approaches
to the winning submission by training recursive and non-recursive tree-based models [26].
Thus, tree-based forecasting models appear to be strong competitors to NNs, which in
the form of deep learning-based models dominate the recent literature on forecasting
methods [6].

In this study, motivated by the excellent results of tree-based models in forecasting
competitions, we apply RF to the challenging problem of STLF. RF gives similar results
to boosting, but is easier to train and tune [27]. The main contribution of this work is to
examine RF models using a variety of time series preprocessing methods and training
modes. In the local mode, RF learns on samples similar to the query sample, which enables
the model to focus on the local features of the target function around the query pattern
and improve accuracy in this region. In the global mode, to achieve the same goal, i.e.,
focusing on the proper region of the target function, we introduce additional calendar
variables. By examining different methods of time series preprocessing, we find the most
useful data representation for achieving the highest accuracy of the model. We empirically
demonstrate that the proposed approach outperforms in terms of accuracy both standard
statistical models as well as more sophisticated ML approaches.

The novelty of this work in relation to our previous work [19] is twofold. First, we
extend pattern definition by introducing seven types of patterns based on the historical
data. They incorporate daily and/or weekly seasonality, while in [19], the patterns captured
only daily seasonality. Second, we introduce a global mode of training with additional
predictors representing calendar data. In [19], only a local training was considered without
calendar inputs.

The rest of the paper is organized as follows. In Section 2, we propose several data
prereprocessing methods for electricity demand times series. Section 3 defines the forecast-
ing problem and RF training modes. Section 4 describes the RF algorithm in application
to STLF. The experimental framework used to evaluate the performance of the proposed
model and compare it with baseline models is described in Section 5. Finally, Section 6
concludes the work.
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2. Data Preprocessing

The power system load or electricity demand time series express a trend, triple sea-
sonality (annual, weekly and daily) and random fluctuations. These components are
dependent on the system size, size of the economy served, customer structure, as well as
weather and climatic conditions. The daily load profiles that we focus on in STLF vary
throughout the year and depend on the day of the week [5].

To forecast future demand with the least possible error, the forecasting model should be
fed by the most relevant predictors. In our univariate STLF model, which produces forecasts
for the next day, the predictors are selected from recent history and are preprocessed
accordingly. The forecasting model based on RF is fed by input patterns xi and produces
encoded forecasts for hour t of day i, yi,t (MISO model).

Let {zτ}M
τ=1 be an electricity demand time series with hourly resolution and vector

zi = [zi,1, ..., zi,24] represents its 24-hour-long sequence for day i. To capture the characteris-
tic properties of the series, remove the trend and unify data, we define the input patterns
as follows:

r1 The input patterns are defined based on the weekly sequence which precedes fore-
casted day i:

xi =
si − si

∥si − si∥
(1)

where xi ∈ R168 is the input pattern, si = [zi−7, ..., zi−1] is the demand sequence of the
week preceding the forecasted day i and si is the mean of this sequence.
Input vectors (1), which for successive i represent overlapping weekly sequences
shifted by one day, are normalized versions of centered vectors si. They all have zero
mean, the same variance and the same unity length. However, they differ in shape.
Thus, we assume that the weekly shape carries the information about the forecasted
demand of the day following this week.

r2 The input patterns are defined based on the daily sequence which precedes the
forecasted day i. The encoding equation is (1), where xi ∈ R24 and si = zi−1 is the
demand sequence of the day preceding the forecasted day i. In case of r2, a carrier of
the information about the forecasted value is the shape of the preceding day.

r3 The input patterns are defined based on the sequence composed of the demands at
hour t of seven consecutive days preceding the forecasted day i. In (1), xi ∈ R7 and
si = [zi−7,t, ..., zi−1,t], where t is the forecasted hour of day i.

r4 The input patterns are defined based on the sequence composed of the demands at
hour t of 21 consecutive days preceding the forecasted day i. In (1), xi ∈ R21 and
si = [zi−21,t, ..., zi−1,t], where t is the forecasted hour of day i.

r5 The input patterns are defined based on the sequence composed of the demands at
hour t of seven days preceding forecasted day i and representing the same day of
the week as the forecasted day. For example, when the model predicts demand at
hour t on Monday, the input pattern is composed of the demands at hour t of seven
preceding Mondays. In (1), xi ∈ R7 and si = [zi−49,t, zi−42,t, ..., zi−7,t], where t is the
forecasted hour of day i.

r6 Cross-pattern combining r2 and r3—the input patterns are defined based on both: the
daily sequence and the sequence composed of the demands at hour t of seven consecu-
tive days preceding the forecasted day i. In (1), xi ∈ R30 and si = [zi−1, zi−7,t, ..., zi−2,t],
where t is the forecasted hour of day i.

r7 Cross-pattern combining r2 and r4—the input patterns are defined based on both: the
daily sequence and the sequence composed of the demands at hour t of 21 consecutive
days preceding the forecasted day i. In (1), xi ∈ R44 and si = [zi−1, zi−21,t, ..., zi−2,t],
where t is the forecasted hour of day i.

Figure 1 shows the sequences which are used for x-patterns construction and Figure 2
shows data used for construction patterns r6 and r7. Depending on the definition, x-patterns
introduce different input information to the model. Pattern r1 introduces detailed informa-
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tion about the weekly sequence which precedes the forecasted day. Note that r1 expresses
both daily and weekly seasonality unlike r2, which carries information only about the daily
seasonality. To deal with weekly seasonality when r2-patterns are used, the model can be
trained in the local mode, i.e., on the subset of x-patterns corresponding to the forecasting
task (see Section 3).

Time
1

1.5

2

2.5

L
o
a
d

, 
M

W

10
4

Data r1 r2 r3 r4 r5

Figure 1. Load time series points used for input patterns construction.

Figure 2. Cross-patterns: r6 (green + blue) and r7 (green + orange + blue).

Pattern r3 introduces information on the demand in the previous seven days at the
same hour as the forecasted one. It expresses only weekly seasonality. Information about
the daily seasonality is not included, so the local mode of training, i.e., training on the
selected r3-patterns corresponding to the forecasting task (see Section 3), can help with
dealing with daily seasonality. Similar information as in r3 is contained in pattern r4 but
from a longer 3-week period. Pattern r5 shows neither daily nor weekly seasonality. It
carries information about the demand at the same hours as forecasted in previous days of
the same type as the forecasted day.

Cross-patterns r6 and r7 express both daily and weekly seasonalities as r1, but in
a more sparing form, using respectively 30 or 44 instead of 168 components. In [28],
we showed that STLF based on both daily and weekly patterns gives better results than
forecasting based on separate daily or weekly patterns. In [28], we aggregated forecasts
generated by two neural models: a daily pattern-based model and a weekly pattern-based
model, while in this study, we combine daily and weekly patterns into one pattern and use
only one model.

Examples of input patterns r1–r7 are depicted in Figure 3. Note different shapes of
patterns, carrying different input information.
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Figure 3. Examples of input patterns r1–r7.

The output data, i.e., the electricity demand at hour t of day i, is encoded as follows:

yi,t =
zi,t − si

∥si − si∥
(2)

where si is the demand sequence preceding forecasted day i, defined depending on the
x-pattern type r1–r7 (this is the same sequence based on which pattern xi was defined) and
si is the mean of this sequence.

The output data are encoded similarly to the input data, using the same coding
variables: si and ∥si − si∥. Thus, Equation (2) like Equation (1) filters the data by removing
the local trend (si) and unifying the variance (this is a function of the denominator of these
equations, which can be thought of as a measure of diversity of the input sequence). Such
filtered and unified data are predicted by the forecasting model (RF). Then, the real forecast
is determined from transformed Equation (2):

ẑi,t = ŷi,t∥si − si∥+ si (3)

where ŷi,t is the model prediction and ẑi,t is the real forecast.
Note that (3) brings back the local current properties of the time series (level and

dispersion), which were removed by (1) and (2) to simplify the relationships between input
and output data. We have successfully used this kind of preprocessing of input and output
data in our previous load forecasting models to deal with multiple seasonality, simplify the
model and speed up training, see, e.g., [7,19,28–32].

3. Forecasting Problem and Training Modes

The forecasting task is defined as follows: predict electricity demand for hour t∗ (1, . . .,
24) of day i∗ based on historical data. Day i∗ represents day of the week d∗ (Monday, . . .,
Sunday). To maximize the forecasting performance and to make the most of all available
training data up to day i∗ (forecasted day), the forecasting model is trained individually
for each forecasting task and it performs only one prediction: ŷi∗ ,t∗ . Note that the “global”
generalization property of the model is not important because it is built to make only one
prediction. What is important is the “local” performance in the neighborhood of pattern
xi∗ . To increase this property, we use two approaches. In the first one, we train the model in
the local mode and in the second one, we extend input patterns with calendar variables
when we use global learning. For comparison we also train the model in the standard
global mode.

The full training set determined on the historical data is Ψ = {(xi, yi,t)}, where
i = 1, . . ., i∗ − 1, t = 1, . . ., 24 and pair (xi, yi,t) includes the input pattern and target defined
according to r1–r7. The three training modes are as follows:
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Local The model is trained on the subset of Ψ containing pairs (xi, yi,t) which correspond
to the forecasting task, i.e., the pairs which include targets representing the same day
type as forecasted, d(yi,t) = d∗, and the same hour as forecasted, t = t∗.

Global The model is trained on full training set Ψ.

Global extended The input data are extended with calendar information:

• season of the year encoded as follows [29]:

pi =

[
sin

2π#i
366

, cos
2π#i
366

]
(4)

where #i is the number of day i in the year,
• day of the week, d = Monday, ..., Sunday (categorical variable), and
• hour of the day, t = 1, ..., 24 (categorical variable).

The training set in the global extended mode is of the form: Ψ = {(⟨xi, pi, di, t⟩, yi,t)},
i = 1, ..., i∗ − 1, t = 1, ..., 24.

In the local training mode, the model solves the forecasting task by learning on the
samples expressing similar properties and relationships between input and output data as
those expressed by input pattern xi∗ and forecasted value yi∗ ,t∗ . That is, the training input
patterns are limited to those that are similar in shape to pattern xi∗ (further limitations in
this regard can be made by selecting training data from the same period of the year as
day i∗ or by selecting training data based on similarity to pattern xi∗ [7], but we have not
employed these approaches in this study). The relationships between input and output
data expressed in the local training set are limited to those corresponding to day type
d∗ and hour t∗, so we expect the model to more accurately approximate the relationship
between xi∗ and yi∗ ,t∗ than in case of global training on the full training set expressing the
relationship for all day types and hours.

In the global training mode with extended inputs, the model has additional input
information to more accurately solve the forecasting task, i.e., the calendar variables.
Although the model is global, we expect that the calendar data will help to increase its
local accuracy around pattern xi∗ . A regression tree as a base forecasting model can more
appropriately divide the input space using the calendar variables than without these
variables, and therefore approximate locally the target function with greater accuracy.
Although this will lead to a more complex model than in the other two training modes.

4. Random Forest for STLF

RF is a ensemble learning algorithm based on decision trees (CART [33]) as the base
models [34]. It is suitable for either regression or classification problems. In this study, for
forecasting problems, we focus on the regression RF based on regression trees.

RF is devoid of the well-known drawbacks of single trees such as unstable splits and a
lack of smoothness [27]. It combines bagging [35] with a random subspace method [36].
The key idea in bagging is to average multiple noisy but approximately unbiased base
models and thus reduce the variance. Trees as noisy and low biased models if they have
grown sufficiently deep, are great candidates for bagging. The main goal of the random
subspace method is to increase diversity between trees by restricting them to work on
different random subsets of the full predictor space (more specifically, at each node of
the tree, a random predictor subset is selected). Each tree in the forest is built from a
bootstrap sample of the original dataset, which is an additional source of diversity. Random
predictors selected in the nodes of bagged trees help to decorrelate the trees and improve
prediction accuracy as well as reduce the model variance.

The RF algorithm draws a bootstrap sample Ψk of size N from training set Ψ for each
of K trees, k = 1, . . ., K. For each bootstrapped sample, a tree T is grown by recursive
partitioning the input space in each node until a minimum leaf size is reached. At each
node, data splits based on p out of n predictors chosen at random are considered. The
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best split is determined by maximizing the reduction in mean squared error (MSE) over
all splitting candidates and cutpoints. After all K trees are grown in this fashion, the RF
predictor is [27]:

f̂K(x) =
1
K

K

∑
k=1

T(x; Θk) (5)

where x is the input pattern and Θk characterizes the k-th tree in terms of split predictors,
cutpoints, and terminal-node values.

RF has the following hyperparameters:

• number of trees K. Intuitively, the number of trees should be as large as possible
because the model variance reduces with K. Usually, the forecast error stabilizes with
the number of trees, and the most reasonable RF size is selected.

• minimum leaf size m. As deeper trees have low bias and large variance, they are
strongly recommended as RF members. Thus, the minimum leaf size should be small.
The inventors of the algorithm recommend m = 5 for regression forest.

• number of predictors to select at random for each split p. As p decreases, the correla-
tion between trees reduces, and hence the variance of the average reduces. Typically, a
value for p for regression RF is n/3, as the inventors recommend.

In practice the best values for the hyperparameters are dependent on the problem,
and they should be treated as tuning parameters.

The standard method of selecting split predictors [33] has two drawbacks. Firstly, it
tends to miss important interactions between pairs of predictors and the response. Secondly,
it tends to select continuous predictors that have many levels, which masks more important
predictors that have fewer levels, such as categorical predictors. To mitigate selection
bias and increase detection of important interactions, curvature or interaction tests can
be applied [37,38]. Therefore, in this study we consider three methods of selecting the
split predictors:

s1 Standard CART method. This selects the split predictor that maximizes the split-
criterion gain over all possible splits of all predictors.

s2 Curvature test. This selects the split predictor that minimizes the p-value of chi-square
tests of independence between each predictor and the response.

s3 Interaction test. This performs the curvature test extended by the minimization of
the p-value of a chi-square test of independence between each pair of predictors and
the response.

The algorithm of RF construction for STLF is shown in Algorithm 1. It produces a set
of K trees, {Tk}K

k=1. Based on them, to make a prediction for new point x, we use (5). Then,
the real forecast is calculated from (3). Note that training set Ψ is prepared for the selected
training mode and input pattern type.

Algorithm 1 Random forest construction for STLF

Input: training set Ψ containing N samples, number of trees K, minimum leaf size
m, number of predictors to select at random for each split p, split predictor selection
method s
Output: set of trees {Tk}K

k=1
Procedure:
for k = 1 to K do

Draw a bootstrap sample Ψk of size N from Ψ
Grow tree Tk to Ψk by recursively repeating the following steps for each terminal node,
until the minimum node size m is reached:
– Select p predictors from the n predictors
– Pick the best predictor/cutpoint among the p using predictor selection method s
– Split the node into two daughter nodes

end for
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In the experimental study (Section 5), we use RF specified in Algorithm 1 in several
variants depending on the data preprocessing method (r1–r7) and training modes, i.e.,
local, global and global extended. In the global extended mode, the predictor vector is
composed of ⟨xi, pi, di, t⟩. In the other training modes, the predictor vector is the same as
input pattern x (1).

5. Simulation Study

In this section, we investigate RF variants with different data preprocessing methods
and training modes. We compare RF performance with that of other models based on
classical statistical methods and ML methods.

STLF for four countries is performed: Poland (PL), Great Britain (GB), France (FR) and
Germany (DE). The real-world data was collected from ENTSO-E repository (www.entsoe.
eu/data/power-stats; accessed on 6 April 2016). It details the hourly power system load in
the period from 2012 to 2015. The last year of the data (2015) is treated as a test period. We
predict the daily load profiles for each day of this period, excluding atypical days such as
public holidays (between 10 and 20 days a year). RF models were optimized on the data
from 2012 to 2014, with validation data composed of 100 patterns selected randomly from
2014 and training data preceding the validation pattern.

5.1. Results for Different Preprocessing Methods and Training Modes

Tables 1 and 2 show mean absolute percentage error (MAPE) and root mean square er-
ror (RMSE), respectively, for input patterns r1–r7 and different training modes. Figures 4–6
show the boxplots of MAPE. The results can be summarised as follows:

• It is evident from these tables and figures that the global extended mode yields the
lowest errors, when combined with patterns r4 (for PL, FR and DE) or r6 (for GB).

• The local training mode brings lower errors than the global one when patterns r1, r2,
r6 and r7 are used, i.e., patterns which are composed of the daily curves. The local
mode is usually better than the global extended one when patterns r1 and r2 are used,
but it is worse than the global extended mode when cross-patterns are used, which
also reflect a weekly seasonality.

• The highest errors for the global mode were observed when patterns r1 and r2 were
used. In these cases, the errors were up to nine times greater than in the alternative
training modes. Pattern r4 is recommended for the global mode, which for all countries
provided the lowest errors. Modifying the global mode by extending the input patterns
with calendar variables has always resulted in a reduction of errors.

Table 1. Validation MAPE for different input patterns r1–r7 and training modes (lowest errors in
bold, second lowest errors in italics).

Data Training Mode r1 r2 r3 r4 r5 r6 r7

PL
Local 1.54 1.55 1.89 2.17 3.66 1.45 1.63
Global 11.55 11.61 2.11 1.30 2.94 1.82 1.82
Global ext. 1.92 1.79 1.40 1.24 1.96 1.50 1.55

GB
Local 1.92 1.91 2.29 2.21 3.68 1.76 1.75
Global 14.88 15.01 2.21 1.75 2.92 1.84 1.83
Global ext. 2.22 2.09 1.79 1.59 2.12 1.47 1.52

FR
Local 1.88 1.77 2.12 2.43 5.10 1.74 1.86
Global 8.50 8.54 2.09 1.53 2.90 2.11 1.92
Global ext. 1.98 1.71 1.59 1.37 1.71 1.63 1.64

DE
Local 1.34 1.31 1.67 1.93 3.47 1.21 1.45
Global 12.33 12.34 1.62 1.07 2.61 1.79 1.54
Global ext. 1.55 1.57 1.17 0.99 1.65 1.17 1.19

www.entsoe.eu/data/power-stats
www.entsoe.eu/data/power-stats
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Table 2. Validation RMSE for different input patterns r1–r7 and training modes (lowest errors in bold,
second lowest errors in italics).

Data Training Mode r1 r2 r3 r4 r5 r6 r7

PL
Local 436 522 489 540 1014 412 473
Global 2420 2427 577 347 741 454 458
Global ext. 468 448 364 337 509 406 410

GB
Local 918 825 1100 1118 1816 811 841
Global 6309 6358 1035 860 1445 811 824
Global ext. 925 937 784 757 985 669 690

FR
Local 1630 1576 1851 1939 3893 1406 1626
Global 5602 5635 1714 1144 2697 1538 1437
Global ext. 1414 1280 1287 1048 1450 1232 1272

DE
Local 1590 1190 1748 2099 3046 1168 1641
Global 8927 8926 1410 878 2094 1411 1131
Global ext. 1224 1229 833 713 1261 915 883
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Figure 4. Local training mode: Boxplots of validation MAPE for different input patterns r1–r7.
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Figure 5. Global training mode: Boxplots of validation MAPE for different input patterns r1–r7.
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Figure 6. Global extended training mode: Boxplots of validation MAPE for different input patterns
r1–r7.

Based on the results, the recommended training mode is global extended with r4
patterns for PL, FR and DE, and r6 patterns for GB. These variants of RF were used in the
experiments described in the next sections.
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5.2. Tuning Hyperparameters

In this experiment, we change the selected hyperparameter in the range shown in
Figure 7, keeping the remaining hyperparameters at their constant values as follows:
number of trees in the forest—K = 100, minimum number of leaf node observations—
m = 1, and number of predictors to select at random for each decision split—p = n/3.

Figure 7 shows the impact of hyperparameters on the forecasting error (MAPE). As
expected, the error decreases with the number of trees in the forest. The reduction in MAPE
when the RF size changes from 1 do 300 trees was from 38.7% for PL to 50.0% for DE. At the
same time, a significant reduction in the forecast variance was also observed from 63.8%
for PL to 82.5% for DE. It can be seen from Figure 7b that an increase in the minimum leaf
size leads to a deterioration in the results. Small values of m, close to 1, are preferred. This
means that trees as deep as possible are the most beneficial in RF. The optimal number
of predictors selected in the nodes to perform a split varies from country to country (see
Figure 7c). For PL and DE it is 15, for GB it is 20, and for FR it is 6. These values differ from
the recommended p = n/3, which are 8 for PL, FR and DE, and 11 for GB.
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Figure 7. Validation MAPE depending on hyperparameters: number of trees in the forest (a),
minimum number of leaf node observations (b) and number of predictors to select at random for
each decision split (c).

Using optimal values of the hyperparameters for each country, we investigate the
methods of split predictor selection s1–s3. Table 3 shows the results, validation MAPE
and RMSE. Both accuracy measures show similar results for all methods of split predictor
selection. Therefore, s1 is recommended as a simple, standard method, which does not
cause any additional computational burden.

Table 3. Validation MAPE and RMSE for different methods of split predictor selection (training mode:
global extended, #trees: 300, minimum leaf size: 1; lowest errors in bold).

Data Variant MAPE RMSE
s1 s2 s3 s1 s2 s3

PL r4, p = 15 1.26 1.30 1.30 339 345 345
GB r6, p = 20 1.44 1.42 1.42 652 649 649
FR r4, p = 6 1.35 1.39 1.38 1046 1071 1053
DE r4, p = 15 0.98 1.00 1.00 709 714 714

Figure 8 shows the “importance” or “predictive strength” of the predictors estimated
on the out-of-bag data (this is discussed further in Section 5.4). As can be seen from this
figure, when r4 extended pattern is used (PL, FR and DE), the most important predictor
is the last component of the r-pattern, i.e., the predictor expressing electricity demand
at forecasted hour t of the day preceding the forecasted day, zi−1,t. The importance of
this predictor reaches 3.5 for FR and over 5 for PL and DE, while the importance of other
demand predictors is usually below 2. Among the calendar predictors, the most important
for r4 extended pattern are those coding the season of the year, especially for DE. For
cross-pattern r6 (GB), the most important predictors are the calendar ones: day of the
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week and season of the year (p1). The next positions are occupied by predictors coding
the demand for the last four hours of the day before the forecasted day (zi−1,24 is clearly
the most important of these) and predictor coding demand at forecasted hour t week ago,
zi−7,t. Note the low importance of the other predictors representing demand at hour t of
the preceding days, zi−6,t–zi−2,t.

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0
x
1

1
x
1

2
x
1

3
x
1

4
x
1

5
x
1

6
x
1

7
x
1

8
x
1

9
x
2

0
x
2

1
p
1

p
2 d t0

1

2

3

4

5

6
P

re
d
ic

to
r 

im
p
o
rt

a
n
c
e

PL

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1
0

x
1
1

x
1
2

x
1
3

x
1
4

x
1
5

x
1
6

x
1
7

x
1
8

x
1
9

x
2
0

x
2
1

x
2
2

x
2
3

x
2
4

x
2
5

x
2
6

x
2
7

x
2
8

x
2
9

x
3
0

p
1

p
2 d t0

1

2

3

4

P
re

d
ic

to
r 

im
p
o
rt

a
n
c
e

GB

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0
x
1

1
x
1

2
x
1

3
x
1

4
x
1

5
x
1

6
x
1

7
x
1

8
x
1

9
x
2

0
x
2

1
p

1
p

2 d t0

1

2

3

4

P
re

d
ic

to
r 

im
p
o
rt

a
n
c
e

FR

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1
0

x
1
1

x
1
2

x
1
3

x
1
4

x
1
5

x
1
6

x
1
7

x
1
8

x
1
9

x
2
0

x
2
1

p
1

p
2 d t0

1

2

3

4

5

6

7

P
re

d
ic

to
r 

im
p
o
rt

a
n
c
e

DE

Figure 8. Importance of the predictors (x1 − x30—predictors expressing demand pattern r4 or r6,
p1 and p2—components of vector p expressing season of the year, d—day of the week, and t—hour
of the day).

Table 4 shows the forecasting results for the test set when using RF with the optimal
values of hyperparameters. As performance metrics we use: MAPE, MdAPE (median
of absolute percentage error), IqrAPE (interquartile range of APE), RMSE, MPE (mean
percentage error), and StdPE (standard deviation of PE). MdAPE measures the mean error
without the influence of outliers, while RMSE, as a square error, is especially sensitive
to outliers.

Table 4. Results for test data (training mode: global extended, #trees: 300, minimum leaf size: 1, split
predictor selection method: s1).

Data Variant MAPE MdAPE IqrAPE RMSE MPE StdPE

PL r4, p = 15 1.05 0.78 1.06 259 0.03 1.52
GB r6, p = 20 2.36 1.78 2.39 1058 −0.32 3.36
FR r4, p = 6 1.67 1.18 1.67 1338 −0.22 2.42
DE r4, p = 15 1.06 0.80 1.07 815 −0.04 1.48

The MAPE and MdAPE values in Table 4 indicate that the most accurate forecasts
were obtained for PL and DE, while the least accurate were for GB. MPE allows us to assess
the forecast bias. Positive values of MPE indicate underprediction, while its negative values
indicate overprediction. Note that for PL and DE the forecast bias was significantly smaller
than for GB and FR. The same can be said about the forecasts dispersion measured by
IqrAPE and StdPE.

5.3. Results Comparison with Other Models

We compare the performances of RF with other models including statistical models
and ML models. The comparative models are outlined below (see [30,39] for further
description). Their hyperparameters were selected on the data from 2012–2014 in grid
search procedures using a variant of cross-validation or selected by experimentation (this



Energies 2022, 15, 7547 13 of 19

applies to models with a large number of hyperparameters, which are difficult to optimize
using standard methods due to the huge search space).

• Naive—naive model: ẑi∗ = zi∗−7;
• ARIMA—Auto-Regressive Integrated Moving Average model;
• ETS—Exponential Smoothing model;
• Prophet—a modular additive regression model with nonlinear trend and seasonal

components;
• MLP—perceptron with a single hidden layer and sigmoid nonlinearities;
• SVM—linear epsilon insensitive Support Vector Machine (ϵ-SVM);
• ANFIS—Adaptive Neuro-Fuzzy Inference System;
• LSTM—Long Short-Term Memory;
• FNM—Fuzzy Neighborhood Model;
• N-WE—Nadaraya–Watson Estimator;
• GRNN—General Regression NN;
• RandNN—ensemble of 100 Randomized NNs;
• MTGNN—Graph NN for multivariate time series forecasting;
• ES-adRNNe—ensemble of five hybrid and hierarchical models combining ETS and

dilated RNN with attention mechanism.

We also compare our model with competitive tree-based ensembles: XGBoost [40]
and LightGBM [41]. Their predictors include both calendar data (hour of the day, day
of the week, quarter, month, year, day of the year, day of the month and week of the
year) and historical demands (demands at hour t of 21 consecutive days preceding the
forecasted day).

Table 5 compares MAPE for RF and the baseline models. From this table, you can
clearly see the better performance of RF compared to the other models. RF outperformed
all other models in terms of accuracy for PL, GB and DE. For FR it took third place after
RandNN and SVM. To confirm the results, a pairwise one-sided Giacomini-White test
was performed (GM test) [42]. Its results, p-values, are shown in Figure 9 (we used GW
test implementation from [43]). Small p-values, below 0.05 (green color), indicate that the
model on the X-axis significantly outperforms in terms of accuracy the model on the Y-axis.

Table 5. MAPE comparison between RF and baseline models (lowest errors in bold).

Model PL GB FR DE

RF (proposed) 1.05 2.36 1.67 1.06
Naive 2.96 4.80 5.53 3.13
ARIMA 2.31 3.50 3.00 2.31
ETS 2.14 3.19 2.79 2.10
Prophet 2.63 4.00 4.71 3.23
MLP 1.39 2.84 1.93 1.58
SVM 1.32 2.54 1.63 1.38
ANFIS 1.64 2.80 2.12 2.48
LSTM 1.57 2.92 1.81 1.57
FNM 1.21 3.02 1.84 1.30
N-WE 1.19 3.12 1.86 1.29
GRNN 1.22 3.01 1.81 1.30
RandNN 1.14 2.51 1.57 1.18
MTGNN 1.95 3.44 2.59 2.04
ES-adRNNe 1.22 2.45 1.73 1.15
XGBoost 1.67 3.36 2.51 1.74
LightGBM 1.67 3.39 2.54 1.79
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Figure 9. Results of the Giacomini-White test for the proposed and baseline models (black color is for
p-values larger than 0.10).

5.4. Discussion

In our previous work [19], we used a local training mode with input patterns r2, which
express daily profiles. Our current research revealed that input patterns incorporating
weekly seasonality (r4) or both daily and weekly seasonality (r6) combined with global
training with extended inputs improve the results (note that in Tables 1 and 2, patterns r4
and r6 provide lower errors than r2 for all countries). Calendar data used as additional
input in the global extended training helps the trees to properly partition the input space
and thus approximate the target function with greater accuracy. It does not take place
without costs: the complexity of the model increases due to learning on all data, not just
the selected data as in local training.

Table 5 and Figure 9 show that the proposed RF outperforms classical statistical models
(ARIMA and ETS), modern statistical model (Prophet), classical ML models (MLP, SVM,
ANFIS, GRNN), modern ML models (LSTM, RandNN), similarity-based models (FNM,
N-WE) as well as state-of-the-art ML models (MTGNN, ES-adRNNe) and boosted regres-
sion trees (XGBoost, LightGBM). The last two models, as well as the proposed RF model,
also used calendar variables, even in larger numbers. However, in contrast to these models,
our model uses specific time series preprocessing, which may be a decisive advantage. Our
model also outperforms ES-adRNNe, which is a very sophisticated and complex model
developed especially for STLF [39]. To increase its predictive power, it is equipped with a
new type of RNN cell with delayed connections and inherent attention, it processes time
series adaptively, learning their representation and it learns in the cross-learning mode (i.e.,
it learns from many time series in the same time). It reveals its strength with a large amount
of data, numerous and long time series. In our case, this condition was not met—there
were only four, relatively short series available for training the models. In this case, the
proposed RF model, which learns from individual series, generated more accurate forecasts
than ES-adRNNe.

It is worth noting that RF has few hyperparameters to tune, which makes it easy to
optimize (compare with DNNs with many hyperparameters). The results of our experi-
ments confirmed that the number of trees in the forest should be as large as possible and
the mimimum leaf size can be set to one. Therefore, the key hyperparameter remains the
number of predictors to sample in the nodes. Its optimal values significantly differed from



Energies 2022, 15, 7547 15 of 19

the recommended default values. Our attempt to increase the performance of the RF model
through alternative methods of selecting predictors for split failed. Neither the curvature
test nor the interaction test, which take into account the relationship between predictors
and response when splitting data in nodes, improves the results significantly over the
default CART method.

In our study, we used both continuous and categorical predictors. Such a mix causes
many difficulties for other models such as ARIMA, ETS, NNs, SVM, LSTM and others.
Categorical variables cannot be processed by these models directly. Such predictors must
be converted into numerical data, so as to maintain the relationship between their values.
The method of this conversion can be treated as an additional hyperparameter. RF has no
problems with categorical variables, which is its big advantage. Moreover, RF can deal
easily with any number of additional exogenous predictors and does not need to unify
predictor ranges, which is often necessary for other models. RF can even deal with raw
data because the predictors are not processed by the tree in any way, just selected in nodes,
to construct a specific decision model (flowchart-like structure).

Regression tree provides fast one-pass training which does not need to repeatedly
refer to the data. In contrast, NNs, which use a variant of the gradient descent optimization
algorithm with multiple scanning of a dataset, are more time-consuming to train. Addition-
ally due to the number of hyperparameters, they are also much more expensive to optimize
in terms of time than RF. The training of a tree does not provide an optimal result because
decisions about data split are made in nodes using a local rather than a global criterion, i.e.,
the split made may not be optimal from the point of view of the final result. However, the
NN learning process also does not lead to optimal results due to sensitivity to the starting
point and tendency to fall into the traps of the local minimum. Note that non-optimality
of the trees is mitigated by their aggregation in the forest. Aggregation also smoothes out
functions modeled by individual trees and reduces their variance. The learning process of
RF can be easily paralleled because the individual trees learn independently.

One useful feature of RF is that it enables the generalization error to be estimated
using out-of-bag (OOB) patterns, i.e., training patterns not selected for the bootstrap sample
(approximately one third of the training patterns are left out in each bootstrap sample).
Therefore, the time-consuming cross-validation that is widely used in other models for
estimating the generalization error is not needed. Using OOB patterns, the generalization
error can be estimated during one training session, along the way. Although for forecasting
problems, where training patterns should precede validation to prevent data leakage, the
OOB approach as well as standard cross-validation may be questionable. For this reason,
we did not use the OOB approach in this study. Instead, we applied a different strategy.
We chose a set of 100 validation patterns from 2014 and for each of them we trained RF on
training patterns preceding the validation pattern.

A valuable feature of RF is its built-in mechanism for predictor selection. In each
node, the predictor which improves the split-criterion the most is selected. The splitting
criterion favors informative predictors over noisy ones, and can completely disregard
irrelevant ones. Thus, in RFs an additional feature selection procedure is unnecessary.
Based on the internal mechanism for selecting predictors, the predictor importance or
strength can be estimated. The importance measure attributed to the splitting predictor
is the accumulated improvement this predictor gives to the split-criterion at each split in
each tree. RF also offers another method of estimating the predictor importance based
on the OOB patterns [27]. When the tree is grown, the OOB patterns are passed down
the tree, and the prediction error is recorded. Then the values for the given predictor
are randomly permuted across the OOB samples, and the error is computed again. The
importance measure is defined as the increase in error. This measure is computed for every
tree, then averaged over the entire forest and divided by the standard deviation over the
entire forest. Such a measure is presented in Figure 8. Note that information about the
predictor importance is a key factor, which helps to improve the interpretability of the
model and can be used for feature selection for other models.
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Model interpretability is an emerging area in ML that aims to make the model more
transparent and strengthen confidence in its results. This topic is also explored in electricity
demand forecasting literature [44]. In [45], it was shown that the predictor importance is
related to the model sensitivity to inputs and also to the method of importance estimation.
An LSTM-based model, which is proposed in [45], is equipped with a built-in mechanism
based on a mixture attention technique for temporal importance estimation of predictors.
In the experimental study, this model demonstrated higher sensitivity to inputs than tree-
based models (RF and XGBoost) which showed very low sensitivity on the predictors
except one, which strongly dominated (the authors used built-in functions of scikit-learn
to calculate the predictor importance for tree-based models). In our study, the predictor
importance is more diverse (see Figure 8), which may result from the fact that our trees
are very deep and thus involve a great number of predictors. Note that tree-based models
enhance interpretability not only through built-in mechanisms of predictor importance
estimation, which show predictive power of individual predictors, but also through their
flowchart-like tree structure. They can be interpreted simply by plotting a tree and observ-
ing how the splits are made and what is the arrangement of the leaves. It should be noted,
however, that while following the path that a single tree takes to make a decision is trivial
and self-explanatory, following the paths of hundreds of trees in the ensemble is much
more difficult. To facilitate this, in [46], model compression methods were proposed that
transform a tree ensemble into a single tree that approximates the same decision function.

In this study we use a standard RF formulation which is a MISO model producing
point forecasts. Thus for prediction of 24 values of the daily curve of electricity demand,
we need to train 24 RF models. In [32], we proposed a multivariate regression tree for STLF,
which produces a vector as an output, representing the 24 predicted values. Using such
MIMO trees as ensemble members simplifies and speeds up the forecasting process. A
promising extension of the RF in the direction of probabilistic forecasting can be achieved
using a quantile regression forest, which can infer the full conditional distribution of the
response variable for high-dimensional predictor variables [47].

6. Conclusions

ML ensemble models are state-of-the-art for forecasting problems. They dominate
the most recent literature on forecasting. Among them, tree-based ensembles have a solid
theoretical basis and have been thoroughly researched in a huge number of papers. Their
predictive power has been confirmed in numerous forecasting competitions [24].

In this study, we propose a RF model for a challenging STLF problem with multiple
seasonality, nonlinear trend, and varying variance in time series. Unlike DNNs, RF is simple
and transparent, it does not require a complex, deep architecture, equipped with additional
sophisticated mechanisms to deal with complex time series. The greatest advantages of
RF as a forecasting model are: small number of tuning hyperparameters (we show that
only one is key), fast training and optimization, ability to deal with multiple exogenous
predictors of different types, and built-in mechanism for selecting predictors and estimating
their importance.

As with any predictive model, the performance of RF depends significantly on data
preprocessing and proper organization of the training process. In the simulation study, we
show how the results of RF depend on the training method, definition of input variables
and hyperparameters. Based on the results, we recommend the best method of predictor
definition (r4 and r6) and training mode (global extended) for STLF. Comparing the perfor-
mances of RF and baseline models including statistical and ML ones, we showed that RF
can successfully compete with them, providing the most accurate forecasts.

In our future work, we plan to extend RF with random data projection (to further
smooth the estimator and provide an additional source of diversity) and use RF for proba-
bilistic forecasting. A quantile regression forest [47] is a promising tool for the latter task.
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Abbreviations
The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuro-Fuzzy Inference System
APE Absolute Percentage Error
ARIMA Auto-Regressive Integrated Moving Average
CART Classification And Regression Trees
CNN Convolutional Neural Network
DE Germany
DNN Deep Neural Network
ES-adRNNe ensemble of five hybrid and hierarchical models combining ES

and dilated RNN with attention mechanism
ETS Exponential Smoothing
FR France
FNM Fuzzy Neighborhood Model
GB Great Britain
GBRT Gradient Boosting Regression Tree
GRNN General Regression Neural Network
IqrAPE Interquartile Range of Absolute Percentage Error
LightGBM Light Gradient Boosting Machine
LSTM Long Short Term Memory Neural Network
MAPE Mean Absolute Percentage Error
MdAPE Median of Absolute Percentage Error
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
ML Machine Learning
MLP Multilayer Perceptron
MPE Mean Percentage Error
MTGNN Graph Neural Network for Multivariate Time series forecasting
N-WE Nadaraya–Watson Estimator
NN Neural Network
PE Percentage Error
PL Poland
RandNN Randomized Neural Network
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
StdPE Standard Deviation of Percentage Error
SVM Support Vector Machine
STLF Short-Term Load Forecasting
WGTB Warm-start Gradient Tree Boosting
XGBoost eXtreme Gradient Boosting
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