
Applied Soft Computing 112 (2021) 107797

l
m
t
u
o
M
c
(
t
d
t
s
t
l
l
t
a
b

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

A constructive approach to data-driven randomized learning for
feedforward neural networks
Grzegorz Dudek
Czestochowa University of Technology, Faculty of Electrical Engineering, 17 Armii Krajowej Ave., 42-200, Czestochowa, Poland

a r t i c l e i n f o

Article history:
Received 9 September 2020
Received in revised form 2 July 2021
Accepted 7 August 2021
Available online 18 August 2021

Keywords:
Data-driven randomized learning
Feedforward neural networks
Neural networks with random hidden
nodes
Randomized learning algorithms

a b s t r a c t

There is an issue with the way in which feedforward neural networks with random hidden nodes
generate random parameters in order to obtain a good projection space. Typically, random weights
and biases are both drawn from the same interval, which is misguided as they have different functions.
Recently, more sophisticated methods of random parameters generation have been developed, such
as the data-driven approach, where the sigmoids are placed in randomly selected regions of the input
space and then their slopes are adjusted to the local fluctuations of the target function. In this work,
we propose a new constructive data-driven method that builds iteratively the network architecture.
This method successively generates new candidate hidden nodes and accepts them when the training
error falls significantly. The threshold of acceptance is adapted throughout training, accepting at the
beginning of the training process only those nodes which lead to the largest reductions in error. In the
next stages, the threshold is successively reduced to accept only those nodes which model the target
function details more accurately. This leads to a more compact network architecture, as it includes only
"significant" nodes. It is worth noting that redundant, random nodes, which are usually generated by
existing randomized learning methods, are not accepted by the proposed method. We empirically
compared our approach with several alternative methods, including its predecessor, competitive
randomized learning solutions, a gradient-based network and a generalized additive model. We found
that our proposed approach outperformed its competitors in terms of fitting accuracy.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

A feedforward neural network (FNN) with a single hidden
ayer containing a finite number of neurons is able to approxi-
ate any continuous function under mild assumptions on the ac-

ivation function (AF). Unfortunately, any learning process which
ses a gradient-based algorithm is sensitive to the local minima
f the error function as well as its flat regions and saddle points.
oreover, the gradient calculations are time consuming, espe-
ially for large network architectures, complex target functions
TFs) and big training datasets. In randomized learning, the op-
imization problem, which is highly non-convex when gradient
escent algorithms are used, becomes convex [1]. This is because
he parameters of the hidden nodes are not learned but are
elected randomly and stay fixed. The only adaptation occurs in
he output weights. As the optimization problem is brought to a
inear form, the output weights can be learned using a standard
east-squares method. The learning process in such a case is easier
o implement and much faster than when using gradient descent
lgorithms for the full learning of all parameters, i.e. weights and
iases of the hidden and output nodes. Many simulation studies

E-mail address: grzegorz.dudek@pcz.pl.
ttps://doi.org/10.1016/j.asoc.2021.107797
568-4946/© 2021 Elsevier B.V. All rights reserved.
reported in the literature show the high accuracy of randomized
neural models when compared to fully adaptable ones.

Randomized learning originates from the beginning of 90s [2,
3]. One of the most popular randomized learning algorithms is the
random vector functional link network (RVFL) [4]. It is a single
hidden layer FNN with direct links between input and output
layers. Recently, [5] provided a corrected rigorous proof that RVFL
is a universal approximator for continuous functions on compact
domains, with the approximation error decaying asymptotically.
Although RVFL in its standard version overcomes some of the
limitations of gradient-based learning such as slow convergence,
over-fitting and trapping in local minima, and achieves good
generalization performance in real-world problems [6], in order
to improve further its effectiveness, modified versions of it have
recently been proposed. In [7], an orthogonal polynomial ex-
panded RVFL (OPE-RVFL) was proposed. In this model, to enhance
a network’s representation capabilities in modeling nonlinear
relationships and capture higher order information, a nonlinear
expansion of inputs into orthogonal polynomials was used. OPE-
RVFL adds direct links between the nonlinear transformation
of the input patterns and the output layer. This modification
helps to model complex mappings. A simulation study showed

the great effectiveness and efficiency of novel OPE-RVFL which
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an achieve better generalization performance than competitive
andomization-based methods such as standard RVFL and ex-
reme learning machine (ELM), i.e. RVFL without direct links and
utput node biases. RVFL enriched with a new learning paradigm
alled learning using privileged information was proposed re-
ently in [8]. This is a teacher–student interaction mechanism,
hich can leverage additional sources of information into the
VFL and offers an alternative way to train the RVFL. Moreover,
he proposed RVFL+ can perform in conjunction with a kernel
rick for highly complex nonlinear learning. The experimental
esults illustrate that these novel proposed solutions outperform
tate-of-the-art competitors.
A random projection may generate redundant information,

eading to suboptimal solutions. To overcome this problem, in [9]
successive projection algorithm for randomized learning was
eveloped, combining feature selection, hidden node pruning
nd ensemble methods. The resulting parsimonious ensembles
f randomized NNs aim to reduce the complexity of the final
odel without compromising accuracy. Other positive effects of

andomized NN ensembling were noted in [10]. In this study,
o ensure the appropriate diversity of the RVFL base learners,
dditional regularization or randomization in their architecture
as introduced. This was realized using deep learning techniques
uch as Dropout and DropConnect. In the experimental study, it
as observed that stronger randomization helps RVFL ensembles
eneralize better. Interesting results in terms of RVFL ensemble
evelopment and applications were presented in [11]. In this
ork, an ensemble of RVFL was used for time series forecast-

ng. The time series was decomposed, via an empirical mode
ecomposition method into several intrinsic mode function com-
onents. Each component was predicted using RVFL, and then
ndividual component forecasts were aggregated to produce the
inal results. Based on a simulation study, the authors concluded
hat their proposed approach is significantly superior to all other
enchmarking methods in terms of accuracy, speed and robust-
ess. Promising future directions for randomized NN learning
nclude randomization-based multi-layer or deep NNs [12–14] as
ell as unsupervised and semi-supervised learning [15–17].

.1. Generating hidden node parameters - a challenge in randomized
N learning

The main problem in randomized learning is finding a way
f generating the random hidden node weights and biases so
s to obtain a good projection space. According to the standard
pproach, the random weights and biases are selected randomly
ith a fixed interval from any continuous sampling distribution.

t was proven that when the interval is symmetric, the FNN
as a universal approximation property if the function to be
pproximated meets Lipschitz condition [18]. The problem of how
o select an appropriate interval for parameters has not been
olved as yet and is considered to be one of the major research
hallenges in the area of FNN randomized learning [19,20]. In
any practical applications, the interval for random parameters

s selected as [−1, 1] without any justification, regardless of the
roblem type (classification or regression), data, and AF type.
ome works have shown that such an interval is misleading
ecause the FNN is unable to model nonlinear maps, no matter
ow many training samples are provided or how many hidden
odes are used [21]. So, in order to improve the performance in a
pecified task, the optimization of this interval is recommended
n many papers, e.g. [4,18,22]. The authors of the last work
roposed a way of assigning random parameters with inequality
onstraints from the adaptively selecting scope, thus maintaining
he universal approximation property of the built randomized
earner models.
2

Noting that weights and biases have different functions
(weights express slopes of the sigmoids and biases represent sig-
moid positions or shifts), in [23] a method of selecting the random
parameters was proposed which generates them separately, not
both from the same interval. This method takes into account the
data scope and type of the AFs. First, it adjusts the AF slopes
to the TF and then shifts the AFs into the input space. Another
way of generating random parameters was recently proposed
in [24]. In this approach, the slope angles of the sigmoids are
randomly generated from the interval adjusted to TF. Then the
sigmoids are randomly rotated and shifted into the input hy-
percube. Both these methods performed very well on a TF with
strong fluctuations, outperforming the standard approach with a
fixed interval.

In [25] unsupervised pre-training was proposed to generate
hidden node parameters. This method is derived from deep learn-
ing where it helps optimization by initializing weights in a region
near a good local minimum, giving rise to internal distributed
representations that are high-level abstractions of the input, and
achieving a better generalization [26,27]. In [28] an unsupervised
pre-training with autoencoders was applied for a shallow RVFL.
In this case, a sparse autoencoder with ℓ1-norm regularization
is applied to generate more sparse and meaningful network pa-
rameters. In [13] pre-training was used to generate the hidden
node parameters of deep RVFL. To extract better higher-level
representations, randomization based stacked autoencoders with
a denoising criterion were applied. The network is built hier-
archically with high level feature extraction followed by a final
classification layer, which is RVFL with direct links.

Another idea for generating random parameters, a data-driven
method of randomized FNN learning (D-DM), was recently pro-
posed in [29]. According to this method, the hidden node weights
are not selected from a specified interval but, instead, the sig-
moids building the fitted function (FF) are adjusted individually
to the local complexity of the TF. To do so, first, the proposed
method selects the input space regions (by randomly choosing
the training points), and then places the sigmoids in these re-
gions and adjusts the sigmoid slopes to the TF slopes in the
neighborhoods of the chosen points. A linear combination of
the sigmoids reflects the TF features in different regions of the
input space. Simulation studies have shown that this approach
brings very good results in the approximation of complex TFs
when compared to both standard fixed interval methods and new
state-of-the-art methods proposed recently in the literature.

1.2. Summary of contribution

To develop randomized learning methods for FNNs, the main
contribution of this work is a new constructive approach for
data-driven randomized learning of FNNs. This extended ver-
sion of D-DM constructs the network architecture iteratively by
adding new hidden nodes. The candidate nodes are successively
generated and are accepted or rejected depending on the ap-
proximation error. If the error is reduced significantly by more
than the assumed threshold, the node is accepted. The threshold
of acceptance is adapted to the current training stage, accepting
in the initial iterations only those nodes which approximate the
TF roughly. In the next iterations, the threshold is successively
reduced by half to accept only those nodes which lead to a more
accurate modeling of the TF details. The final architecture of the
resulting network is compact as it includes only ‘‘significant’’
nodes, i.e. those which are necessary to construct a well-fitted
function to the TF. Compared to other recently proposed con-
structive algorithms for randomized FNN learning [22,30] our
proposed method does not search for the optimal interval for the
random parameters. Instead, the weights and biases of nodes are



G. Dudek Applied Soft Computing 112 (2021) 107797

d
S
o
t

t
r
w
S

2

2

i
c
s
i
s
a
h
i

h

i
r
c

0

a
f
b
t
e

t

etermined by the TF slopes in randomly selected input regions.
o, the resulting FNN is more dependent on data and includes
nly those nodes which are necessary to model the TF details with
he required accuracy.

The contribution of this paper can be summarized as follows.

1. A new constructive data-driven learning for FNNs is pro-
posed. This approach gradually extends the network ar-
chitecture by adding new nodes to the hidden layer. New
nodes introduced in the successive iterations allow the net-
work to model the TF with increasing accuracy. The node
positions in the input space and their slopes are related to
TF complexity. This new construction process results in a
parsimonious architecture with only relevant nodes.

2. This work empirically demonstrates that the proposed con-
structive approach outperforms its predecessor, D-DM, and
is a strong competitor to alternative randomization-based
and gradient-based solutions such as OPE-RVFL, standard
RVFL, ELM and single hidden layer perceptron as well as
statistical methods such as generalized additive model.

The remainder of this paper is organized as follows. Sec-
ion 2 details our proposed constructive approach to data-driven
andomized learning. Section 3 describes the experimental frame-
ork used to evaluate the proposed model’s performance. Finally,
ection 4 concludes this paper.

. Constructive approach for data-driven randomized learning

.1. Data-driven randomized learning

A FNN with a single hidden layer, including sigmoids as AFs,
s considered. D-DM adjusts the sigmoids individually to the local
omplexity of the TF [29]. It places the sigmoids into randomly
elected input regions and adjusts their slopes to the TF slopes
n these regions. Firstly, the algorithm randomly selects the input
pace regions by drawing points x∗ from the training set. Then,
t each point x∗ the sigmoid S is located in such a way that it
as one of its inflection points, P , in x∗. The sigmoid value in the
nflection point is 0.5, thus:

(x∗) =
1

1 + exp
(
−

(
aTx∗ + b

)) = 0.5 (1)

where x∗
= [x∗

1, x
∗

2, . . . , x
∗
n]

T
⊂ Rn, a = [a1, a2, . . . , an]T ⊂ Rn is

a vector of sigmoid weights and b is a sigmoid bias.
The slope of sigmoid S is adjusted to the TF slope in x∗. To

do so, the slope of the TF is approximated by hyperplane T ,
which is fitted to the neighborhood of x∗. This neighborhood,
Ψ (x∗), includes x∗ and its k nearest neighbors among the training
points. We use Euclidean distance to select the nearest neighbors.
Hyperplane T is of the form:

y = a′

1x1 + a′

2x2 + · · · + a′

nxn + b′ (2)

where coefficient a′

j expresses a slope of the hyperplane in jth
direction.

If we assume that this hyperplane is tangent to sigmoid S at P ,
then the partial derivatives of sigmoid S and hyperplane T must
be the same in P , and we obtain the sigmoid weights (see [29]
for details):

aj = 4a′

j, j = 1, 2, . . . , n (3)

Having weights aj we can calculate the bias of sigmoid S based
on the equation we obtain from (1):

b = −aTx∗ (4)

Note the completely different way of generating the hidden
node parameters in D-DM when compared to the standard way.
 s

3

Weights aj are not randomly generated from a fixed interval
but correspond to the TF local slope. The biases are also not
randomly selected from the fixed interval, but are calculated as
linear combinations of points x∗ and sigmoid weights a. They
express the shifting of the sigmoids to the randomly selected
input regions.

After randomly selecting m points x∗ we generate a set of
sigmoids reflecting the local features of the TF in different regions.
These sigmoids are the basis functions which are linearly com-
bined to obtain the FF. The least squares estimate of the weights
in this combination are calculated as follows:

β = H+Y (5)

where β = [β1, β2, . . . , βm]
T is a vector of output weights,

Y = [y1, y2, . . . , yN ]
T is a vector of target outputs and H+ is

the Moore–Penrose pseudoinverse of matrix H, which is an N-
by-m hidden layer output matrix for all N training samples and
m nodes.

As reported in [29], D-DM produces very good results in the
approximation of complex TFs when compared to the standard
method and new methods proposed recently in the literature.
This is because it places the steepest sigmoid fragments inside
the input hypercube and adjusts the sigmoid slopes to the TF. So
the saturated fragments of sigmoids are avoided in modeling the
TF.

2.2. Constructive extension of D-DM

The constructive extension of D-DM (CD-DM) proposed in this
work generates sigmoids in randomly selected regions and adjust
their slopes according to the algorithm described above. After
generating a new node, an approximation error is calculated,
and the node is accepted or rejected. It is accepted when the
error is reduced by more than threshold θ . Otherwise it is re-
jected. Threshold θ adapts as the construction process advances.
Its initial value should be low enough to accept only the ‘‘key’’
nodes, which model roughly the shape of the TF. These nodes
are searched randomly by generating candidate nodes, one by
one, in different input space regions. The generation process is
paused when, during consecutive Q iterations, no new node is
accepted among the candidate nodes. In such a case, threshold
of acceptance θ is halved, and the process of generating new
candidate nodes continues. At the new value of the acceptance
threshold, those nodes which model the TF in more detail are
accepted. If after Q iterations, no node is accepted, threshold θ
s halved again. This process of generating candidate nodes and
educing the threshold by half is continued until one of the stop
onditions is met. Three stop conditions are used:

1. assumed number of nodes m is reached or
2. maximum allowable error RMSEmax is reached or
3. maximum number of consecutive unaccepted candidate

nodes qmax is reached.

The third condition prevents an infinite loop if the first two
stop conditions cannot be met. The first two conditions can be
treated alternatively, i.e. one of them can be ignored (RMSEmax =

or m = ∞).
At each successive level of threshold θ new nodes can be

dded to the network, which ensures a more and more accurate
itting of the FF to the TF. To avoid overfitting, the process should
e stopped at the right moment. This moment is controlled by
he total number of hidden nodes m or/and maximum allowable
rror RMSEmax, which should be selected in cross-validation.
In CD-DM the number of samples and their size do not affect

he number of nodes. Only the TF complexity affects the network
ize. TFs without fluctuations can be modeled using a small
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umber of nodes. In such a case, new candidate nodes considered
n the network construction process do not reduce the error by
ore than threshold θ and are rejected. In the case of the complex
F with fluctuations, new nodes are added in the fluctuation
egions until they cause error reduction. If all TF fluctuations are
odeled by a set of nodes, new candidate nodes are rejected. The

evel of fitting accuracy and bias–variance tradeoff are dependent
n the size of neighborhood k′ and the stop conditions, i.e. the

final number of nodes m or/and the maximum allowable error
RMSEmax. These regularization hyperparameters are adjusted in
cross-validation to prevent underfitting or overfitting.

The proposed method has six hyperparameters, defined as
follows:

• m – the final number of hidden nodes. The algorithm adds
successive nodes to the hidden layer if they reduce the error
by more than threshold θ until the final number of nodes
m is reached. Intuitively, more complex TF needs more
hidden nodes to model accurately the function fluctuations.
However, too many nodes can lead to overfitting.

• k′ – size of the neighborhood including k′
= k + 1 training

points, i.e. x∗ and its k nearest neighbors. The neighborhood
Ψ (x∗) expresses the local features of the TF around selected
point x∗. The sigmoid slope is determined on this set Ψ (x∗)
to model the selected region of the TF. The optimal value of
k′ depends on the noise level observed in the data, the TF
complexity and the data density. A low value of k′ at a high
level of noise leads to overfitting. On the other hand, too
large k′ causes underfitting. The size of the neighborhood
controls the bias–variance tradeoff of the model, as well as
the number of nodes m and the maximum allowable error
RMSEmax.

• θ ≤ 0 – the threshold for the error change. This is the
threshold of acceptance for any new candidate hidden node
which is added during the construction process. When, after
adding a node, the reduction in error is greater than this
threshold the node is accepted. Otherwise, it is rejected. If
no node has been added for the subsequent Q iterations,
threshold θ is halved. At successive levels of θ those new
nodes which model the TF in more and more detail are
accepted, up until the final number of nodes m or error
RMSEmax is reached. The initial value of θ should be low
enough. When it is too low, it does not accept any nodes and
increases rapidly in the first iterations of the construction
process (so due to self-adaptation a too low initial value of θ

is not a problem). When it is too high, it accepts most nodes
without selection. This means the proposed method behaves
just like original D-DM.

• Q – the threshold for the number of successive iterations
without a node accepted. The method searches for the nodes
to place them in the input space and so reduce the error
by more than threshold θ . If such a node is not found by Q
iterations, threshold θ is halved and the searching process is
repeated, i.e. new candidate nodes are generated. Reaching
the total number of m nodes in the hidden layer or reach-
ing the fitting error RMSEmax completes the construction
process.

• RMSEmax – the maximum allowable error deciding about the
final fitting error. The constructive process adds new hidden
nodes to the network until the error decreases to RMSEmax.
This hyperparameter can be considered as an alternative to
m.

• qmax – the maximum number of the consecutive unaccepted
candidate nodes which stops the construction process. If the
algorithm shows stagnation by qmax iterations, i.e. no new
node is added to the network, it stops.
4

The proposed CD-DM can be formulated in Algorithm 1. This
is discussed in detail with an example in the next subsection. A
Matlab implementation of CD-DM is presented in Appendix.

Algorithm 1 Constructive Approach to Data-Driven Randomized
Learning for FNNs

Input:
Number of hidden nodes m
Number of nearest neighbors k ≥ n
Initial value of the threshold for the error change θ ≤ 0
Q -threshold for adaptation of θ

qmax-threshold for the stop condition
Maximum allowable fitting error RMSEmax for the stop condition
Training set Φ = {(xl, yl)|xl ∈ Rn, yl ∈ R, l = 1, 2, . . . ,N}

Output:

Weights A =

⎡⎢⎣ a1,1 . . . am,1

.

.

.
. . .

.

.

.

a1,n . . . am,n

⎤⎥⎦
Biases b = [b1, . . . , bm]

Procedure:
i = 1, l = 1, q = 1, RMSE0 = RMSEmax + 1,H = [ ]

while (i ≤ m) and (RMSEi−1 > RMSEmax) and (q < qmax) do
if l mod N == 1 then

Φ∗
= Φ

end if
(a) Choose randomly x∗ from Φ∗ , update Φ∗

= Φ∗
\ {x∗

}

(b) Create set Ψ (x∗) containing x∗ and its k nearest neighbors in Φ

(c) Fit the hyperplane to Ψ (x∗): y = a′

1x1 + a′

2x2 + ... + a′
nxn + b′

(d) Compute the weights for the i-th node: ai,j = 4a′

j, j = 1, 2, ..., n

(e) Compute the bias for the i-th node: bi = −

n∑
j=1

ai,jx∗

j

(f) Add the column corresponding to the i-th node to the hidden layer
output matrix:

H′
=

⎡⎢⎣H

1/
(
1 + exp

(
−

(
aTi x1 + bi

)))
.
.
.

1/
(
1 + exp

(
−

(
aTi xN + bi

)))
⎤⎥⎦

(g) Compute the output weights for i nodes: β = H′+Y
(h) Compute the network output for the training set Φ: Y′

= H′β

(i) Compute the network error: RMSEi =

√
1
N

∑N
l=1(y

′

l − yl)2

(j) Compute the error change: ∆RMSE = RMSEi − RMSEi−1
(k) Accept or reject the i-th node:

q = q + 1
if (i == 1) or (∆RMSE ≤ θ ) then

i = i + 1, q = 1, H = H′

end if
(l) Adapt the threshold for the error change:

if q ≥ Q then
θ = θ/2

end if
l = l + 1

end while

2.3. Illustrative example

To illustrate the proposed CD-DM, we consider the case of a
single-variable function approximation. TF is in the form:

g(x) = 0.2e−(10x−4)2
+ 0.5e−(80x−40)2

+ 0.3e−(80x−20)2 (6)

The training dataset has 1000 points (xl, yl), where xl are
uniformly randomly distributed on [0, 1] and yl are calculated
from (6) and then scaled to [0, 1]. A test set has 300 points
distributed regularly on [0, 1].

The algorithm starts with one hidden node that is placed
in a randomly selected training point x∗, Algorithm 1 (a). Its
neighborhood Ψ (x∗) is selected (b) and hyperplane T is fitted
to Ψ (x∗) (c). Then its weights and bias are determined, (d) and
(e), respectively. In the next steps, one-node hidden layer output
matrix H is computed (f), output weight β is computed (g) and
1



G. Dudek Applied Soft Computing 112 (2021) 107797

t
a
s
e
n
d
−

u

c
p
t

a
d
D
i
e

n

r
m
r
c

o
w
s
N
c
t
e

t
m
m
s
t

h
v
(
v
w
w
l
T
v
a
c

3

e
w
D
O
a
a

e

Fig. 1. Sigmoids introduced at successive θ levels (new sigmoids in thick lines).

Fig. 2. Fitted curves at successive θ levels.

he predicted output is computed (h). The first hidden node is
ccepted regardless of the fitting error (k). Then we start the
econd iteration, going through the same steps. In step (j), the
rror difference between the two-hidden node and one-hidden
ode network is calculated. The new node is accepted if this
ifference is more than the acceptance threshold, which is θ =

0.01 in our example (k). Generating new nodes is repeated
ntil Q consecutively generated nodes do not improve results,

i.e. ∆RMSE > θ for Q consecutive candidate nodes. In such a case
the acceptance threshold is halved (l) and the algorithm continues
using the second threshold level. In our case, for Q = 50, four
hidden nodes are introduced to the network at the first θ level.
They are shown in the left upper panel of Fig. 1. The fitted curve
composed of these nodes is shown in the left upper panel of
Fig. 2. As can be seen in this figure, this curve roughly maps
the shape of the TF. At the second θ level, three new hidden
nodes are accepted which results in a slightly better fitting. A
significant improvement is seen at level three where 9 new nodes
are introduced. The fitting error decreased from 0.0835 to 0.0116.
At level 4, only one neuron was added, and at level 5, none. The
TF is modeled more and more accurately at subsequent levels. At
the last level, 14 new hidden nodes are introduced, which model
the TF’s minor details. The fitting error was further reduced to
RMSE = 0.00034 at this level.

The fitting error and threshold adaptation during the network
onstruction process are shown in Fig. 3. The red dots in the right
anel of this figure represent error reduction greater than the
hreshold, which is obtained after a new hidden node is accepted.

A comparison of the modeling performance between D-DM
nd CD-DM is depicted in Fig. 4. In this figure sigmoid h(x)
istributions in the input space are shown for both D-DM and CD-
M as well as the resulting fitted curves. Note the many flat nodes
n the D-DM case. Introducing such flat nodes rarely decreases the

rror so CD-DM does not accept them during the construction t

5

process. Consequently, only 44 nodes, usually those steep ones
which correspond to the steep fragments of the function, are
selected by CD-DM to approximate the TF.

Fig. 5 depicts the error on the test set as a function of the
number of hidden nodes for both versions of the data-driven
method. The median curves over 100 runs are shown with the
intervals between 10th and 90th percentiles. Note the much
faster convergence of CD-DM with the number of hidden nodes.
To get the same error level as D-DM with 250 nodes, CD-DM
needs only 44 nodes. Note also the less dispersed results for
CD-DM.

2.4. Complexity of CD-DM

In the proposed CD-DM, a hyperplane is fitted to k + 1 points
for each hidden node. The complexity of the least squares re-
gression used for this, when k ≥ n, is O(kn2). Selection of k
earest neighbors of x∗ takes O(Nn + Nk) time (the first com-

ponent expresses distance measure complexity and the second
one expresses selection of k nearest neighbors), but for k ≥ n it
educes to O(Nk). In the CD-DM construction process, we generate
′

≥ m hidden nodes (m of them are accepted but others are
ejected; the exact value of m′ is not known). So, the total time
omplexity of generating weights for m′ hidden nodes in CD-DM
is O(m′kn2

+ m′Nk).
The output weights are computed from (5). This operation

requires the least-square estimation which, for m hidden nodes,
is O(Nm) and Moore–Penrose pseudoinverse based on a singular
value decomposition which is O(N2m+Nm2). Thus computing the
utput weights takes O(N2m + Nm2) time. Because the output
eights are calculated m′ times in the main loop of the con-
truction process, the complexity of this is O(m′N2m + m′Nm2).
ote that the number of nodes m is not fixed in this loop but
hanges form 1 to m in the successive iterations. Unfortunately,
his change is unpredictable which means the above complexity
stimate is overestimated.
The whole CD-DM construction process including determina-

ion of the hidden and output weights takes O(m′kn2
+ m′Nk +

′N2m+m′Nm2). For comparison, D-DM complexity is O(mkn2
+

Nk + N2m + Nm2). In a typical case N > n2, N > m and m > k,
o the complexity of CD-DM can be expressed as O(m′N2m), and
he complexity of D-DM as O(N2m).

Taking into account the optimization process, i.e. selection of
yperparameters, the time complexity is as follows. In the basic
ariant, CD-DM has two optimized hyperparameters, k and m
or alternatively RMSEmax). They need to be found using cross-
alidation. Therefore, the computational load increases linearly
ith the number of data splits used in cross-validation, v, and also
ith the number of points of the grid which is lklm, where lk and

m are the number of searching values for k and m, respectively.
hus, hyperparameter selection using grid search and v-fold cross
alidation, with the assumptions and simplifications mentioned
bove, takes O(vlklmm′N2m). Note that the greatest computational
ost is related to the singular value decomposition.

. Simulation study

In this section, to assess the performance of CD-DM, a two-part
xperiment was conducted. In the first part, we compare CD-DM
ith its predecessor, D-DM. In the second part, we compare CD-
M with other randomization-based algorithms such as RVFL,
PE-RVFL and ELM as well as with the gradient-based learning
lgorithm and classical statistical fitting method — generalized
dditive model (GAM).
To evaluate the models’ performance we use root mean square

rror (RMSE). For CD-DM, in all cases, the following hyperparame-

ers were assumed to be fixed: θ = −0.01, Q = 50, RMSEmax = 0,
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Fig. 3. Fitting error (left) and the threshold adaptation (right) during the network construction process.
Fig. 4. Fitted curves and the sigmoids constructing them for D-DM (left) and
D-DM (right).

Fig. 5. Fitting error as a function of the number of hidden nodes for D-DM and
CD-DM.

and qmax = 1000. They were set on the basis of preliminary sim-
lations. The initial value of θ is not that important provided it is
ow enough. When it is too low, it does not accept any nodes and
ncreases rapidly in the first iterations of the construction process.
he simulations were carried out on Windows-10 platform, in
ATLAB 2018a environment, running an Intel i7-6950X 3.00 GHz
rocessor, with 48 GB RAM memory.

.1. CD-DM vs. D-DM

We compare CD-DM with D-DM on the following regression
roblems, which include a two variable function approximation
ask and three real-world modeling tasks. All the results reported
n this subsection are averages over 100 independent trials.

• Approximation of two variable TF:

g(x) = sin 20 · exp x · x2 + sin 20 · exp x · x2 (7)
( ( 1)) 1 ( ( 2)) 2

6

Fig. 6. TF (7).

The training set contains 5000 points (xl, yl), where com-
ponents of xl are independently, uniformly, randomly dis-
tributed on [0, 1] and yl are generated from (7), then nor-
malized to the range [0, 1] and distorted by adding the
uniform noise distributed in [−0.2, 0.2]. A test set of the
same size is created in a similar way. TF (7) is depicted in
Fig. 6.

• Stock – daily stock prices from January 1988 through Oc-
tober 1991, for ten aerospace companies. The task is to
approximate the price of the 10th company given the prices
of the others. There are 950 samples composed of nine input
variables and one output variable.

• Concrete – the dataset contains the concrete’s compressive
strength, age, and seven ingredients. The task is to approx-
imate the highly nonlinear relationship between the con-
crete’s compressive strength and the ingredients and age.
There are 1020 samples composed of eight input variables
and one output variable.

• Compactiv – the Computer Activity dataset is a collection of
computer systems activity measures. The data was collected
from a Sun Sparcstation 20/712 with 128 Mbytes of memory
running in a multi-user university department. The task is
to predict the portion of time that CPUs run in user mode.
There are 8192 samples composed of 21 input variables
(activity measures) and one output variable.

The datasets Stock, Concrete and Compactiv were divided into
training sets containing 75% of samples selected randomly, and
test sets containing the remaining 25% of samples. The input and
output variables are normalized into [0, 1]. These three datasets
were downloaded from KEEL (Knowledge Extraction based on
Evolutionary Learning) dataset repository (http://www.keel.es).
Neighborhood size k′ for D-DM was determined in 10-fold cross-
validation. The same value of k′ was also assumed for CD-DM.

http://www.keel.es
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Table 1
Performance comparison of D-DM and CD-DM.
Data D-DM CD-DM

RMSE Hyperparameters RMSE Hyperparameters

Function (7) 0.1204 ± 0.0003 m = 300, k′
= 35 0.1191 ± 0.0005 m = 160, k′

= 35, θ = −0.01,Q = 50
Stock 0.0285 ± 0.0028 m = 250, k′

= 30 0.0265 ± 0.0014 m = 110, k′
= 30, θ = −0.01,Q = 50

Concrete 0.0770 ± 0.0055 m = 150, k′
= 8 0.0748 ± 0.0034 m = 50, k′

= 8, θ = −0.01,Q = 50
Compactiv 0.0247 ± 0.0006 m = 500, k′

= 25 0.0240 ± 0.0003 m = 120, k′
= 25, θ = −0.01,Q = 50
Table 2
Benchmark regression datasets.
Dataset name #samples #features Description

Auto MPG 386 7 Predict fuel consumption (MPG)
Treasury 1049 15 Predict one month CD rate
Kinematics 32NH 8192 32 Forward kinematics of an 8 link robot arm (nonlinear and highly noisy)
Computer activity 8192 21 Predict usr, the portion of time that CPUs run in user mode from all

attributes
Triazines 186 60 Predict the activity from the descriptive structural attributes
Pyramidines 74 27 Inhibition of dihydrofolate reductase by pyrimidines
Machine CPU 209 6 Predict relative CPU performance
Puma32NH 8192 32 Predict the angular acceleration of one of the robot arm’s links

(nonlinear and highly noisy)
Bank32nh 8192 32 Predict the fraction of bank customers who leave the bank because of full

queues (nonlinear and highly noisy)
Elevators 16599 18 Predict the control action on the elevators of the F-16 aircraft (target

is absolute value)
n
c

t

i
w
a
i
t
r
n

The number of nodes was determined for these two methods
individually in cross-validation.

Fig. 8 shows RMSE as a function of the number of nodes for D-
M and CD-DM. For each dataset, the proposed CD-DM converged
uch faster and achieved lower test RMSE than D-DM. Table 1
hows the errors and hyperparameters of the models. For RMSE,
he medians and interquartile ranges (IQR) over 100 runs are
hown. Note that the number of hidden nodes for CD-DM is from
wo to five times smaller than for D-DM.

The changes in threshold θ during the construction processes
are shown in Fig. 9. Note the rapid increase in the threshold in
the first iterations and long segments without change at its higher
levels, where many nodes which model the TF in more and more
detail were added to the hidden layer.

Fig. 7 shows the function fitted to TF (7) by CD-DM and
detailed absolute errors for this case. Note the highest errors near
the input square boundaries. In this regions, the neighborhood
Ψ (x∗) may have problems accurately reflecting the shape of the
TF.

Taking into account the performance comparison reported
in [29], where the original D-DM are compared with the standard
methods (with fixed and optimized intervals) as well as with two
more sophisticated methods of random parameter generation
recently proposed in the literature, [23,24] we can conclude that
CD-DM outperforms standard and state-of-the-art methods in
terms of accuracy, convergence speed with the number of hidden
nodes and more compact network architecture.

3.2. CD-DM vs. other methods

In the second part of the experimental study, we compare
CD-DM with a standard RVFL, ELM, state-of-the-art RVFL vari-
ant, i.e. OPE-RVFL, gradient-based FNN, and a popular statistical
method, i.e. GAM. OPE-RVFL is a orthogonal polynomial expanded
RVFL with ridge regression regularization to prevent overfitting.
OPE-RVFL was tested over 120 variants including four orthogonal
polynomials (Chebyshev, Hermite, Laguerre and Legendre) and
three activation functions (tansig, logsig, tribas). The number of
hidden nodes in OPE-RVFL and the ridge regression parameter
were selected using cross-validation procedure (see [7] for de-

tails). Gradient-based FNN is a single hidden layer perceptron,

7

Table 3
RMSE comparison of CD-DM with other methods. Best results are underlined.
Dataset name CD-DM RVFL ELM OPE-RVFL MLP GAM

[7] [7] [7]

Auto MPG 0.0779 0.0790 0.0817 0.0788 0.0924 0.0809
Treasury 0.0117 0.0129 0.0323 0.0126 0.0116 0.0149
Kinematics 32NH 0.1288 0.1325 0.1502 0.1319 0.1388 0.1314
Computer activity 0.0262 0.0386 0.0580 0.0552 0.0263 0.0265
Triazines 0.2065 0.9574 0.9025 0.8592 0.2848 0.1868
Pyramidines 0.2149 0.2560 0.4828 0.1654 0.2926 0.1086
Machine CPU 0.0553 0.1671 0.1102 0.1394 0.1166 0.0730
Puma32NH 0.1216 0.1565 0.1565 0.1565 0.0386 0.0553
Bank32nh 0.0993 0.1279 0.1328 0.1322 0.1122 0.1035
Elevators 0.0347 0.0920 0.0939 0.0917 0.0312 0.0353

denoted as MLP. MLP was trained using Levenberg–Marquardt
backpropagation with early stopping to avoid overtraining (20% of
training data was used as validation data). The number of hidden
nodes was selected by 5-fold cross validation. For GAM, we used
Matlab implementation, function fitrgam, which fits a model
using a gradient boosting algorithm. GAM hyperparameters were
selected by cross-validation using Bayesian optimization. CD-DM
hyperparameters, i.e. number of hidden nodes m and number of
earest neighbors k, were selected using grid search in 5-fold
ross validation.
Table 2 shows the 10 regression benchmark datasets used in

he experiments. These datasets were taken from [31–33].
Results for RVFL, ELM and OPE-RVFL are taken from [7]. In the

nterests of a fair comparison, we use exactly the same data and
e followed the same experimental test setup for CD-DM, MLP
nd GAM as in [7]. Namely, each dataset was divided randomly
nto the training set (70% of data) and test set (30% of data). The
raining was carried out 50 times for each model with a different
andom division of the datasets. Input and output variables were
ormalized into [0, 1].
Table 3 shows RMSE averaged over 50 independent trials. As

can be seen from this table, CD-DM outperforms standard RVFL
and ELM in all cases, OPE-RVFL in 9 out of 10 cases, and MLP and
GAM in 7 out of 10 cases.

Fig. 10 shows distributions of fitting errors E = Real −

Predicted for CD-DM. As can be seen from this figure, they are very
similar to a normal distribution for Auto MPG, Kinematics 32N,
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Fig. 7. Function fitted by CD-DM to TF (7) (left) and detailed absolute errors for this case (right).

Fig. 8. RMSE as a function of the number of hidden nodes for D-DM and the proposed CD-DM (shaded regions are 10th and 90th percentiles, measured over 100
trials).

Fig. 9. Threshold θ in the proposed CD-DM.

8
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Table 4
Descriptive statistics of errors E.

Dataset name mean(E) median(E) std(E) Skewness Kurtosis

Auto MPG −2.58E−04 −1.49E−03 0.0335 0.57 5.17
Treasury −2.95E−04 −7.41E−04 0.0118 0.48 21.55
Kinematics 32NH −8.09E−05 −3.31E−03 0.1290 0.16 3.22
Computer activity 3.77E−04 2.58E−03 0.0257 −0.49 8.09
Triazines 3.56E−03 1.93E−02 0.2080 −0.58 4.71
Pyramidines 6.62E−03 −3.92E−03 0.2521 1.37 26.08
Machine CPU 3.06E−04 −1.03E−03 0.0618 −0.80 74.20
Puma32NH −1.62E−03 −1.02E−03 0.1249 −0.04 3.47
Bank32nh −8.86E−04 −9.63E−03 0.0986 0.89 6.84
Elevators −5.53E−05 −1.46E−03 0.0347 0.50 17.27
Fig. 10. Fitting error distributions for CD-DM.
Fig. 11. Repeatability of results for CD-DM.
Puma32NH, and Elevators. For other datasets, they are character-
ized by a more slender distribution than the normal distribution.
Unfortunately, in no case the distributions pass the test for nor-
mality (p-value of Anderson–Darling test in all cases was below
0.0005). Table 4 shows basic descriptive statistics of errors E. The
underlined cases in this table indicate mean values of E that are
not significantly different from 0. The most skewed error distri-
butions are those for Machine CPU and Bank32nh (|Skewness|>
.8). The least skewed is the distribution for Puma32NH (Skew-
ess = −0.04). In all cases, the kurtosis are greater than 3,
hich means leptokurtic distributions with fatter tails than for
he normal distribution (more outliers). The greatest kurtosis are
bserved for Machine CPU, Pyramidines, Treasury, and Elevators.
To assess the repeatability of the result in CD-DM, we re-

eated 50 training runs for each dataset, using the same division
f datasets into training and test parts for each run (to avoid
he impact of data shuffling on the result repeatability). Fig. 11
hows the variability of predictions (ŷ) for each dataset. Each

ˆ
ox represents the distribution of IQR(y). The results for MLP

9

are also shown for comparison. As can be seen from this figure,
the greatest variation in the results was for Triazines, which is
a highly dimensional dataset (60 features) containing only 186
samples. The lowest variation in the results was for Treasury
and Computer activity datasets. There was less variability for CD-
DM than for MLP in seven out of ten datasets. In CD-DM, result
variability is produced by randomly selected points x∗ which
determine the CD-DM hidden node parameters, while in MLP it is
produced by the initial values of weights and training algorithm
(including dataset random division into training and validation
parts for early stopping) that determine the training trajectory
and the final local minimum.

The optimization process of CD-DM is depicted in Fig. 12.
This figure shows RMSE depending on the hyperparameters. Note
that in most cases, better results are observed for higher values
of m and k′. Exceptions are: Elevators, where generally lower
errors are observed for lower values of m and k′, Pyramidines,
where for a higher number of nodes, the lower number of nearest
neighbors brought lower errors, and Triazine and Machine CPU,
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Fig. 12. RMSE depending on the number of hidden nodes (m) and the neighborhood size (k′). Red dots indicate the best solutions.
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hich demonstrate a very irregular pattern. Therefore, for these
rregular datasets, there is no certainty that the selected hyper-
arameter values are optimal. But CD-DM copes well with these
atasets, bringing the best result for Machine CPU compared to
ther methods, and the second-best result for Triazine.

.3. Discussion

The results presented in this section show that our proposed
D-DM is very effective at solving regression problems. Its high
xpressive power allows it to solve nonlinear stochastic complex
egression problems. The simulation study showed that CD-DM
ompetes well against other models including randomization-
ased and gradient-based FNNs as well as statistical models such
s GAM. In comparison to the state-of-the-art OPE-RVFL, which
ses nonlinear expansions by orthogonal polynomials and ridge
egression to prevent overfitting (note that all these extensions
omplicate the algorithm due to the additional parameters and
yperparameters to tune), our method uses simple sigmoidal AFs
nd no regularization (although regularization can be easily im-
lemented in place of the Moore–Penrose pseudoinversion). The
imple architecture of CD-DM gives it its interpretability. We can
nterpret sigmoids as local fitting components (basis functions)
ith slopes adjusted to the TF local slopes. The linear combination
f the sigmoids performed by the output node provides the fitted
unction.

The learning procedure of CD-DM introduces the hidden nodes
nto the crucial regions of the input space, searching these regions
t random. This is completely different from other randomization-
ased algorithms including RVFL, ELM, and OPE-RVFL, where the
odes are introduced into the random regions, in many cases
utside the input hypercube (this issue was discussed in [23]).
his approach wastes nodes because many of them have satu-
ated parts which are in the input hypercube, and are completely
seless for modeling TF nonlinearities. Others are introduced into
he flat regions of the TF, which do not need nodes.

In gradient-based learning, both the sigmoids positions and
heir slopes are learned. This is a very useful, flexible feature
ut it should be remembered that the gradient descent method
pplied to do this is very sensitive to the loss function landscape
nd gets stuck in local minima. Our method avoids gradient-
ased searching, using random searching. This is cheaper in terms
f the computational burden. Moreover, CD-DM does not use a
ixed number of hidden nodes but introduces successively new
odes if the TF complexity needs more nodes to be modeled with
he required accuracy. This accuracy is expressed by the CD-DM
yperparameter RMSEmax and can be used as the stop condition
or the construction process.
 o

10
The strong competitors to FNNs for regression problems are
statistical nonlinear models such as kernel smoothers, multivari-
ate adaptive regression splines, or GAM. We used the latter in
our simulation study. A Matlab implementation of GAM uses a
gradient boosting algorithm. It builds sets of boosted trees for lin-
ear terms for predictors and then sets of interaction trees. When
building a set of trees, the function trains one tree at a time. The
iterative learning process successively adds trees as we add the
nodes in our CD-DM but using a different boosting mechanism.
The process is very complicated and needs to select at least seven
hyperparameters such as initial learning rates, maximum number
of splits, number of trees and interactions. This process took a lot
of time in our simulations. It was the particularly time-consuming
for large datasets in comparison to the optimization time of
other models. It should be noted that a variant of GAM, XGBoost,
is considered as the leading model for working with standard
tabular data and dominates many competitions, e.g. Kaggle. Thus,
it is one of the state-of-the-art machine learning models for
general use in regression and classification whose performance
has been confirmed in many practical applications. Our CD-DM
outperformed GAM in 7 out of 10 regression problems. Moreover,
it is less complex (only two hyperparameters to tune), and can be
implemented very easily (see Appendix).

Our proposed method should be further tested on a variety
of regression problems, including real-world big data problems
with millions of samples and hundreds of features, so that more
reliable and general conclusions can be drawn.

The impact of the hyperparameters on the final results should
be investigated further using different datasets. In our imple-
mentation, the number of nearest neighbors is a global hyper-
parameter. To achieve better performance in the case of TFs with
different properties, e.g. density, variance or noise level, in differ-
ent regions of the input space, hyperparameter k can be locally
adjusted. One possible way of introducing locally adjusted k into
the proposed algorithm is to divide the input space into subre-
gions with different properties, and to represent these subregions
by a set of prototype points or a k-d tree (or its variants such as
a ball tree). Each prototype or leaf node of the k-d tree is labeled
ith k dependent on the data properties (density, TF variance and
oise) in the subregion it represents. In the simplest case, the
rototype points can be determined using a clustering algorithm.
he key to this approach is input space partitioning and labeling,
.e. assigning k to prototypes or leaf nodes. For locally adjusted
yperparameters k, the CD-DM algorithm shown in Algorithm 1
hanges only slightly. It includes a new step between (a) and (b):
‘Find the nearest prototype to x∗ and read k from its label’’ or,
lternatively, ‘‘Input x∗ to the k-d tree and read k from the label
f the leaf node reached by x∗’’.
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Another issue that should be considered in further research is
the impact of the first node on the final solution. The first node is
randomly introduced into the input hypercube. Each subsequent
node is dependent on the previously accepted nodes. Thus, the
first node determines the subsequent ones. It seems that this is
not a strong determination, but it should be examined in the
context of TF properties such as complexity or noise level.

In our implementation, we use the training points as x∗. This
s not the only solution. As points x∗ we can select randomly
ny points in the input hypercube or we can take the prototypes
f the training data clusters. We can also select them from the
egions where the TF is the most variable or steep [23]. The
roblem of x∗ selection also needs to be considered in further

research.
The proposed CD-DM reduces to D-DM when we set θ = 0.

n such a case, each candidate node is accepted, regardless of
hether it improves the result or not. The algorithm is more ran-
om in the D-DM version. It introduces nodes in random regions
ithout selecting their best positions from the perspective of the
urrent advancement of the construction process.
The proposed solution is restricted to a single hidden layer

NN. This gives it readability, interpretability, and speed of learn-
ng. Although deep architecture is more flexible, it also has its
rawbacks. Some works show that shallow randomized NNs can
e advantageous over deep ones in some cases, especially in
odeling large-volume and time-varying systems [34]. The uni-
ersal approximation property of shallow NNs justifies their use
n modeling any nonlinear function [5]. Note the simplicity of the
roposed solution which does not need backpropagation using
edious and time-consuming gradient calculations. The archi-
ecture of CD-DM can be coded in around 40 lines of code in
tandard Matlab syntax, as shown in the code listing presented
n Appendix.

. Conclusion

The key issue in FNNs with random hidden nodes is to gen-
rate the random weights and biases in such a way as to ensure
ood approximation properties of the network. The standard way
f generating both parameters from the same fixed interval leads
o weak performance, especially for complex target functions. The
ata-driven mechanism of randomized FNN learning proposed re-
ently in [29] adjusts the random parameters to the local features
f the target function and so improves the accuracy of fitting.
irst, the method randomly selects the input space regions by
rawing the points from the training set. Then, the hyperplanes
re fitted to the neighborhoods of the selected points and their
oefficients are transformed into the sigmoid weights and biases.
his results in the placement of the sigmoids in the selected
egions of the input space and the adjustment of their slopes to
ocal fluctuations in the target function.

In this work, we propose a new constructive approach for
ata-driven FNN randomized learning. This alternative paradigm
o train FNN constructs iteratively the network architecture by
uccessively adding new hidden nodes. These are accepted or
ejected depending on the error. A node is accepted only if
he error reduction is greater than the threshold. A low initial
alue of the threshold accepts only those nodes which ensure a
ough function approximation. In the next steps, the threshold
s increased successively which leads to the acceptance of those
odes which more accurately model the details of the target
unction. To prevent overfitting the number of hidden nodes is
imited to a value estimated in the cross-validation. The pro-
osed constructive approach can also be employed for RVFL based
etworks.
As simulation studies have shown, the proposed constructive

ethod leads to faster convergence with the number of nodes
11
and more compact network architecture than its predecessor, D-
DM, as it includes only ‘‘significant’’ nodes. It outperformed the
standard randomization-based NNs such as RVFL and ELM as well
as the state-of-the-art OPE-RVFL. In most cases, it achieved lower
fitting errors than gradient-based learning and GAM.

Future work will focus on further analysis and improvement of
the proposed method as well as other methods from this family,
and their adaptation to classification problems. Ensembles of ran-
domized FNNs and their deep variants are promising directions
for further research [35].
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Appendix. CD-DM implementation

The source code is available here: https://github.com/GMDud
ek/CD-DM.

function [a, b, beta] = CDDM(X, Y, m, k, ...
theta, Q, q_max, RMSE_max)

%CDDM - constructive data-driven method ...
for randomized learning of FNNs

%
% X - inputs, n x N, n - #features, N - ...

#samples
% Y - target outputs, N x 1
% m - number of hidden nodes
% k - number of nearest neighbours, k≥n
% theta - initial value of the threshold ...

for the error change, theta≤0
% Q - threshold for adaptation of theta
% q_max - maximum number of the ...

consecutive unaccepted candidate nodes ...
for stop condition

% RMSE_max - maximum allowable error for ...
stop condition

% a - hidden node weights, n x m
% b - hidden node biases, 1 x m
% beta - output weights, m x 1

[n,N] = size(X);

a = nan(n,m);
b = nan(1,m);
h = nan(N,m);
rmse = nan(1,m);
drmse = nan(1,m);

d = dist(X); %distance between input points
[∼,is] = sort(d); %indices of the nearest ...

neighbours

i = 1; l = 1; q = 1; rmse1 = RMSE_max + 1;

https://github.com/GMDudek/CD-DM
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hile (i ≤ m) && (rmse1 > RMSE_max) && (q ...
< q_max) %main loop

if rem(l,N) == 1
ig = randperm(N,m); %choose ...

randomly x*-points
xg = X(:,ig); %x*
ik = is(1:k,ig); %indices of the k ...

nearest neighbours of x*
end

xp = [ones(k,1) X(:,ik(:,i))'];
yp = Y(ik(:,i));
xp = xp + rand(size(xp)) * 1e-10; %to ...

avoid numerical errors
ap = xp \ yp; %hyperplane fitting to ...

the neighborhood

a(:,i) = 4 * ap(2:end); %hidden node ...
weights

b(i) = -a(:,i)' * xg(:,i); %hidden ...
node bias

h(:,i) = 1 ./ (1 + exp(-(a(:,i)' * X + ...
b(i)))); %hidden layer output

beta = pinv(h(:,1:i)) * Y; %output weights

fr = h(:,1:i) .* repmat(beta',N,1);
Y1 = sum(fr,2); %predicted output
rmse(i) = (mean((Y1 - Y).^2))^0.5; %RMSE

if i > 1
drmse(i) = rmse(i) - rmse(i-1); ...

%error change
end
q = q + 1;

%add node if i == 1 or error reduction ...
over theta

if (i == 1) || (drmse(i) ≤ theta)
rmse1 = rmse(i);
i = i + 1;
q=1;

end

if rem(q,Q)==0
theta = theta / 2; %theta is halved

end

l = l + 1; %main loop counter
nd
nd

unction [Yp] = CDDMpredict(a, b, beta, X)
CDDMpredict - prediction function for CCDM

a - hidden node weights, n x m
b - hidden node biases, 1 x m
beta - output weights, m x 1
X - inputs, n x N, n - #features, N - ...
#samples

= length(b);
n,N] = size(X);
= nan(N,m);

or i=1:m
h(:,i) = 1 ./ (1 + exp(-(a(:,i)' * X + ...

b(i)))); %hidden layer output
nd

r = h .* repmat(beta',N,1);
p = sum(fr,2); %predicted output

nd
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