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Abstract. Thanks to the broad application fields, learning neural net-
works is still a more significant problem nowadays. Any attempt in the
construction of faster learning algorithms is highly well come. This arti-
cle presents a new way of learning neural networks with kernels with
modified pseudo-inverse learning by modified SVD.

The new algorithm constructs the kernels during the learning and
estimates the right number in the results. There is no longer a need to
define their number of kernels before the learning. This means there is
no need to test networks with a number of kernels that is too large, and
the number of kernels is no longer a parameter in the selection process
(in cross-validation).

The results show that the proposed algorithm constructs reasonable
kernel bases, and final neural networks are accurate in classification.

Keywords: neural network learning · kernels · classification · singular
value decomposition

1 Introduction

The classification or approximation problems are represented by a training
dataset as a matrix X, which consists of learning vectors xi (xi ∈ Rn, i ∈
[1, . . . , m]), and each vector has corresponding yi ∈ {0, . . . , K} (in binary case
yi = ±1).

We can look at a nonlinear model constructed as a linear combination of
nonlinear functions:

F (x,w) =
l∑

j=1

wjgj(x) + w0, (1)

which is a combination (w) of kernels gj . The above form is fully consistent
with the Radial Basis Function Network (RBFN) [1] and the Extreme Learning
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Machine (ELM) [4,5] as well. The same form also applies to nonlinear Support
Vector Machines [8].

The sigmoidal function was the original kernel used in the ELM, while in the
RBFN the Gaussian kernel is usually chosen (although it is sometimes used in
ELM as well [2,5]). [7] has introduced multilayer perceptron learned as a multi-
layered ELM. It can be seen as a special case of deep learning—first layers are
the layers of autoencoders and the final layer is a typical ELM.

The goal (the error function) for the neural networks can be defined by:

Jn(w, G) = ||Gw − y||2 (2)

where G is defined by: G =

⎡

⎢⎢⎣

1 g1(x1) g2(x1) · · · gl(x1)
1 g1(x2) g2(x2) · · · gl(x2)
· · ·
1 g1(xm) g2(xm) · · · gl(xm)

⎤

⎥⎥⎦.

To find the solution we have to compute the gradient:

∇J(w, G) = 2GT (Gw − y). (3)

After a few substitutions, we finally have:

w = (GTG)−1GTy = G†y. (4)

where G† is the Moore-Penrose pseudo-inverse matrix of G. The SVD can be
used to compute the pseudo-inverse of G.

The costs of learning via SVD are relatively low—it is a sum of costs of
construction of G and costs of SVD. The complexity of construction of G is
O(mln) (computation of single Gij is O(n)). The complexity of SVD of matrix
G is O(ml2).

In the above learning scheme, we see that for the learning to be based on
kernels, the kernel has to be created earlier, while we do not know the correct
number of kernels before the learning. Therefore, the main contribution of this
article is to propose a way in which the kernels necessary to train the neural net-
work are created and used during the training process, i.e. in the above scheme,
it would be during the execution of the SVD procedure. This is presented in the
next section. The last section presents analysis of empirical results.

2 Automatic Kernel Construction During
the Pseudo-inverse Learning

The above algorithm can be sped up and simplified by changing two things.
The first is related to the fact that the number of kernels l as well as the G
matrix must be known before starting pseudo-inversion training. Note that the
selection process of the number of kernels is typically done by repeated training
and testing with a different number of kernels [2]. Here we propose that the G
matrix as well as the number of kernels will be determined in the modified SVD



Automatic Kernel Construction During the Neural Network Learning 207

algorithm. The second change will consist in changing the fast version of the
SVD determination to enable the dynamic creation of the G matrix.

Thus, the starting point is the fast SVD algorithm proposed in [3]. The main
idea of this algorithm lies in construction of matrix Q of the following property:

G ≈ QQTG (5)

where Q is matrix composed of orthonormal columns (m × k, k ≤ l,). Q is
constructed by low-rank approximation of a matrix.

Now to compute the SVD of G we have to: 1 – construct matrix Q, 2 –
construct matrix B such that B = QTG (B is k × l), 3 – compute SVD(B) =
ŨΣV T and 4 – define the final matrix U as U = QŨ . In the next step final
vector w can be computed as in Eq. 4.

2.1 Standard Q Matrix Construction by Gaussian Randomization
and Ortogonalization

The proposed construction of the matrix Q in [3] was performed by iterative
Gaussian randomization and orthogonalization. First let the matrix H be defined
by

h(i) = Gω(i) i = 1, . . . , k, (6)

where ω(i) is a random Gaussian vector 1×n, and H ∈ Mm×k(R). The Gaussian
random vector is drawn from a Gaussian distribution with a mean of 0 and
variance equal to 1.

The next step is to use an orthonormalization algorithm to build an orthonor-
mal matrix Q from matrix H. The two steps, the randomization and the
orthonormalization, can be performed iteratively.

The selection of k as the number of columns in the matrix Q is helped by
the following lemma from [3]:

Lemma 1. Let B ∈ Mm×m(R), r be a positive integer and α > 1. Draw an
independent family {ω(i) : i = 1, . . . , r} of standard Gaussian vectors. Then:

||B|| ≤ α

√
2
π

max
i=1,...,r

||Bω(i)||

with a probability of at least 1 − α−r.

In the context of the above definition of the orthonormal matrix Q and the
above lemma, the direct conclusion is that the decomposition error is bounded
as below:

||(I − QQT )G|| ≤ 10

√
2
π

max
i=1,...,r

||(I − QQT )Gω(i)|| (7)

with a probability of at least 1 − 10−r. The detailed algorithm for construction
of Q is presented as Algorithm 4.2 in [3] on page 25.
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The complexity of the above algorithm is O(mlk) where m × l is the size of
G and k is the number of columns in Q (k ≤ l). After the construction of Q,
the SVD is calculated on the matrix B = QTG and the matrix B ∈ Mk×l(R).
That means that the complexity of SVD on B is O(kl2). This leads us to a final
complexity of the fast version of SVD: O(mlk).

2.2 New Way of Q Matrix Construction Directly from Learning
Data

The concept of the algorithm that we want to publish is an attempt to avoid
building kernel matrices G that are too large. Then the complexity of building
kernel matrices could change from O(mnl) to O(m2n) when we have to insert
kernels in too many data vectors. This also significantly impacts the final com-
plexity of training via SVD, where the complexity will go from O(ml2) to O(m3).
In the old procedure of creating the Q matrix, unfortunately, we had to have
a ready-to-use kernel matrix G. Training ends with poorer classification accu-
racy when the kernel matrix is too small. However, training on a large kernel
matrix has high (sometimes unnecessarily) complexity. Thanks to this, the new
Q matrix creation procedure dynamically adjusts the number of kernels, i.e., the
size of the kernel matrix increases dynamically in the new Q matrix creation
algorithm. As a result, in the process of creating the Q matrix, the necessary
number of kernels will be generated, and the further SVD learning process will
take place on a possibly small matrix, reducing the complexity of both stages
and removing the need to sample the appropriate number of kernels repeatedly.
So, we do not want to build an array of 5000 kernels if 48 kernels are enough.

For this purpose, the new procedure for determining the Q matrix will not
work on the basis of the already prepared G matrix, but on the basis of the X
data matrix, which is necessary to construct kernels, and the kernel columns of
the G matrix will be created as needed.

To make this process workable, random linear combinations of columns of
matrix G will gradually cover more and more of the target number of columns
(kernels) of the final matrix G. Initially, the algorithm will use the starting
amount of kernels ν = 16. When the number of columns of the Q matrix will
increase from time to time algorithm will have to create new groups of kernels by
increasing ν = 2ν. This scheme of increase prevents the increase in complexity
due to the necessary matrix manipulations (increase = new memory allocations
and copying). More precisely, when the number of columns of the Q matrix
reaches half the number of kernels, new kernels will be added to the G matrix.

The algorithm of the Q matrix calculation with the proposed changes can
be found in Algorithm 1. It can be seen here that changes have been made
mainly in two places related to generating a random combination of columns of
the G matrix, but also to the fact that the data matrix X is the input for this
algorithm. The original matrix X is necessary for the construction of kernels.
And this, in turn, we see in separate Algorithm 2. Here the new kernels are
periodically added to the G matrix and based on them, random combinations of
columns of the current G matrix are generated. In this procedure, when Gaussian
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Algorithm 1: New way of Q matrix construction directly from X

1: function constructQ(X)
2: for i = 1 to r do
3: h(i) = newRandComb(X)
4: end for
5: Q(0) = [], the m × 0 matrix
6: j = 0

7: while
(
maxk=1,...,r ‖h(j+k)‖)

>

ε/(10
√

2/π) do
8: j = j + 1
9: h(j) = (I − Q(j−1)(Q(j−1))T )h(j)

10: q(j) = h(j)/‖h(j)‖

11: Q(j) = [Q(j−1)q(j)]

12: h = newRandComb(X)

13: h(j+r) = (I − Q(j)(Q(j))T )h
14: for

i = (j + 1), (j + 2), . . . , (j + r − 1)
do

15: h(i) = h(i) − q(j)〈q(j),h(i)〉
16: end for
17: end while
18: Q = Q(j)

19: return Q

Algorithm 2: Random combination over current set of kernels

1: ν = 16
2: kCount = 0

3: z = 0
4: G = [], the m × 0 matrix
5: Y = [], the m × 0 matrix
6:
7: function newRandComb(X)
8: if G is empty matrix then
9: G = add a column of 1’s
10: end if
11: if kCount = 0 ∨ z = kCount ∗ 3/4

then

12: add ν next kernel columns to G,
but not more than m in total

13: Ω = Gaussian random matrix
(size: number of columns in G × ν)

14: Y = [Y GΩ]

15: kCount = kCount + ν
16: ν = 2 ∗ ν

17: end if
18: z = z + 1
19: return z’s column of Y

kernels are created, they are placed in random instances of the X data matrix
(no instance is selected twice).

The algorithm working in this way may finish its work faster or slower
depending on the data and performance of built kernels in the context of a
given classification problem.

The final learning algorithm of a neural network with the above fast SVD
algorithm is presented in Algorithm 3.

3 Empirical Analysis of Proposed Algorithm

In order to compare the above proposed algorithm, it was decided to select a
number of different data sets from the UCI Machine Learning Repository [6].
The number of instances of selected datasets are summarized in Table 2. In all
tests, we used 10-fold stratified cross-validation and all learning machines were
trained on the same sets of data partitions.
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Algorithm 3: Neural network learning with SVD
1: function networkLearnig (X, y)
2: Q = constructQ(X)
3: [Ũ ,Σ, V T ] = SVD(QTG)
4: w = V Σ−1ŨTQTy
5: return w

To visualize the performance of all algorithms we present average accuracy for
each benchmark dataset and for each learning machine. Additionally, we present
the average reduction of dataset size in separate tables. Ranks are calculated for
each machine for a given dataset. The ranks are calculated as follows: First, for
a given benchmark dataset the averaged accuracies of all learning machines are
sorted in descending order. The machine with the highest average accuracy is
ranked 1. Then, the following machines in the accuracy order whose accuracies
are not statistically different1 from the result of the first machine are ranked 1,
until a machine with a statistically different result is encountered. That machine
starts the next rank group (2, 3, and so on), and an analogous process is repeated
on the remaining (yet unranked) machines. Notice that each cell of the main part
of Table 1 is in a form: acc+std(rank), where acc is average accuracy (for a given
data set and given learning machine), std is its standard deviation and rank is
the rank described just above. If a given cell of the table is in bold it means that
this result is the best for given data set or not worse than the best one (rank 1
= winners).

Table 1 compares the average accuracies of the classification of the proposed
algorithm that automatically determines kernels during modified SVD method
with standard training of the neural network through SVD from 20, 200 and
2000 random Gaussian kernels, respectively.

As you can see, the proposed method is not always the best one, but always it
achieves results close to the best without any manual selection of the number of
kernels. It is worth comparing this data with the data from Table 2. This allows
us to see how different the number of columns of the Q matrix was needed to
achieve convergence and this has a direct impact on the working time of the
entire learning process.

Even for a large data set like shuttle-all, the averaged number of columns
in the Q matrix is only 48 out of 58,000 instances. This clearly shows that the
size of the data set is not responsible for the number of necessary kernels, and
the proposed method deals with it in an extremely interesting way. This is much
simpler computationally than selection by many trials and testing, like via cross-
validation. However, the proper selection of the number of kernels needs to start
cross-validation at several points, which makes the process several times more
time-consuming. Time consumption grows with the square of l in the complexity
of SVD and O(mlk) complexity of Q matrix construction. In conclusion, testing
huge numbers of kernels in cross-validation provides huge costs. However, the
1 We use the paired t-test to test the significance of statistical differences.
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Table 1. Comparison of classification average accuracies for methods: auto-kernel SVD,
SVD with 20, 200 and 2000 kernels.

Dataset Auto-kernel SVD 20 SVD 200 SVD 2000
cardiotocography-1 83.1 ± 2.3(1) 67.9± 2.8(3) 81.2± 2.2(2) 83.3 ± 2.3(1)
cardiotocography-2 92.4± 1.7(2) 87.5± 2.1(4) 91.6± 1.7(3) 92.6 ± 1.8(1)
chess-king-rook-vs-king-pawn 99.3± 0.54(2) 84.5± 4.5(4) 97.2± 1.1(3) 99.4 ± 0.45(1)
spambase 91.9± 1.2(3) 87.4± 1.8(4) 92.4± 1.3(2) 92.7 ± 1.2(1)
thyroid-disease 94.5± 0.89(3) 93.8± 0.28(4) 94.7± 0.5(2) 95.4 ± 0.51(1)
abalone 26.2± 1.9(2) 25.7± 2.1(3) 26.3 ± 1.9(1) 26.4 ± 1.8(1)
image 94.4 ± 1.5(1) 89.1± 2(3) 94.5 ± 1.5(1) 94.2± 1.6(2)
letter-recognition 87.9 ± 0.76(1) 58.4± 1.6(3) 82.5± 0.94(2) 87.9 ± 0.75(1)
magic04 86.1± 0.68(2) 82.4± 0.93(4) 86± 0.69(3) 86.3 ± 0.66(1)
musk2 100 ± 0.04(1) 85.3± 0.55(4) 89.9± 1(3) 99.4± 0.37(2)
nursery 95.9 ± 0.43(1) 87.2± 0.92(3) 93.8± 0.58(2) 95.9 ± 0.49(1)
sat-all 90.1 ± 1(1) 83.8± 1.1(4) 88.5± 1.3(3) 90± 1.1(2)
segmentation-all 94.4 ± 1.5(1) 89.1± 2(3) 94.5 ± 1.5(1) 94.2± 1.6(2)
SHUTTLE-all 98.2± 0.22(3) 96.9± 0.71(4) 98.4± 0.17(2) 98.5 ± 0.17(1)
Waveform 84.3± 1.5(2) 83.7± 1.7(3) 86.4 ± 1.4(1) 84.3± 1.6(2)
Mean Accuracy 87.9± 1.1 80.2± 1.7 86.5± 1.2 88± 1.1
Mean Rank 1.73± 0.21 3.53± 0.14 2.07± 0.21 1.33± 0.13
Wins[unique] 7[2] 0[0] 4[1] 10[6]

Table 2. Reduction strength—the number of columns in matrix Q.

Dataset # Instances Reduction Time
in dataset Total Fraction Auto-kernel CV-kernel

cardiotocography-1 2126 640 0.334 2.14 86.6
cardiotocography-2 2126 637 0.333 2.46 83.8
chess-king-rook-vs-king-pawn 3196 2.3E+03 0.799 51.4 143
spambase 4601 2.98E+03 0.719 103 151
thyroid-disease 7200 162 0.0123 2 187
abalone 4177 46.4 0.0123 1.43 189
image 2310 137 0.0659 1.68 111
letter-recognition 20000 1.21E+03 0.067 45.7 996
magic04 19020 206 0.012 7.95 1.03E+03
musk2 6598 5.83E+03 0.981 888 609
nursery 12960 645 0.0553 19.5 849
sat-all 6435 2.19E+03 0.378 99.2 720
segmentation-all 2310 137 0.0659 15 415
SHUTTLE-all 58000 48 0.00092 14.8 4.58E+03
Waveform 5000 3.51E+03 0.779 259 1.35E+03

proposed algorithm immediately determines the correct number of kernels. This
was proven by the next experiment (see Table 2 columns Reduction), which com-
pares the CPU times of the proposed Auto-kernel algorithm and the SVD-based
learning with cross-validation for the selection of kernel count. In the second
algorithm, cross-validation is used to select kernel counts just between three
values: 20, 200, and 2000. In many benchmarks, the Auto-kernel algorithm is
several times faster than learning with CV-based selection of kernels, even in a
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simple three point selection. If we added 20,000 kernels to CV training as an
additional optionpoint, learning would become terribly slower comparing to the
Auto-kernel.

4 Summary

The process of selection of kernels for neural networks was never simple. The
methods that were based on finding the right number of kernels required many
learning processes and tests of the learned neural networks. Such a scheme of
learning strongly uses the CPU. In the proposed algorithm, we modify a fast
SVD method by automatically generating kernels and their appropriate number
in the learning process, specifically in the sub-process of the fast SVD.

As can be seen, such learning is characterized by good classification quality
for various data sets. What’s more, the selection of the number of columns in
the Q matrix is quite impressive, which translates into shortening the learning
process if the classifier does not have to use many kernels.
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