Available online at www.sciencedirect.com

sc.ence@n.“cw

ELSEVIER Electric Power Systems Research 72 (2004) 299-308

www.elsevier.com/locate/epsr

Unit commitment by genetic algorithm with specialized search operators

Grzegorz Dudek

Institute of Electrical Power Engineering, Technical University of Czestochowa, Al. Armii Krajowej 17, Czestochowa 42-200, Poland

Received 10 September 2003; received in revised form 9 January 2004; accepted 24 April 2004
Available online 14 July 2004

Abstract

An approach for solving the unit commitment problem based on genetic algorithm with new search operators is presented. These operators,
specific to the problem, are mutation with a probability of bit change depending on load demand, production and start-up costs of the
generating units and transposition. The method incorporates time-dependent start-up costs, demand and reserve constraints, minimum up an
down time constraints and units power generation limits. Repair algorithms or penalty factors in the objective function are applied to the
infeasible solutions. Numerical results showed an improvement in the solution cost compared to the results obtained from genetic algorithm
with standard operators and other techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction e heuristic methods such as priority list;
e classical optimization methods such as: dynamic pro-
Unit commitment (UC) is an important problem in the gramming, Lagrangian relaxation, branch-and-bound,
daily operation and planning of the power system. The ob- linear programming, integer programming;
jective of UC is to determine the optimal set of generating e artificial intelligence methods such as: expert systems,
units to be in service during each interval of the scheduling  neural networks, simulated annealing, genetic algorithms.
period (a day or a week ahead), to meet system demand and

reserve requirements at minimal production cost, subjectto Tpe priority list method is easy to implement and the sim-
satisfying a large set of operating constraints. The solution plest of the UC methods. This method specifies the order in
of the UC problem is really a complex optimization prob- yjch units start up or shut down. The classical average full
lem with both discrete (unit commitment) and continuous |g5d cost index can be used to determine the priority com-
(generation levels) variables. Generation levels for each fea-,itment order. The quality of the solution is usually far from
sible combination of units can be obtained by the economic optimal due to the incomplete search of the solution space.
dispatch procedure. Many classical methods (dynamic and integer pro-
The optimal solution to the problem can be found by ex- gramming, branch-and-bound) suffer from the “curse of
haustive enumeration of all feasible combinations of gener- dimensionality” because the problem size and the solution
ating units. The computer execution time for this method is jme increase rapidly with the number of generating units to
usually too immense for practical systems. Research effortspe committed. To reduce the search space several approaches
have concentrated on efficient, suboptimal UC algorithms pave been developed. Most approaches are based on the
which can be applied to realistic power systems. The solu- priority list technique (dynamic programming—sequential
tion methods being used to solve the UC problem can be compination, dynamic programming-truncated combination
grouped as follow$1,2]: [3,4]). Lagrangian relaxation is considered the most real-
istic and efficient way for large-scale systems. Lagrangian
relaxation has higher computational efficiency and is more
flexible for handling different types of constraint compared
* Tel.: +48 34 3250 896; fax:+48 34 3250 803. with other approaches. However, because of the dual na-
E-mail address: dudek@el.pcz.czest.pl (G. Dudek). ture of the algorithm, its primary difficulty is associated

0378-7796/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsr.2004.04.014



300 G. Dudek/ Electric Power Systems Research 72 (2004) 299-308

with obtaining solution feasibility. Furthermore, the optimal 2. The mathematical model of unit commitment
value of the dual problem is not generally equal to that of
the primal (original) problem. The UC problem can be mathematically formulated as
In the expert system approach, the knowledge of experi- follows:Objective function:
enced power system operators and UC experts is combined
to create an expert system rule base. However, a great deal rn
of operator interaction is required in this approach, making ¥ = ZZ lai(OCi[Pi(0)] + i (D1 — i (1 = D]SCi (toft)}
it inconvenient and time-consuming. r=1i=1
Neural networks (most often multilayer perceptrons), 1)
based on a database holding typical load curves and corre-
sponding UC schedules, are trained to recognise the most
economical UC schedule associated with the pattern of the

Constraints:
(a) Load balance

current load curvd5,6]. If the neural network solution is N
not feasible for the entire UC period, it will be used as an Vr : Z[ai(t)P,-(t)] = D(1) (2)
initial starting point for a near-optimal solution. i=1

There are many uncertainties involved in the planning
and operation of power systems. Recently, there have been
attempts to solve the UC problem using a possibilistic ap- v; ¢ - o, (1) Prin; < Pi(f) < a;(£) Pmaxi A3)
proach[7,8]. The key factors such as load demand and re-
serve margin are treated as fuzzy variables. A fuzzy decision (c) Set of unit power generation limits
system has been developed to select the units to be on or off
based on these fuzzy variables.

(b) Unit power generation limits

Simulated annealing is a powerful technique to solve com- Vi Z[ai(t) Prini] = D(®) 4)
binatorial optimization problems such as U&;10]. A com- i=1
plicated mathematical model of the problem under study is N
not needed with this method. The starting point can be any v; : Z[ai(t)pma)q.] > D(f) + R(?) (5)
given solution and it will attempt to improve it. The final i—1

solution does not strongly depend on the initial solution; it o )
has been theoretically proved to converge with the optimum  (d) Minimum up/down time
solution, but although it does not need large computer mem-,. .
. . oL ViRt = Tdown (6)

ory, the convergence time of UC by simulated annealing is
a I|m|t|ng factor.. Vi fon > fupi )

Genetic algorithms (GA) represent a class of stochas-
tic adaptive search techniques and these are different fromwhere the variable production cost of unitt timet C;[P;(t)]
the above-mentioned methods. They are global optimiza-is conventionally approximated by the quadratic function:
tion techniques that work with a coding of the parameter 9
set, with both discrete and continuous functions. GA search Ci(Fi) = aiP; +biPi + ¢ (8)

from a population of points and they use probabilistic transi- and the start-up cost of unitSCi(tos;) is expressed as a

tion rules. A simple GA implementation using the standard : ; i
) . function of the number of hours the unit has been down:
crossover and mutation operators can locate near-optimal so-

lutions. However, by adding problem-specific operators and SC; (1or;) = e; exp(—gitofti) + fi €XP(—hitofti) (9)

by the proper choice of variables and their representation,

satisfactory solutions to the UC problem can be obtained. In  To take into account the costs connected with unit outage
power systems GA have been recently applied for the solu-in time periodt, in the event that it remains in an off state
tion of the unit commitment problefil-13] to the end of time period, it is assumed that:

Atrtificial intelligence methods such as GA are still in de-
velopment and seem to offer a promising solution to the
UC problem. This article presents a GA with specialized
operators to solve the UC problem. New effective opera-
tors are mutation and transposition. The fitness function is
constructed as the summation of the objective function and Taking these assumptions into account, unit start-up costs
penalty terms for some constraint violations. A repair algo- i, time periodT (staying in down time until the end of time
rithm is also used for infeasible solutions. The combinatorial periodT) are calculated using the formula:
optimization sub-problem is solved using the GA while the
economic dispatch problem is solved via the conventional SCAT — 1) = Ci(T —t+7) (T — 1) (10)
lambda-iteration method. T—t+rt

e unit start-up costs are evenly distributed over the number
of hours of unit down time;

e unit start-up occurs at time periad subtracted from the
end of the optimization period (r € {1, 2, 3,...}).
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If solutions violate a set of unit power generation limit
constraints(Eq. (4) or (5)), the following repair algorithm is
o ot data applied[15]. Let £21(t) be a set of units in on status at the
nput GA parameters . .

tth hour and let2y(t) be a set of units in off status at the

tth hour (these sets are determined by the solution string
(Section 3.)). If constraint (4) is not met at th¢h hour, one
unit X is chosen from the24(t) and its status is reset to off

Initialize population

Main GA loop at thetth hour (e.g. a bit in the solution string representing
the status of unik at thetth hour is changed from 1 to 0).
Flitism Similarly, if constraint (5) is not met, the status of one unit
" @ y from the.Qo(_t) is ch_anged. Repair_ can be greed_yir&the
Evaluation of the population: — most economical unit, e.g. one having the lowest incremental
repair and pendly slrategy, cost at full load, whereag is the least economical unit, or
eC ic dispatc
random—unitx andy are chosen at random from s&2s(t)
and£2q(t), respectively. The repair algorithm is activated for

every hourt, until the moment constraints (4) and (5) are

met.
a— The repaired version of strings can be used either for eval-
selection uation only, or it can also replace the original strings. A
! so-called 5%-rul¢16] states that in many combinatorial op-
Crossover timization problems, an evolutionary computation technique
7 with repair algorithm provides the best result when 5% of
Vutoti repaired strings replace their infeasible originals.
utation . . . .. .
I For solutions which violate the minimum up/down time
constraint (6) or (7), a penalty function is creaféd]:
Transposition
N
——— F=M {1+mZ[g(i) + h()] (11)
Fig. 1. GA flowchart. i=1
whereg(i) is calculated as follows:
3. The proposed genetic algorithm approach downi
_ _ _ gy =) {Bik)[tdown — fofti ()]} (12)
The GA implementation consists of initialization, =1

economic dispatch and cost calculations, reproduction,
crossover, mutation, transposition and elitism. A flowchart pi
of the algorithm is given irFig. 1

(K) is expressed as follows:

1 if toffi (k t ;
Bi(k) = ' offi (k) < Idown (13)
, 0 if toi(k) > tdown'VToni(k) > T
3.1. Representation

h(i) is given by:

GA searches the solution space through the evolution of nupi
a population of candidate solutions. Each individual of the ;) — Z{Vi(k)[tupi — toni (O]} (14)
population is represented by a binary string. Each bit in the —
string represents the on/off status of fitle unit at thetth )
hour,«;(t). ForN units andT hours the string hald x T bits. vi(k) is calculated as follows:
1 if toni (k) < tupi
3.2. Economic dispatch and cost calculations: the k=94 o () > fupVTofti(K) > T (15)

procedure with infeasible individuals

The substitute cost function (11) ensures a worse valua-

Since the production cost is a quadratic function (convex tion of individuals violating constraint (6) or (7) from fea-

and continuous), the economic dispatch problem is solvedsible individuals. This function is linearly dependent on the
using a lambda-iteration meth¢t4], based on the principle  level of violation of constraints (6) and (7). At the starting
of equal incremental cost. Lambda-iteration method is used phase of the evolution process the level of violation of these
for various generating unit schedules obtained by the GA. constraints is minimized. At a certain point in the process
Generation levelB;(t) determined in this procedure are used individuals that are feasible according to these constraints
to calculate unit production cost&q. (8) and the objective  start to appear and become the majority in the population.
function Eq. (1). Because binary tournament, not proportional selection (e.g.
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roulette wheel selection) is used, the feasible individuals do ascending order in terms of their lower generation lifpit,

not strongly dominate, which allows the avoidance of a pre- is introduced. Thd®yi, of succeeding units from lidty is

mature convergence of the population into a superindividual. summed which gives the maximum number of umifsat
which the sum does not exceed load demand:

3.3. Sopping criterion
PPIng tmadd = max  {n) (18)

20 Prini<D
The main GA loop is terminated when there is no signifi- Lizt 5 Prini <D0

cant improvement in the solution after a pre-specified num- Parametery; in formula (16) has the function of limiting
ber of generations or when the maximum number of gener- o range of probabilityyps.

ations is reached. The probability of a bit change from 0 to 1 is dependent

. . on unit production costs as follows:

3.4. Sdection, crossover, €itism
Wi — U
pupali) = g2 + (1= g2) ———"— AL 1<i<N (19)

The tournament selection method is used with tourna- max — Umin
ment sizes of 2. Tournament selection is simple to imple- \ynere:

ment and has none of the disadvantages of the roulette wheel .
o min;=12 ..~ {C;(Pmaxj)/ Pmax;}

selection method (it does not require scaling of the fitness ,; = (20)
function, and the fitness function values can be negative). Ci(Pmax)/ Pmaxi

An elitism strategy is also used which copies the best par- Umin = min  {u;) (21)
ent individual into the next population. The recombination i=12,....N

method is one-point crossover, multl-po!nt Crossoveroruni- ,, . may (4} 22)
form crossovef18]. Crossover occurs with probabilipe. i=1,2,...,N

andgy < pypz < 1.

The probabilitypypz has the minimum value, equal ¢p
for units of the greatest production cost per unit at maximum
load, and the maximum value, equal to 1, for units of the
lowest production cost per unit at maximum load.

3.5. Mutation

In the classic mutation method, the probability of bit mu-
tation (on or off state) does not depend on the unit production

cost, its start-up cost, or load demand. Therefore this opera- The sum of both probabilities of bit mutation, representin
tor will turn off economical units at peak load as well as less P » Tep 9

economical units at minimum value of the load curve with thel Stlatt? Oftﬁn'f( at mlor.nemt, from 0t 1, is proposed by
the same probability. This leads the algorithm to “wander” caiculating the formuia.

and results in a much less effective search of the solution _ o l4go
space. In the proposed method of mutation, probability of 1 if pup(® + pup2(i) — >1
mutation is made dependent on the necessity of meeting the 1+qo
load demand of the number of units, cost of unit production pup(i,©) ={ 0 if pup1(t) + pup2(i) — <0
and its start-up costd7]. The probability of a bit change
from 0O to 1, depending on the number of units necessary to Pup1(?) + pup2(i) — 1+42 otherwise
meet load demand at momenis calculated in the formula: 2 23)
Nmin(?) +n t
Pupt() = g1+ (1= ql)w l=i=T where ma><0, q1— 1__2(12) <pp=1l
(16) An analogous probability of a bit change from 1 to O,
whereq; < pyp1 < 1. denoting a unit being turned off, is dependent on the number

If throughL we denote a list of units sorted in decreasing ©F units. necessary to meet load demand according to the
order in terms of their upper generation lirfitay then the  formula:

_minimgm number of _units necessary to m(_aet Iogd demand _— Hnin(®) + nmax(?) .
is obtained by summing thiey,ax of succeeding units from Pdown1(f) =1—(1— rl)—ZN <t=T
list L1 until the sum exceeds load demand and the spinning (24)
reserve:

Rmin() = min {n} (17) wherery < pgown1 < 1.

Zfﬁé’fm Povesi > D(0)+ R() The probgbility of a bit 9hange frpm 1 to'O, depending on
the production costs of uniitare obtained using the formula:
wheren is the auxiliary variable which denotes the number u
of units. Pdown2(i)) =1—(1—r2) :
The maximum number of units necessary to meet load Hmax = Hmin
demand is obtained as follows: a lisy of units sorted in wherera < pgown2 < 1.

i — Umin

1<i<N (25)
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For units of the lowest production cost per unit at max-
imum load the probabilitypgown2 assumes the maximum

value, equal to 1, whereas for units of the highest produc-
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range from—(1 + qg)/2 (for the unit of the highest produc-
tion cost) to (1+ qp)/2 (for the unit of the lowest production
cost). Ifgz = 1 the probability of unit start-upyp(i, t) is not

tion cost per unit at maximum load, it assumes the minimum dependent on the production costs, whereag i& 0 this

value ofr».
The dependence of the probability of bit mutation from 1
to 0 on uniti start-up cost is defined by the formula:

pdownd(i) = r3+ (L —rg)——"_ 1 <i<N (26)
Umax — Umin
where:
min;— (¢
v = j=1.2,.... N {SC;(foffx) } 27)
xi (tof‘fx)
Umin = ,_min | {vi} (28)
Umax = iz{g?(ﬂ {v;} (29)

andrs < pdowns < 1.

The probabilitypgowns assumes a minimum value of
for units with the highest start-up costs after down tigig,
and a maximum value of 1 for units with the lowest start-up
costs.

The sum of probabilities of bit mutation, representing the
state of uniti at momentt, from 1 to 0 is proposed by
calculating the formula:

1 if pdown1() + Pdown2(i) + Pdown3(i)

1+r 1+r3
— — >1

] 2 2
0 if pdown1(t) + pdown2(i) + pdown3(i)

DPdown(i, ) = 14+r0 1+4r3 0 (30)
- —-— <
2 2 .
Pdown1(?) + pdown2(i) + Pdown3(i)
1 1 .
- —;rz _ztr otherwise

where ma><0, ri— 1_2’2 - %) < Pdown < 1.
The values of parameterg, O, r1, I, r3 andtos, are
chosen heuristically. Fap, = 1 probabilitypyp1(t) does not

dependence is the greatest—the correction assumes values
from the range 0.5, 0.5]. The value of; = 0.8 gives the
range of correction£0.1, 0.1] and seems to be a reasonable
compromise.

The formula (30) includes corrections differentiating the
probability of the unit shut-dowpgown(i, t) from unit pro-
duction costspgown2i) — (1 + r2)/2 and unit start-up costs:
Pdowna(i) — (1 4 r3)/2. The influence of the production costs
on pgown(i, t) is the greatest if, = 0 (then the correction
range is from-0.5 for the unit of the lowest production cost
to 0.5 for the unit of the highest production cost). The in-
fluence of the start-up costs @own(i, t) is the greatest if
r3 = 0 (then the correction range is from0.5 for the unit
of the highest start-up cost after down tirge, to 0.5 for
the unit of the lowest start-up cost after down titgg,). If
ro = rz3 = 0.9 the range of each correction is(.05, 0.05]
(jointly for both corrections 0.1, 0.1]), which means an
equal influence of production and start-up costs on the prob-
ability of unit shut-down.

The parametety, means expected unit down time. If
start-up costs change for each unit uniformly, i,eis con-
stant for each unit, apart from down tintgs, (just like in
the second exampl&ection 4.2 this parameter is not im-
portant. If the start-up curve&(. (9) cross, it is safer not to
take into account the start-up cost assunmigig- 1. In other
cases, for differentys, different probabilitiepgowns(i) are
obtained, but if the unit order with respect to start-up cost
is constant for differentyf,, the unit order with respect to
values ofpgowng(i) is constant as well.

As in the case of many others GA parameters (e.g. popu-
lation size, probability of crossover and mutation) there are
no hard rules for setting up the above parameters of mu-
tation method. In accordance with what was written above
the advisable values of these parametergiaee r; = 0, g
= 0.8,r» = r3 = 0.9,t55r, = 8 if v; is constant for each unit,
apart from down timegg, Orgq1 =r1 =0,q2 =r2 = 0.8,

depend on the load demand and is equal to 1 for each unitrz3 = 1 in other cases. The probabiliti@s, and pgown for

i and each hout. While g; = 0 the probabilitypypa(t) is

the most diversified, dependent on the load demand within

time periodT, e.g. forgqs = 0 and load data fronTable 4
considered in the second examplgetion 4.2 the pyp1

the example defined iSection 4.2are shown irFig. 2

If the bit b(i, t) chosen for mutation, which represents the
state of uniti at momentt, changes its value from 0 to 1
(from 1 to 0) and the bits representing the state of uait

changes in the range from 0.6667 (for the minimum load neighbouring momentg - 1) and ¢ + 1) have the same

demand at timé= 4) to 0.9583 (for the peak load demand at
timet = 18). The larger the value of (0 < g; < 1) the more
the range of th@ypa(t) narrows and nears 1, which means a

value as bib(i, t) before mutation, then the probability of a
change in the state of unifor these moments is analysed.

If pup(i, t — 1) > pup(i, t + 1) (or pdown(i, t — 1) > Paown(i,

reduction in the influence of the load demand value on the t + 1) in the case of outage) then the value offdit t — 1)
probability of unit start-up. The greatest “selective pressure” and succeeding bits(i, t — 2), b(i, t — 3), ..., is changed,

is acquired forg; = 0 and such a value is recommended.
The componenpyp2(i) — (1 + 02)/2 in formula (23) sig-

nifies the correction added to probabiliypa(t) which al-

lows the differentiation of the probability of unit start-up

on condition that they are of the same value asbfit t)
before mutation. A bit with the opposite value finishes this
process. Ifpyp(i, t — 1) < pyp(i, t + 1) (Or pagown(i, t — 1)

< Pdown(i, t + 1)) then bitsb(i, t + 1), b(i, t + 2) and so

from unit production costs. This correction changes in the on, are changed analogously. A change in succeeding bits
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1,00 X XX x x 8 2 8 3 8 < = Unit 1 The chromosome before the transposition:
X3exX858x8g « §x ® Unit2 The fragment The fragment
0,90 2 2 8 ; X |4 Unit 3 of the chromosome of the chromosome
i i i i g + Unit4 coding states of unit ¢ coding states of unit j
o0 AR SRR s RPN VNN P W K S A VA 1 P A RS
SxX XXX ; z ; ; ® Unite
Pup 2QQ0QQ i o Unit7
0,70 $333% R o units The chromosome after
X X A Unito the transposition:
$xxxxx} : DREEEEDEnENDDoEnRED
0,60 - u;u X Unit 10
'U"f“1 Fig. 3. An illustration of the transposition.
0.50 © Unit 12
TANOTLONOO2TANOTNORR2RINRY state of units in period and quickens the convergence of
(a) time, ¢ (h) GA.
0,50 = Unitt 3.6. Transposition
[ XXX X ) ¢ Unit2
A T A Unit3 A transposition operation is introducgdi7] which ex-
1 i ; E:::g changes fragments of the chromosomes that encode the
030 - bS50 se . . ; ® Unit6 states _(during perioi_ﬂ) _of two randomly chosen units. This
P""W"ozo OXXXXXOI"I-"I- i o Unit7 operation is shown ifrig. 3.
e X Wl WEE We ool © © Unit8 This transposition can considerably help the evolution
010 v o Fel Wil gi iﬂ::: ?0 process, particularly in the last phase, penetrating the local
’ xggxgggxgolwogx - Unit 11 minimums by changing the work states of pairs of units.
0,00 Frr e XXX XQ w9 X | [0 UNit12
TNOTOONOOOTNOINONR2RTNRY _—
4. Application examples
(b) time, ¢ (h)
Fig. 2. (a) The probability of a bit change from 0 to fup; and (b) the The genetic algorithm for the UC problem described

probability of a bit change from 1 to Quown, for the problem defined  gbove was implemented in Matlab and has been applied to a

in Section 4 Assumed:gy =r1 =0, Gz = 0.8,r2 =13 = 0.9, loftr = 8. practical power system with 3 and 12 units. The scheduling
time horizon for all cases is 24 h. These experiments were

of the same value means a change in the off state or on stat&lone on a personal computer with a Pentium [l 800 MHz

of units. This mechanism, suggested® as a solution to processor.

the problem of UC using simulated annealing, allows for the  The unit and load data can be foundTables 3 and 4nd

avoidance of cases of multiple changes in the on state or offin Appendix A

Table 1
Comparison of GA variants for the 3-unit test system
GA Greedy Random Standard Proposed Transposition One-point Multi-point Uniform fopt Nopt Copr topt (S)
variant  repair repair mutation  mutation crossover  crossover crossover
1 1 0.5 X 0.13 1300 455 64
2 1 0.5 0.25 X 1.00 1435 397 67
3 1 0.5 X 0.87 866 355 41
4 1 0.5 0.25 X 1.00 970 336 45
5 0.05 0.5 0.25 X 1.00 880 356 44
6 1 0.5 0.5 X 1.00 845 303 41
7 1 0.25 0.25 X 1.00 905 451 46
8 1 0.5 X 0.90 2600 2600 122
9 1 0.5 0.25 X 1.00 870 338 48
10 1 0.5 X 1.00 280 63 16
11 1 0.5 0.25 X 1.00 270 89 13
12 0.05 0.5 0.25 X 1.00 370 118 22
13 1 0.5 0.5 X 1.00 330 101 19
14 1 0.25 0.25 X 1.00 345 86 20
15 1 0.5 0.25 2 1.00 302 132 45
16 1 0.5 0.25 5 1.00 335 140 32
17 1 0.5 0.25 0.1 1.00 308 200 29
18 1 0.5 0.25 0.3 1.00 321 112 31
19 1 0.5 0.25 0.5 1.00 272 111 25
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Table 2
The optimal power sharin@opt (MW) of example 1
Hour P1 P, P3
1 252.75 0.00 234.75
2 238.74 0.00 221.26
3 239.25 0.00 221.75
4 233.64 0.00 216.36
5 235.81 0.00 218.44
6 243.83 0.00 226.17
7 253.01 0.00 234.99
8 317.09 0.00 296.66
9 236.95 211.52 219.53
10 237.54 212.52 220.11
11 232.33 207.07 215.10
12 24471 219.03 227.01
13 250.85 224.98 232.92
14 250.85 224.98 232.92
15 222.95 197.98 206.07
16 234.04 208.72 216.74
17 283.44 256.52 264.29
18 307.59 279.88 287.53
19 292.66 265.43 273.16
20 289.93 262.79 270.53
21 277.39 250.65 258.46
22 253.67 227.70 235.63
23 215.01 190.31 198.43
24 187.50 180.00 180.00

4.1. First example

The first example includes three generating units (unit
nos. 1, 2 and 3 fronTable 3 and load data fronTable 4
Table 1shows the comparison of results obtained for various
variants of GA with greedy or random repair, with or without
transposition including:

1. standard binary mutation and one-point crossover (rows®

1-7);

2. the proposed method of mutation and one-point crossover®

(rows 8-14);
3. the proposed method of mutation and multi-point
crossover or uniform crossover (rows 15-19).
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For each variant of GA the following were defined:

e the frequency of optimum solutioigp;, found by GA,

e the average number of evaluations necessary to find the
optimum solutiomgpt, and their standard deviatiarpt,

e the average computational time necessary to find the op-
timum solutiontpt.

The above values are defined according to 30 executions
of the algorithm and GA parameters outlined below.

The following GA parameters were used in the first ex-
ample:

population sizePsjze = 50;

maximum no. of generationdly = 200,

probability of crossoverp; = 0.9;

parameters of the proposed mutatiep: =r; =0, ¢
=0.8,ro =r3 = 0.9,te5rx = 8;

e constantM in formula (11):

N

M =T Ci(Pmax)
i=1

(31

e parametemin formula (11), when (disproportional) tour-

nament selection is used, must only fulfill the constraint
m> 0.

The remaining GA parameters were variable, i.e.:

e the probability of replacement in repair algorithms:

= 0.05 or 1;

e the expected number of individual mutatioms; = 0.25

or 0.5;

o the expected number of individual transpositions= 0,

0.25 or 0.5;

the number of cut points in multi-point crossoves, = 2
or 5;

probability of swapping in uniform crossoves; = 0.1,
0.3 or 0.5.

These parameters were entered into the appropriate cells

in Table 1 For example, row 1 shows the GA variant with

Table 3

Characteristics and initial state of units

Unit Initial statug (h) a ($/MW2 h) b ($/MW h) c ($/h) e () f($) g (™ h (b
1 On/-24 0.004531 7.3968 643.24 —2889.45 5466.28 0.3680 -0.0112
2 On/-4 0.004683 7.5629 666.27 —2893.81 5474.51 0.3680 —0.0112
3 Oon/-4 0.004708 7.4767 672.77 —2888.84 5465.13 0.3680 -0.0112
4 On 0.004880 7.4742 686.58 —2882.77 5453.66 0.3680 —0.0112
5 On 0.004214 7.2995 601.53 —2863.94 5418.07 0.3680 -0.0112
6 On 0.004582 7.3102 641.99 —2843.13 5378.74 0.3680 —0.0112
7 On 0.004267 7.5494 609.07 —2876.16 5441.15 0.3680 -0.0112
8 On 0.003572 6.6577 531.63 —2903.29 5492.22 0.3680 —0.0112
9 On 0.004788 7.7184 678.40 —2892.73 5472.47 0.3680 -0.0112
10 On 0.003485 6.2115 503.60 —2928.65 5540.14 0.3680 —0.0112
11 On 0.003658 6.5492 528.19 —2894.88 5476.32 0.3680 -0.0112
12 On 0.003671 6.4137 527.81 —2915.53 5515.34 0.3680 —0.0112

a “On” indicates unit is in the on-state, X* indicates unit is in the off-state fox hours. In the first example units 1, 2 and 3 are in the on-state,

whereas in the second example they are in the off-state.
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Table 4

Load demand (MW)
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Hours D (first example) D (second example)
1 487.50 1950.00
2 460.00 1840.00
3 461.00 1844.00
4 450.00 1800.00
5 454.25 1817.00
6 470.00 1880.00
7 488.00 1952.00
8 613.75 2455.00
9 668.00 2672.00

10 669.75 2679.00

11 654.50 2618.00

12 690.75 2763.00

13 708.75 2835.00

14 708.75 2835.00

15 627.00 2508.00

16 659.50 2638.00

17 804.25 3217.00

18 875.00 3500.00

19 831.25 3325.00

20 823.25 3293.00

21 786.50 3146.00

22 717.00 2868.00

23 603.75 2415.00

24 547.50 2190.00

shown inTable 2 The cost of this solution is: total cost
= $179116, production cost $173282, start-up cost

$5834.

Table 1shows that greedy repair is better than random re-
pair. No important differences were observed in the working
of the algorithm with a probability of replacement in repair
algorithms at a value of 0.05 or 1. The proposed mutation
allows the obtainment of an optimum solution in nearly ev-
ery case, in a considerably quicker time than using standard
mutation. All the crossover methods gave similar results,
but one-point crossover functioned the fastest. In all cases
transposition raised the efficiency of the algorithm, in some
cases considerably (e.g. compare variants 1, 2, 3 and 4 in
Table 1.

4.2. Second example

following GA parameters were assumed:

the probability of replacement in the random repair algo-

vidual mutation equal to 0.5, one-point crossover, without

transposition.

[ ]

[ ]

[}

[}

rithm equal to 1, a standard mutation with expected indi-
[}

[ ]

[}

The optimum solutionPqpt, Was calculated by enumer-
ating all possible combinations of the generating units,

The second example includes 12 generating units
(Table 3 and load data fronTable 4 On the basis of pre-
liminary experiments and results from the first example the

population sizePsjze = 100;

maximum no. of generationsly = 1000;
probability of replacement in repair algorithpy: = 1;

expected number of individual mutationsg; = 0.5;
expected number of individual transpositions= 0.25;
greedy repair;

one-point crossover;

Pc. 01, 1, G2, I'2, I3, tofix, M, mare assumed to be of the
same value as in the first example.

Table 5
The best power sharinBpest (MW) of example 2
Hour Py P> P3 Py Ps Ps Py P10 P11 P12
1 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.01 0.00 350.00 290.27
2 0.00 0.00 0.00 180.00 180.00 180.00 180.00 253.57 0.00 323.91 262.49
3 0.00 0.00 0.00 180.00 180.00 180.00 180.00 254.57 0.00 324.95 263.47
4 0.00 0.00 0.00 180.00 180.00 180.00 180.00 243.50 0.00 313.60 252.66
5 0.00 0.00 0.00 180.00 180.00 180.00 180.00 247.78 0.00 317.98 256.84
6 0.00 0.00 0.00 180.00 180.00 180.00 180.00 263.63 0.00 334.22 272.32
7 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.69 0.00 350.00 290.93
8 0.00 0.00 0.00 234.78 292.61 267.92 259.69 350.00 0.00 350.00 350.00
9 0.00 0.00 238.06 229.95 287.03 262.78 254.18 350.00 0.00 350.00 350.00
10 0.00 0.00 239.40 231.25 288.53 264.16 255.66 350.00 0.00 350.00 350.00
11 0.00 0.00 227.70 219.96 275.45 252.14 242.75 350.00 0.00 350.00 350.00
12 0.00 0.00 255.51 246.80 306.53 280.72 273.44 350.00 0.00 350.00 350.00
13 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00
14 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00
15 0.00 0.00 206.60 199.59 251.88 230.46 219.47 350.00 0.00 350.00 350.00
16 0.00 0.00 231.54 223.66 279.74 256.08 246.98 350.00 0.00 350.00 350.00
17 0.00 281.04 288.69 278.81 343.60 314.81 310.05 350.00 0.00 350.00 350.00
18 0.00 284.45 292.07 282.07 347.38 318.28 313.78 350.00 261.97 350.00 350.00
19 0.00 260.02 267.77 258.63 320.23 293.31 286.97 350.00 238.07 350.00 350.00
20 0.00 255.55 263.33 254.34 315.27 288.75 282.06 350.00 233.70 350.00 350.00
21 0.00 235.03 242.92 234.64 292.46 267.78 259.54 350.00 213.63 350.00 350.00
22 0.00 195.52 203.62 196.73 248.55 227.40 216.18 350.00 180.00 350.00 350.00
23 0.00 180.00 180.00 180.00 190.18 180.00 180.00 314.16 0.00 350.00 350.00
24 0.00 180.00 180.00 180.00 180.00 180.00 180.00 251.05 0.00 321.34 260.03

307.72
280.03
281.01
270.24
274.40
289.83
308.38
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
350.00
339.00
277.58
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The following results were obtained: optimal. The difference between the cost of the best and the
worst solutions found in 10 runs of the algorithm in the sec-
ond example was 0.20% ($1278). The advantages the algo-
rithm achieved by the introduction of genetic operators spe-
cific to the problem were: mutation that makes the probabil-
ity of bit change dependent on load demand, production and
start-up costs of units, as well as the transposition search-
ing through local minimums. The solutions obtained for the
second example are better by 3—3.2% from those obtained
ith the help of the heuristic method used by the Polish
lectrical Power System.

The calculation time, which is rather long here, can be
The best solution found by the algorithm is shown in limited by implementing the algorithm in a programming
Table 5 environment that is faster than Matlab, and doing the calcu-

For comparison, calculations were done using the sim- lations in a parallel machine environment.
ulated annealing algorithm, Monte Carlo method and the The author’s present work on this problem is concen-
heuristic method of limit time characteristi¢$9], which trated on the construction of genetic algorithms with al-
was used for many years in the Polish Electrical Power Sys-ternative methods of variable representation and genetic

e the minimum, maximum and average costs of the best
solutions found by the algorithm in 10 runs were $644951,
$646229, and $645264, respectively;

e the standard deviation of the costs of the best solutions
found by the algorithm in 10 runs was $381;

e the frequency of the best soluti®lesifound by GA: 0.2;

e the average number of evaluations necessary to find the
best solutionPpesi 70650; W

e the average computational time necessary to find the bestE
solutionPpesi 2.25 h.

tem. In simulated annealing, the features representation is theoperators.

same as for GA, but the solutions are generated by a change

of one bit in the base solution (standard binary mutation).

In the Monte Carlo method, points in the solution space are Acknowledgements
randomly chosen from the uniform distribution, remember-

ing the best solution. The number of evaluations of the cost

This work was supported by the Polish State Committee

function in these algorithms has been set at 100 000, simi-for Scientific Research under Grant 8T10B03921.
lar to the proposed GA algorithm, and the calculations for

every algorithm are done 10 times. The costs of the best so-

lutions found by these algorithms are: simulated annealing Appendix A

= $702379, the Monte Carlo method—no acceptable solu-

tion, the heuristic method: $665634.

5. Conclusions

The proposed genetic algorithm for the Unit Commitment Appendix B. List of symbols
problem gives a stable and acceptable solution that is near

a;, by, ¢ production cost function parameters of unit

Ci[P;:(1)] variable production cost of unitat timet ($/h)

D(t) load demand at thgh hour (MW)

g, fi, gi, h; start-up cost function parameters of uinit

fopt the frequency of optimum solution found by GA

a(i) the discreet function defining the level of constraint (6) violation

h(i) the discreet function defining the level of constraint (7) violatiog, 1, 2,..., N (unit index)

M the constant greater than the maximum cost of feasible individuals calculated in formula (1)
m the parameter controlling the influence of the constraint violation level on the cost function value
N number of units

Ndown the number of periods in which units in continuous off state during the optimization peribd

Nmin(t), Nmax(t)
Nopt

Nupi

Pi(t)

Pmini» Pmax
Pup: Pdown

the minimum and maximum number of units necessary to meet load demand at moment
the average number of evaluations necessary to find the optimum solution by GA

the number of periods in which uriitis continuously in on state in the optimization peribd
power generation of unitat timet (MW)

lower/upper generation limit of unit

the probability of a bit change from 0 to 1 or 1 to O, respectively
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Pup1: Pdown1

Pup2: Pdown2
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the probability of a bit change from 0 to 1 or 1 to O, respectively, dependent on the number of units

necessary to meet load demand
the probability of a bit change from 0 to 1 or 1 to O, respectively, dependent on unit production costs

the relation between the start-up cost after down tigag of the unit with the lowest start-up cost to the

the binary variable, which is 1 when univiolates constraint (6) durinkth period of off state, or 0
when the constraint is not violated or it is not possible to state the down time (e.g. when the unit stays

the binary variable, which is 1 when univiolates constraint (7) during the on perikdor 0 when the
constraint is not violated or it is not possible to state the on period (e.g. when the unit stays on until the

the standard deviation of the number of evaluations necessary to find the optimum solution by GA

a1, Oz, r1, 2 the lowest borderline value of probabiliti@gp1, Pup2, Pdown1, Pdown2, respectively
R(t) spinning reserve requirement at tttie hour (MW)
i (tofi) start-up cost of unit ($)
T number of hours in the study period= 1, 2,..., T, time index (h)
toni, toffi time periods during which unitis continuously on/off (h)
toifi (K) the down time of unii duringkth period of off state
toni(K) the up time of uniti duringkth period of on state
topt the average computational time necessary to find the optimum solution by GA
tupis tdown minimum up/down time of unit
v
start-up cost of unit
Umins VUmax the minimum and maximum variable values fori = 1,2,..., N
Greek letters
a;(t) on/off status of theth unit at thetth hour,e; (t) € {0, 1}
Bi (K
down until the end of optimization periob
vi (K
end of optimization period)
Oopt
Toffi (K) the outage time of unitafter on periock
Toni (K) the start-up hour of unitafter thekth period of down time
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