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Abstract

An approach for solving the unit commitment problem based on genetic algorithm with new search operators is presented. These operators,
specific to the problem, are mutation with a probability of bit change depending on load demand, production and start-up costs of the
generating units and transposition. The method incorporates time-dependent start-up costs, demand and reserve constraints, minimum up and
down time constraints and units power generation limits. Repair algorithms or penalty factors in the objective function are applied to the
infeasible solutions. Numerical results showed an improvement in the solution cost compared to the results obtained from genetic algorithm
with standard operators and other techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Unit commitment (UC) is an important problem in the
daily operation and planning of the power system. The ob-
jective of UC is to determine the optimal set of generating
units to be in service during each interval of the scheduling
period (a day or a week ahead), to meet system demand and
reserve requirements at minimal production cost, subject to
satisfying a large set of operating constraints. The solution
of the UC problem is really a complex optimization prob-
lem with both discrete (unit commitment) and continuous
(generation levels) variables. Generation levels for each fea-
sible combination of units can be obtained by the economic
dispatch procedure.

The optimal solution to the problem can be found by ex-
haustive enumeration of all feasible combinations of gener-
ating units. The computer execution time for this method is
usually too immense for practical systems. Research efforts
have concentrated on efficient, suboptimal UC algorithms
which can be applied to realistic power systems. The solu-
tion methods being used to solve the UC problem can be
grouped as follows[1,2]:
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• heuristic methods such as priority list;
• classical optimization methods such as: dynamic pro-

gramming, Lagrangian relaxation, branch-and-bound,
linear programming, integer programming;

• artificial intelligence methods such as: expert systems,
neural networks, simulated annealing, genetic algorithms.

The priority list method is easy to implement and the sim-
plest of the UC methods. This method specifies the order in
which units start up or shut down. The classical average full
load cost index can be used to determine the priority com-
mitment order. The quality of the solution is usually far from
optimal due to the incomplete search of the solution space.

Many classical methods (dynamic and integer pro-
gramming, branch-and-bound) suffer from the “curse of
dimensionality” because the problem size and the solution
time increase rapidly with the number of generating units to
be committed. To reduce the search space several approaches
have been developed. Most approaches are based on the
priority list technique (dynamic programming–sequential
combination, dynamic programming–truncated combination
[3,4]). Lagrangian relaxation is considered the most real-
istic and efficient way for large-scale systems. Lagrangian
relaxation has higher computational efficiency and is more
flexible for handling different types of constraint compared
with other approaches. However, because of the dual na-
ture of the algorithm, its primary difficulty is associated
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with obtaining solution feasibility. Furthermore, the optimal
value of the dual problem is not generally equal to that of
the primal (original) problem.

In the expert system approach, the knowledge of experi-
enced power system operators and UC experts is combined
to create an expert system rule base. However, a great deal
of operator interaction is required in this approach, making
it inconvenient and time-consuming.

Neural networks (most often multilayer perceptrons),
based on a database holding typical load curves and corre-
sponding UC schedules, are trained to recognise the most
economical UC schedule associated with the pattern of the
current load curve[5,6]. If the neural network solution is
not feasible for the entire UC period, it will be used as an
initial starting point for a near-optimal solution.

There are many uncertainties involved in the planning
and operation of power systems. Recently, there have been
attempts to solve the UC problem using a possibilistic ap-
proach[7,8]. The key factors such as load demand and re-
serve margin are treated as fuzzy variables. A fuzzy decision
system has been developed to select the units to be on or off
based on these fuzzy variables.

Simulated annealing is a powerful technique to solve com-
binatorial optimization problems such as UC[9,10]. A com-
plicated mathematical model of the problem under study is
not needed with this method. The starting point can be any
given solution and it will attempt to improve it. The final
solution does not strongly depend on the initial solution; it
has been theoretically proved to converge with the optimum
solution, but although it does not need large computer mem-
ory, the convergence time of UC by simulated annealing is
a limiting factor.

Genetic algorithms (GA) represent a class of stochas-
tic adaptive search techniques and these are different from
the above-mentioned methods. They are global optimiza-
tion techniques that work with a coding of the parameter
set, with both discrete and continuous functions. GA search
from a population of points and they use probabilistic transi-
tion rules. A simple GA implementation using the standard
crossover and mutation operators can locate near-optimal so-
lutions. However, by adding problem-specific operators and
by the proper choice of variables and their representation,
satisfactory solutions to the UC problem can be obtained. In
power systems GA have been recently applied for the solu-
tion of the unit commitment problem[11–13].

Artificial intelligence methods such as GA are still in de-
velopment and seem to offer a promising solution to the
UC problem. This article presents a GA with specialized
operators to solve the UC problem. New effective opera-
tors are mutation and transposition. The fitness function is
constructed as the summation of the objective function and
penalty terms for some constraint violations. A repair algo-
rithm is also used for infeasible solutions. The combinatorial
optimization sub-problem is solved using the GA while the
economic dispatch problem is solved via the conventional
lambda-iteration method.

2. The mathematical model of unit commitment

The UC problem can be mathematically formulated as
follows:Objective function:

F =
T∑
t=1

N∑
i=1

{αi(t)Ci[Pi(t)] + αi(t)[1 − αi(t − 1)]SCi(toff i)}

(1)

Constraints:
(a) Load balance

∀t :
N∑
i=1

[αi(t)Pi(t)] = D(t) (2)

(b) Unit power generation limits

∀i, t : αi(t)Pmini ≤ Pi(t) ≤ αi(t)Pmaxi (3)

(c) Set of unit power generation limits

∀t :
N∑
i=1

[αi(t)Pmini] ≤ D(t) (4)

∀t :
N∑
i=1

[αi(t)Pmaxi] ≥ D(t)+ R(t) (5)

(d) Minimum up/down time

∀i : toff i ≥ tdowni (6)

∀i : toni ≥ tupi (7)

where the variable production cost of uniti at timet Ci[Pi(t)]
is conventionally approximated by the quadratic function:

Ci(Pi) = aiP
2
i + biPi + ci (8)

and the start-up cost of uniti SCi(toff i) is expressed as a
function of the number of hours the unit has been down:

SCi(toff i) = ei exp(−gitoff i)+ fi exp(−hitoff i) (9)

To take into account the costs connected with unit outage
in time periodt, in the event that it remains in an off state
to the end of time periodT, it is assumed that:

• unit start-up costs are evenly distributed over the number
of hours of unit down time;

• unit start-up occurs at time periodτ, subtracted from the
end of the optimization periodT (τ ∈ {1, 2, 3,. . . }).

Taking these assumptions into account, unit start-up costs
in time periodT (staying in down time until the end of time
periodT) are calculated using the formula:

SCi(T − t) = SCi(T − t + τ)

T − t + τ
(T − t) (10)
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Fig. 1. GA flowchart.

3. The proposed genetic algorithm approach

The GA implementation consists of initialization,
economic dispatch and cost calculations, reproduction,
crossover, mutation, transposition and elitism. A flowchart
of the algorithm is given inFig. 1.

3.1. Representation

GA searches the solution space through the evolution of
a population of candidate solutions. Each individual of the
population is represented by a binary string. Each bit in the
string represents the on/off status of theith unit at thetth
hour,αi(t). ForN units andT hours the string hasN × T bits.

3.2. Economic dispatch and cost calculations: the
procedure with infeasible individuals

Since the production cost is a quadratic function (convex
and continuous), the economic dispatch problem is solved
using a lambda-iteration method[14], based on the principle
of equal incremental cost. Lambda-iteration method is used
for various generating unit schedules obtained by the GA.
Generation levelsPi(t) determined in this procedure are used
to calculate unit production costs (Eq. (8)) and the objective
function (Eq. (1)).

If solutions violate a set of unit power generation limit
constraints(Eq. (4) or (5)), the following repair algorithm is
applied[15]. Let Ω1(t) be a set of units in on status at the
tth hour and letΩ0(t) be a set of units in off status at the
tth hour (these sets are determined by the solution string
(Section 3.1)). If constraint (4) is not met at thetth hour, one
unit x is chosen from theΩ1(t) and its status is reset to off
at thetth hour (e.g. a bit in the solution string representing
the status of unitx at thetth hour is changed from 1 to 0).
Similarly, if constraint (5) is not met, the status of one unit
y from theΩ0(t) is changed. Repair can be greedy—x is the
most economical unit, e.g. one having the lowest incremental
cost at full load, whereasy is the least economical unit, or
random—unitsx andy are chosen at random from setsΩ1(t)
andΩ0(t), respectively. The repair algorithm is activated for
every hourt, until the moment constraints (4) and (5) are
met.

The repaired version of strings can be used either for eval-
uation only, or it can also replace the original strings. A
so-called 5%-rule[16] states that in many combinatorial op-
timization problems, an evolutionary computation technique
with repair algorithm provides the best result when 5% of
repaired strings replace their infeasible originals.

For solutions which violate the minimum up/down time
constraint (6) or (7), a penalty function is created[17]:

F ′ = M

{
1 +m

N∑
i=1

[g(i)+ h(i)]

}
(11)

whereg(i) is calculated as follows:

g(i) =
ndowni∑
k=1

{βi(k)[tdowni − toff i(k)]} (12)

βi(k) is expressed as follows:

βi(k) =
{

1 if toff i(k) < tdowni

0 if toff i(k) ≥ tdownivτoni(k) > T
(13)

h(i) is given by:

h(i) =
nupi∑
k=1

{γi(k)[tupi − toni(k)]} (14)

�i(k) is calculated as follows:

γi(k) =
{

1 if toni(k) < tupi

0 if toni(k) ≥ tupivτoff i(k) > T
(15)

The substitute cost function (11) ensures a worse valua-
tion of individuals violating constraint (6) or (7) from fea-
sible individuals. This function is linearly dependent on the
level of violation of constraints (6) and (7). At the starting
phase of the evolution process the level of violation of these
constraints is minimized. At a certain point in the process
individuals that are feasible according to these constraints
start to appear and become the majority in the population.
Because binary tournament, not proportional selection (e.g.
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roulette wheel selection) is used, the feasible individuals do
not strongly dominate, which allows the avoidance of a pre-
mature convergence of the population into a superindividual.

3.3. Stopping criterion

The main GA loop is terminated when there is no signifi-
cant improvement in the solution after a pre-specified num-
ber of generations or when the maximum number of gener-
ations is reached.

3.4. Selection, crossover, elitism

The tournament selection method is used with tourna-
ment sizes of 2. Tournament selection is simple to imple-
ment and has none of the disadvantages of the roulette wheel
selection method (it does not require scaling of the fitness
function, and the fitness function values can be negative).
An elitism strategy is also used which copies the best par-
ent individual into the next population. The recombination
method is one-point crossover, multi-point crossover or uni-
form crossover[18]. Crossover occurs with probabilitypc.

3.5. Mutation

In the classic mutation method, the probability of bit mu-
tation (on or off state) does not depend on the unit production
cost, its start-up cost, or load demand. Therefore this opera-
tor will turn off economical units at peak load as well as less
economical units at minimum value of the load curve with
the same probability. This leads the algorithm to “wander”
and results in a much less effective search of the solution
space. In the proposed method of mutation, probability of
mutation is made dependent on the necessity of meeting the
load demand of the number of units, cost of unit production
and its start-up costs[17]. The probability of a bit change
from 0 to 1, depending on the number of units necessary to
meet load demand at momentt, is calculated in the formula:

pup1(t) = q1 + (1 − q1)
nmin(t)+ nmax(t)

2N
1 ≤ t ≤ T

(16)

whereq1 ≤ pup1 ≤ 1.
If throughL1 we denote a list of units sorted in decreasing

order in terms of their upper generation limitPmax, then the
minimum number of units necessary to meet load demand
is obtained by summing thePmax of succeeding units from
list L1 until the sum exceeds load demand and the spinning
reserve:

nmin(t) = min∑L1(n)
i=L1(1)

Pmaxi≥D(t)+R(t)
{n} (17)

wheren is the auxiliary variable which denotes the number
of units.

The maximum number of units necessary to meet load
demand is obtained as follows: a listL2 of units sorted in

ascending order in terms of their lower generation limitPmin
is introduced. ThePmin of succeeding units from listL2 is
summed which gives the maximum number of unitsn, at
which the sum does not exceed load demand:

nmax(t) = max∑L2(n)
i=L2(1)

Pmini≤D(t)
{n} (18)

Parameterq1 in formula (16) has the function of limiting
the range of probabilitypup1.

The probability of a bit change from 0 to 1 is dependent
on unit production costs as follows:

pup2(i) = q2 + (1 − q2)
ui − umin

umax − umin
1 ≤ i ≤ N (19)

where:

ui = minj=1,2,... ,N {Cj(Pmaxj)/Pmaxj}
Ci(Pmaxi)/Pmaxi

(20)

umin = min
i=1,2,... ,N

{ui} (21)

umax = max
i=1,2,... ,N

{ui} (22)

andq2 ≤ pup2 ≤ 1.
The probabilitypup2 has the minimum value, equal toq2

for units of the greatest production cost per unit at maximum
load, and the maximum value, equal to 1, for units of the
lowest production cost per unit at maximum load.

The sum of both probabilities of bit mutation, representing
the state of uniti at momentt, from 0 to 1, is proposed by
calculating the formula:

pup(i, t) =




1 if pup1(t)+ pup2(i)− 1 + q2

2
> 1

0 if pup1(t)+ pup2(i)− 1 + q2

2
< 0

pup1(t)+ pup2(i)− 1 + q2

2
otherwise

(23)

where max
(
0, q1 − 1−q2

2

)
≤ pup ≤ 1.

An analogous probability of a bit change from 1 to 0,
denoting a unit being turned off, is dependent on the number
of units necessary to meet load demand according to the
formula:

pdown1(t) = 1 − (1 − r1)
nmin(t)+ nmax(t)

2N
1 ≤ t ≤ T

(24)

wherer1 ≤ pdown1 ≤ 1.
The probability of a bit change from 1 to 0, depending on

the production costs of uniti are obtained using the formula:

pdown2(i) = 1 − (1 − r2)
ui − umin

umax − umin
1 ≤ i ≤ N (25)

wherer2 ≤ pdown2 ≤ 1.
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For units of the lowest production cost per unit at max-
imum load the probabilitypdown2 assumes the maximum
value, equal to 1, whereas for units of the highest produc-
tion cost per unit at maximum load, it assumes the minimum
value ofr2.

The dependence of the probability of bit mutation from 1
to 0 on uniti start-up cost is defined by the formula:

pdown3(i) = r3 + (1 − r3)
vi − vmin

vmax − vmin
1 ≤ i ≤ N (26)

where:

vi = minj=1,2,... ,N {SCj(toffx)}
SCi(toffx)

(27)

vmin = min
i=1,2,... ,N

{vi} (28)

vmax = max
i=1,2,... ,N

{vi} (29)

andr3 ≤ pdown3 ≤ 1.
The probabilitypdown3 assumes a minimum value ofr3

for units with the highest start-up costs after down timetoffx,
and a maximum value of 1 for units with the lowest start-up
costs.

The sum of probabilities of bit mutation, representing the
state of uniti at momentt, from 1 to 0 is proposed by
calculating the formula:

pdown(i, t) =




1 if pdown1(t)+ pdown2(i)+ pdown3(i)

−1 + r2

2
− 1 + r3

2
> 1

0 if pdown1(t)+ pdown2(i)+ pdown3(i)

−1 + r2

2
− 1 + r3

2
< 0

pdown1(t)+ pdown2(i)+ pdown3(i)

−1 + r2

2
− 1 + r3

2
otherwise

(30)

where max
(
0, r1 − 1−r2

2 − 1−r3
2

)
≤ pdown ≤ 1.

The values of parametersq1, q2, r1, r2, r3 and toffx are
chosen heuristically. Forq1 = 1 probabilitypup1(t) does not
depend on the load demand and is equal to 1 for each unit
i and each hourt. While q1 = 0 the probabilitypup1(t) is
the most diversified, dependent on the load demand within
time periodT, e.g. forq1 = 0 and load data fromTable 4
considered in the second example (Section 4.2) the pup1
changes in the range from 0.6667 (for the minimum load
demand at timet = 4) to 0.9583 (for the peak load demand at
time t = 18). The larger the value ofq1 (0≤ q1 ≤ 1) the more
the range of thepup1(t) narrows and nears 1, which means a
reduction in the influence of the load demand value on the
probability of unit start-up. The greatest “selective pressure”
is acquired forq1 = 0 and such a value is recommended.

The componentpup2(i) − (1 + q2)/2 in formula (23) sig-
nifies the correction added to probabilitypup1(t) which al-
lows the differentiation of the probability of unit start-up
from unit production costs. This correction changes in the

range from−(1 + q2)/2 (for the unit of the highest produc-
tion cost) to (1+ q2)/2 (for the unit of the lowest production
cost). Ifq2 = 1 the probability of unit start-uppup(i, t) is not
dependent on the production costs, whereas ifq2 = 0 this
dependence is the greatest—the correction assumes values
from the range [−0.5, 0.5]. The value ofq2 = 0.8 gives the
range of correction [−0.1, 0.1] and seems to be a reasonable
compromise.

The formula (30) includes corrections differentiating the
probability of the unit shut-downpdown(i, t) from unit pro-
duction costs:pdown2(i) − (1 + r2)/2 and unit start-up costs:
pdown3(i) − (1 + r3)/2. The influence of the production costs
on pdown(i, t) is the greatest ifr2 = 0 (then the correction
range is from−0.5 for the unit of the lowest production cost
to 0.5 for the unit of the highest production cost). The in-
fluence of the start-up costs onpdown(i, t) is the greatest if
r3 = 0 (then the correction range is from−0.5 for the unit
of the highest start-up cost after down timetoffx to 0.5 for
the unit of the lowest start-up cost after down timetoffx). If
r2 = r3 = 0.9 the range of each correction is [−0.05, 0.05]
(jointly for both corrections [−0.1, 0.1]), which means an
equal influence of production and start-up costs on the prob-
ability of unit shut-down.

The parametertoffx means expected unit down time. If
start-up costs change for each unit uniformly, i.e.vi is con-
stant for each unit, apart from down timetoffx (just like in
the second example,Section 4.2) this parameter is not im-
portant. If the start-up curves (Eq. (9)) cross, it is safer not to
take into account the start-up cost assumingr3 = 1. In other
cases, for differenttoffx different probabilitiespdown3(i) are
obtained, but if the unit order with respect to start-up cost
is constant for differenttoffx, the unit order with respect to
values ofpdown3(i) is constant as well.

As in the case of many others GA parameters (e.g. popu-
lation size, probability of crossover and mutation) there are
no hard rules for setting up the above parameters of mu-
tation method. In accordance with what was written above
the advisable values of these parameters areq1 = r1 = 0, q2
= 0.8,r2 = r3 = 0.9,toffx = 8 if vi is constant for each unit,
apart from down timetoffx or q1 = r1 = 0, q2 = r2 = 0.8,
r3 = 1 in other cases. The probabilitiespup and pdown for
the example defined inSection 4.2are shown inFig. 2.

If the bit b(i, t) chosen for mutation, which represents the
state of uniti at momentt, changes its value from 0 to 1
(from 1 to 0) and the bits representing the state of uniti at
neighbouring moments (t − 1) and (t + 1) have the same
value as bitb(i, t) before mutation, then the probability of a
change in the state of uniti for these moments is analysed.
If pup(i, t − 1) > pup(i, t + 1) (or pdown(i, t − 1) > pdown(i,
t + 1) in the case of outage) then the value of bitb(i, t − 1)
and succeeding bitsb(i, t − 2), b(i, t − 3), . . . , is changed,
on condition that they are of the same value as bitb(i, t)
before mutation. A bit with the opposite value finishes this
process. Ifpup(i, t − 1) < pup(i, t + 1) (or pdown(i, t − 1)
< pdown(i, t + 1)) then bitsb(i, t + 1), b(i, t + 2) and so
on, are changed analogously. A change in succeeding bits
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Fig. 2. (a) The probability of a bit change from 0 to 1,pup; and (b) the
probability of a bit change from 1 to 0,pdown, for the problem defined
in Section 4. Assumed:q1 = r1 = 0, q2 = 0.8, r2 = r3 = 0.9, toffx = 8.

of the same value means a change in the off state or on state
of units. This mechanism, suggested in[9] as a solution to
the problem of UC using simulated annealing, allows for the
avoidance of cases of multiple changes in the on state or off

Table 1
Comparison of GA variants for the 3-unit test system

GA
variant

Greedy
repair

Random
repair

Standard
mutation

Proposed
mutation

Transposition One-point
crossover

Multi-point
crossover

Uniform
crossover

fopt nopt σopt topt (s)

1 1 0.5 × 0.13 1300 455 64
2 1 0.5 0.25 × 1.00 1435 397 67
3 1 0.5 × 0.87 866 355 41
4 1 0.5 0.25 × 1.00 970 336 45
5 0.05 0.5 0.25 × 1.00 880 356 44
6 1 0.5 0.5 × 1.00 845 303 41
7 1 0.25 0.25 × 1.00 905 451 46
8 1 0.5 × 0.90 2600 2600 122
9 1 0.5 0.25 × 1.00 870 338 48

10 1 0.5 × 1.00 280 63 16
11 1 0.5 0.25 × 1.00 270 89 13
12 0.05 0.5 0.25 × 1.00 370 118 22
13 1 0.5 0.5 × 1.00 330 101 19
14 1 0.25 0.25 × 1.00 345 86 20
15 1 0.5 0.25 2 1.00 302 132 45
16 1 0.5 0.25 5 1.00 335 140 32
17 1 0.5 0.25 0.1 1.00 308 200 29
18 1 0.5 0.25 0.3 1.00 321 112 31
19 1 0.5 0.25 0.5 1.00 272 111 25

Fig. 3. An illustration of the transposition.

state of units in periodT and quickens the convergence of
GA.

3.6. Transposition

A transposition operation is introduced[17] which ex-
changes fragments of the chromosomes that encode the
states (during periodT) of two randomly chosen units. This
operation is shown inFig. 3.

This transposition can considerably help the evolution
process, particularly in the last phase, penetrating the local
minimums by changing the work states of pairs of units.

4. Application examples

The genetic algorithm for the UC problem described
above was implemented in Matlab and has been applied to a
practical power system with 3 and 12 units. The scheduling
time horizon for all cases is 24 h. These experiments were
done on a personal computer with a Pentium III 800 MHz
processor.

The unit and load data can be found inTables 3 and 4and
in Appendix A.
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Table 2
The optimal power sharingPopt (MW) of example 1

Hour P1 P2 P3

1 252.75 0.00 234.75
2 238.74 0.00 221.26
3 239.25 0.00 221.75
4 233.64 0.00 216.36
5 235.81 0.00 218.44
6 243.83 0.00 226.17
7 253.01 0.00 234.99
8 317.09 0.00 296.66
9 236.95 211.52 219.53

10 237.54 212.52 220.11
11 232.33 207.07 215.10
12 244.71 219.03 227.01
13 250.85 224.98 232.92
14 250.85 224.98 232.92
15 222.95 197.98 206.07
16 234.04 208.72 216.74
17 283.44 256.52 264.29
18 307.59 279.88 287.53
19 292.66 265.43 273.16
20 289.93 262.79 270.53
21 277.39 250.65 258.46
22 253.67 227.70 235.63
23 215.01 190.31 198.43
24 187.50 180.00 180.00

4.1. First example

The first example includes three generating units (unit
nos. 1, 2 and 3 fromTable 3) and load data fromTable 4.
Table 1shows the comparison of results obtained for various
variants of GA with greedy or random repair, with or without
transposition including:

1. standard binary mutation and one-point crossover (rows
1–7);

2. the proposed method of mutation and one-point crossover
(rows 8–14);

3. the proposed method of mutation and multi-point
crossover or uniform crossover (rows 15–19).

Table 3
Characteristics and initial state of units

Unit Initial statusa (h) a ($/MW2 h) b ($/MW h) c ($/h) e ($) f ($) g (h−1) h (h−1)

1 On/-24 0.004531 7.3968 643.24 −2889.45 5466.28 0.3680 −0.0112
2 On/-4 0.004683 7.5629 666.27 −2893.81 5474.51 0.3680 −0.0112
3 On/-4 0.004708 7.4767 672.77 −2888.84 5465.13 0.3680 −0.0112
4 On 0.004880 7.4742 686.58 −2882.77 5453.66 0.3680 −0.0112
5 On 0.004214 7.2995 601.53 −2863.94 5418.07 0.3680 −0.0112
6 On 0.004582 7.3102 641.99 −2843.13 5378.74 0.3680 −0.0112
7 On 0.004267 7.5494 609.07 −2876.16 5441.15 0.3680 −0.0112
8 On 0.003572 6.6577 531.63 −2903.29 5492.22 0.3680 −0.0112
9 On 0.004788 7.7184 678.40 −2892.73 5472.47 0.3680 −0.0112
10 On 0.003485 6.2115 503.60 −2928.65 5540.14 0.3680 −0.0112
11 On 0.003658 6.5492 528.19 −2894.88 5476.32 0.3680 −0.0112
12 On 0.003671 6.4137 527.81 −2915.53 5515.34 0.3680 −0.0112

a “On” indicates unit is in the on-state, “-x” indicates unit is in the off-state forx hours. In the first example units 1, 2 and 3 are in the on-state,
whereas in the second example they are in the off-state.

For each variant of GA the following were defined:

• the frequency of optimum solutionfopt, found by GA;
• the average number of evaluations necessary to find the

optimum solutionnopt, and their standard deviationσopt,
• the average computational time necessary to find the op-

timum solutiontopt.

The above values are defined according to 30 executions
of the algorithm and GA parameters outlined below.

The following GA parameters were used in the first ex-
ample:

• population size:Psize = 50;
• maximum no. of generations:Ng = 200;
• probability of crossover:pc = 0.9;
• parameters of the proposed mutation:q1 = r1 = 0, q2

= 0.8, r2 = r3 = 0.9, toffx = 8;
• constantM in formula (11):

M = T

N∑
i=1

Ci(Pmaxi) (31)

• parameterm in formula (11), when (disproportional) tour-
nament selection is used, must only fulfill the constraint
m > 0.

The remaining GA parameters were variable, i.e.:

• the probability of replacement in repair algorithms:pr
= 0.05 or 1;

• the expected number of individual mutations:nm = 0.25
or 0.5;

• the expected number of individual transpositions:nt = 0,
0.25 or 0.5;

• the number of cut points in multi-point crossover:ncp = 2
or 5;

• probability of swapping in uniform crossover:ps = 0.1,
0.3 or 0.5.

These parameters were entered into the appropriate cells
in Table 1. For example, row 1 shows the GA variant with
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Table 4
Load demandD (MW)

Hours D (first example) D (second example)

1 487.50 1950.00
2 460.00 1840.00
3 461.00 1844.00
4 450.00 1800.00
5 454.25 1817.00
6 470.00 1880.00
7 488.00 1952.00
8 613.75 2455.00
9 668.00 2672.00

10 669.75 2679.00
11 654.50 2618.00
12 690.75 2763.00
13 708.75 2835.00
14 708.75 2835.00
15 627.00 2508.00
16 659.50 2638.00
17 804.25 3217.00
18 875.00 3500.00
19 831.25 3325.00
20 823.25 3293.00
21 786.50 3146.00
22 717.00 2868.00
23 603.75 2415.00
24 547.50 2190.00

the probability of replacement in the random repair algo-
rithm equal to 1, a standard mutation with expected indi-
vidual mutation equal to 0.5, one-point crossover, without
transposition.

The optimum solution,Popt, was calculated by enumer-
ating all possible combinations of the generating units,

Table 5
The best power sharingPbest (MW) of example 2

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.01 0.00 350.00 290.27 307.72
2 0.00 0.00 0.00 180.00 180.00 180.00 180.00 253.57 0.00 323.91 262.49 280.03
3 0.00 0.00 0.00 180.00 180.00 180.00 180.00 254.57 0.00 324.95 263.47 281.01
4 0.00 0.00 0.00 180.00 180.00 180.00 180.00 243.50 0.00 313.60 252.66 270.24
5 0.00 0.00 0.00 180.00 180.00 180.00 180.00 247.78 0.00 317.98 256.84 274.40
6 0.00 0.00 0.00 180.00 180.00 180.00 180.00 263.63 0.00 334.22 272.32 289.83
7 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.69 0.00 350.00 290.93 308.38
8 0.00 0.00 0.00 234.78 292.61 267.92 259.69 350.00 0.00 350.00 350.00 350.00
9 0.00 0.00 238.06 229.95 287.03 262.78 254.18 350.00 0.00 350.00 350.00 350.00

10 0.00 0.00 239.40 231.25 288.53 264.16 255.66 350.00 0.00 350.00 350.00 350.00
11 0.00 0.00 227.70 219.96 275.45 252.14 242.75 350.00 0.00 350.00 350.00 350.00
12 0.00 0.00 255.51 246.80 306.53 280.72 273.44 350.00 0.00 350.00 350.00 350.00
13 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00 350.00
14 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00 350.00
15 0.00 0.00 206.60 199.59 251.88 230.46 219.47 350.00 0.00 350.00 350.00 350.00
16 0.00 0.00 231.54 223.66 279.74 256.08 246.98 350.00 0.00 350.00 350.00 350.00
17 0.00 281.04 288.69 278.81 343.60 314.81 310.05 350.00 0.00 350.00 350.00 350.00
18 0.00 284.45 292.07 282.07 347.38 318.28 313.78 350.00 261.97 350.00 350.00 350.00
19 0.00 260.02 267.77 258.63 320.23 293.31 286.97 350.00 238.07 350.00 350.00 350.00
20 0.00 255.55 263.33 254.34 315.27 288.75 282.06 350.00 233.70 350.00 350.00 350.00
21 0.00 235.03 242.92 234.64 292.46 267.78 259.54 350.00 213.63 350.00 350.00 350.00
22 0.00 195.52 203.62 196.73 248.55 227.40 216.18 350.00 180.00 350.00 350.00 350.00
23 0.00 180.00 180.00 180.00 190.18 180.00 180.00 314.16 0.00 350.00 350.00 339.00
24 0.00 180.00 180.00 180.00 180.00 180.00 180.00 251.05 0.00 321.34 260.03 277.58

shown in Table 2. The cost of this solution is: total cost
= $179116, production cost= $173282, start-up cost=
$5834.

Table 1shows that greedy repair is better than random re-
pair. No important differences were observed in the working
of the algorithm with a probability of replacement in repair
algorithms at a value of 0.05 or 1. The proposed mutation
allows the obtainment of an optimum solution in nearly ev-
ery case, in a considerably quicker time than using standard
mutation. All the crossover methods gave similar results,
but one-point crossover functioned the fastest. In all cases
transposition raised the efficiency of the algorithm, in some
cases considerably (e.g. compare variants 1, 2, 3 and 4 in
Table 1).

4.2. Second example

The second example includes 12 generating units
(Table 3) and load data fromTable 4. On the basis of pre-
liminary experiments and results from the first example the
following GA parameters were assumed:

• population size:Psize = 100;
• maximum no. of generations:Ng = 1000;
• probability of replacement in repair algorithm:pr = 1;
• expected number of individual mutations:nm = 0.5;
• expected number of individual transpositions:nt = 0.25;
• greedy repair;
• one-point crossover;
• pc, q1, r1, q2, r2, r3, toffx , M, m are assumed to be of the

same value as in the first example.
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The following results were obtained:

• the minimum, maximum and average costs of the best
solutions found by the algorithm in 10 runs were $644951,
$646229, and $645264, respectively;

• the standard deviation of the costs of the best solutions
found by the algorithm in 10 runs was $381;

• the frequency of the best solutionPbestfound by GA: 0.2;
• the average number of evaluations necessary to find the

best solutionPbest: 70650;
• the average computational time necessary to find the best

solutionPbest: 2.25 h.

The best solution found by the algorithm is shown in
Table 5.

For comparison, calculations were done using the sim-
ulated annealing algorithm, Monte Carlo method and the
heuristic method of limit time characteristics[19], which
was used for many years in the Polish Electrical Power Sys-
tem. In simulated annealing, the features representation is the
same as for GA, but the solutions are generated by a change
of one bit in the base solution (standard binary mutation).
In the Monte Carlo method, points in the solution space are
randomly chosen from the uniform distribution, remember-
ing the best solution. The number of evaluations of the cost
function in these algorithms has been set at 100 000, simi-
lar to the proposed GA algorithm, and the calculations for
every algorithm are done 10 times. The costs of the best so-
lutions found by these algorithms are: simulated annealing
= $702379, the Monte Carlo method—no acceptable solu-
tion, the heuristic method= $665634.

5. Conclusions

The proposed genetic algorithm for the Unit Commitment
problem gives a stable and acceptable solution that is near

ai, bi, ci production cost function parameters of uniti
Ci[Pi(t)] variable production cost of uniti at timet ($/h)
D(t) load demand at thetth hour (MW)
ei, fi, gi, hi start-up cost function parameters of uniti
fopt the frequency of optimum solution found by GA
g(i) the discreet function defining the level of constraint (6) violation
h(i) the discreet function defining the level of constraint (7) violation,i = 1, 2, . . . , N (unit index)
M the constant greater than the maximum cost of feasible individuals calculated in formula (1)
m the parameter controlling the influence of the constraint violation level on the cost function value
N number of units
ndowni the number of periods in which uniti is in continuous off state during the optimization periodT
nmin(t), nmax(t) the minimum and maximum number of units necessary to meet load demand at momentt
nopt the average number of evaluations necessary to find the optimum solution by GA
nupi the number of periods in which uniti is continuously in on state in the optimization periodT
Pi(t) power generation of uniti at timet (MW)
Pmini, Pmaxi lower/upper generation limit of uniti
pup, pdown the probability of a bit change from 0 to 1 or 1 to 0, respectively

optimal. The difference between the cost of the best and the
worst solutions found in 10 runs of the algorithm in the sec-
ond example was 0.20% ($1278). The advantages the algo-
rithm achieved by the introduction of genetic operators spe-
cific to the problem were: mutation that makes the probabil-
ity of bit change dependent on load demand, production and
start-up costs of units, as well as the transposition search-
ing through local minimums. The solutions obtained for the
second example are better by 3–3.2% from those obtained
with the help of the heuristic method used by the Polish
Electrical Power System.

The calculation time, which is rather long here, can be
limited by implementing the algorithm in a programming
environment that is faster than Matlab, and doing the calcu-
lations in a parallel machine environment.

The author’s present work on this problem is concen-
trated on the construction of genetic algorithms with al-
ternative methods of variable representation and genetic
operators.
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Appendix A

∀t: R(t) = 0,05Dmax;
∀i: Pmini = 180 MW, Pmaxi = 350 MW;
∀i: tupi = 5 h, tdowni = 5 h.

Appendix B. List of symbols
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pup1, pdown1 the probability of a bit change from 0 to 1 or 1 to 0, respectively, dependent on the number of units
necessary to meet load demand

pup2, pdown2 the probability of a bit change from 0 to 1 or 1 to 0, respectively, dependent on unit production costs
q1, q2, r1, r2 the lowest borderline value of probabilitiespup1, pup2, pdown1, pdown2, respectively
R(t) spinning reserve requirement at thetth hour (MW)
SCi(toff i) start-up cost of uniti ($)
T number of hours in the study period,t = 1, 2, . . . , T, time index (h)
toni, toff i time periods during which uniti is continuously on/off (h)
toff i(k) the down time of uniti duringkth period of off state
toni(k) the up time of uniti duringkth period of on state
topt the average computational time necessary to find the optimum solution by GA
tupi, tdowni minimum up/down time of uniti
vi the relation between the start-up cost after down timetoffx of the unit with the lowest start-up cost to the

start-up cost of uniti
vmin, vmax the minimum and maximum variablevi values fori = 1,2, . . . , N

Greek letters
αi(t) on/off status of theith unit at thetth hour,αi (t) ∈ {0, 1}
βi (k) the binary variable, which is 1 when uniti violates constraint (6) duringkth period of off state, or 0

when the constraint is not violated or it is not possible to state the down time (e.g. when the unit stays
down until the end of optimization periodT)

�i (k) the binary variable, which is 1 when uniti violates constraint (7) during the on periodk, or 0 when the
constraint is not violated or it is not possible to state the on period (e.g. when the unit stays on until the
end of optimization periodT)

σopt the standard deviation of the number of evaluations necessary to find the optimum solution by GA
τoff i(k) the outage time of uniti after on periodk
τoni(k) the start-up hour of uniti after thekth period of down time
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