
L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 190–198, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tournament Feature Selection with Directed Mutations

Grzegorz Dudek

Department of Electrical Engineering, Czestochowa University of Technology,
Al. Armii Krajowej 17, 42-200 Czestochowa, Poland

dudek@el.pcz.czest.pl

Abstract. A tournament searching method with new mutation operators for a
problem of the feature subset selection is presented. The probability of the bit
mutation in a classical approach is fixed. In the proposed methods this probabil-
ity is dependent on the history of the searching process. Bit position whose mu-
tation from 0 to 1 (from 1 to 0) improved the evaluation of the solution in early
iterations, are mutated more frequently from 0 to 1 (from 1 to 0). The roulette
wheel method and the tournament method are used to select the bits for the mu-
tation according to the adaptive probability. The algorithms were tested on sev-
eral tasks of the feature selection in the supervised learning. The experiments
showed the faster convergence of the algorithm with directed mutations in rela-
tion to the classical mutation.

Keywords: feature selection, tournament feature selection, directed mutation,
roulette wheel mutation, tournament mutation, supervised learning, k-nearest
neighbour method.

1 Introduction

Feature selection (FS) is an important stage in the design of classification and ap-
proximation systems, as well as in modelling the phenomena, processes and physical
objects in general. The aim of FS is to reduce the dimension of the input vectors by
the feature (variable) subset selection which describes object in the best manner and
ensures the best quality of the model. In this process the irrelevant, redundant and
unpredictive features are omitted.

The methods of FS can be generally divided into filter and wrapper ones [1]. Filter
methods do not require application of learning model to select relevant features. They
select features as a preprocessing step, independent on the choice of the predictor.
They also use information included in the dataset, e.g. the correlation between vari-
ables or discriminatory abilities of the individual features, to create the most promis-
ing feature subset before commencement of learning. The main disadvantage of the
filter approach is the fact that it totally ignores the effect of the selected feature subset
on the performance of the learning model.

The wrapper approach operates in the context of the learning model – it uses fea-
ture selection algorithm as a wrapper around the learning algorithm and has usually
better predictive accuracy than the filter approach. The wrapper approach using the

 Tournament Feature Selection with Directed Mutations 191

learning model as a black box is remarkably universal. However, this approach can be
very slow because the learning algorithm is called repeatedly. The comparative ex-
periments between the wrapper and filter models confirmed that it is inappropriate to
evaluate the usefulness of an input variable without taking into consideration the algo-
rithms that built the classification or regression model [1].

Some learning models have internal build-in mechanisms of FS. For example deci-
sion trees (CART, ID3, C4.5) which incorporate FS routine as a subroutine and heu-
ristically search the space of feature subsets along tree structure during the learning
process or artificial immune system proposed in [2] which includes the local feature
selection mechanism. This approach, inspired by the binding of an antibody to an
antigen, which occurs between amino acid residues forming an epitope and a para-
tope, allows the detection of many relevant feature sets (a separate relevant feature set
is created for each learning point and its neighborhood).

In [3] the wrapper method of FS called tournament feature selection (TFS) was
proposed. The solution strings processed by TFS are vectors composed of bits
representing all m features: x = [x1, x2, …, xm]. Ones and zeros in these vectors indi-
cate whether the feature is selected or not. TFS is a simple stochastic search mechan-
ism which explores the solution space starting from an initial solution and generating
new ones by perturbing it using a mutation operator. This operator switches the value
of one randomly chosen bit (but different for each candidate solution) of the parent
solution. When the set of new l candidate solutions is generated (l represents the tour-
nament size), their evaluations are calculated. The best candidate solution (the tour-
nament winner), with the highest value of the criterion function, is selected and it
replaces the parent solution, even if it is worse than the parent solution. This allows us
to escape from the local maxima of the criterion function. If l is equal to 1, this proce-
dure comes down to a random search process. On the other hand, when l is equal to
the total number of features this method becomes a hill climbing method where there
is no escape from the local maxima.

 The TFS turned out to be very promising in the feature selection problem, better
than a genetic algorithm and simulated annealing, as well as deterministic sequential
forward and backward selection algorithms [3]. The TFS method, similarly to the
genetic algorithm, has a parallel structure – several candidate solutions can be gener-
ated and evaluated at the same time. This results in the runtime decreasing. The main
advantage of TFS is only one parameter to adjust – the tournament size l.

This paper presents TFS with specialized binary search operators: roulette wheel
and tournament mutations. These operators use information gained during the search-
ing process about the effect of mutations at different bit positions on the solution
quality. Bit position whose mutation from 0 to 1 (or 1 to 0) improved the evaluation
of the solution in earlier iterations are more frequently mutated from 0 to 1 (or 1 to 0).
This mechanism should speed up the convergence of the algorithm.

The biological inspiration for the proposed directed mutations is a hypothesis of
directed mutagenesis proposing that organisms can respond to environmental stresses
through directing mutations to certain genes or areas of the genome [4].

192 G. Dudek

2 Roulette Wheel Mutation

In the roulette wheel method the mutation intensity is determined individually for
each bit position i = 1, 2, …, m. The indexes of mutation intensity from 0 to 1 w0-1(i)
and from 1 to 0 w1-0(i) are introduced and initialized with zeros for each position i.
The index values are updated after each algorithm iteration according to the following
scheme:

• if the solution evaluation after mutation increases, the index values for mutated
positions increase, i.e. w0-1(i) or w1-0(i) (respectively to the direction of mutation
(from 0 to 1 or from 1 to 0) and the mutated bit position) is incremented by u.

• if the solution evaluation after mutation decreases, the index values for mutated
positions decrease, i.e. w0-1(i) or w1-0(i) is decremented by u.

• if the solution evaluation after mutation does not change, the index values remain
unchanged.

This can be expressed by formulas:








=∧<∧∈−
=∧>∧∈+

=

−

−

−

−

otherwise),(

0)()'(if,)(

0)()'(if,)(

)(

10

10

10

10

iw

xFFMiuiw

xFFMiuiw

iw i

i

xx

xx

, (1)








=∧<∧∈−
=∧>∧∈+

=

−

−

−

−

otherwise),(

1)()'(if,)(

1)()'(if,)(

)(

01

01

01

01

iw

xFFMiuiw

xFFMiuiw

iw i

i

xx

xx

, (2)

where: u > 0 – the incrementation/decrementation constant, x, x' – the solution before
and after mutation, M – the set of mutated position in the solution x, F(x), F(x') – the
evaluation values of the solution x before and after mutation, respectively.

The high value of the index w0-1(i) (w1-0(i)) informs that in the current realization of
the searching process the change of the i-th bit value from 0 to 1 (from 1 to 0) caused
improvement of the evaluation in the most cases. Thus the probability of the mutation
of this bit from 0 to 1 (from 1 to 0) in the next iterations should be adequately high,
depending on the value of w0-1(i) (w1-0(i)) index. The mutation probability is calcu-
lated according to the formula:

()

() () 
Ω∈ Ω∈

−− +
=

)()(

0110

)(

0 1

)()(

)(
)(

ij ik

id

kwfjwf

iwf
ip , (3)

where: wd(i) = w0-1(i) if the i-th bit value in the mutated solution is equal to 0 and
wd(i) = w1-0(i) otherwise, Ω0(i) is a set of positions of zeros and Ω1(i) is a set of posi-
tions of ones in the mutated solution, f(.) is a logistic function of the form:

 Tournament Feature Selection with Directed Mutations 193

ze

zf −+
=

1

1
)(. (4)

The task of the logistic function having an “S” shape is to reduce the mutation prob-
ability of positions with large values of the mutation indexes and transform the nega-
tive values of indexes to the positive ones. This is illustrated in Fig. 1. Index values
after transformation using (5) are in the range from 0 to 1. The positive values of
indexes are necessary for the proper operation of the roulette wheel method. The re-
duction of mutation probability for positions with large index values eliminates the
premature convergence to the superindividuals. The mutation probability is propor-
tional to the value of f(wd(i)(i)) now, and not to the value of wd(i)(i), which may
increase/decrease to +/- infinity during the searching process and which may affect
the mutation probabilities in an undesirable way. The mutation probability of z2 in
Fig. 1 is only about 11% larger than the mutation probability of z1, although z2 is two
times larger than z1.

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

z

f(
z)

z2=z1=

Fig. 1. The logistic function transforming the mutation index values

The mutation positions are chosen according to the probabilities p(i) using the rou-
lette wheel. The roulette wheel is composed of m sectors which sizes depend on p(i),
and their boundaries are determined as follows:









=











=

=


=

−

=
mijpjp

ip

iS i

j

i

j

,...,3,2for)(),(

1for)]1(,0(

)(

1

1

1

. (5)

The circuit of the roulette wheel equals 1.
The scheme of the roulette wheel mutation for TFS is as follows:

1. For each position i = 1, 2, …, m, according to the values of w0-1(i) and
w1-0(i) indexes, the values of probability p(i) are calculated from equation (3).

2. For each candidate solution the roulette wheel is constructed taking into account
sector boundaries (5).

194 G. Dudek

3. For each candidate solution the uniformly distributed random number r from the
range (0, 1] is drawn. The sector including number r determines the position and
direction of the mutation.

In the original TFS algorithm, each candidate solution is mutated in a different posi-
tion. If we want to introduce such a requirement in the roulette wheel mutation, before
calculating probabilities (3) for the mutated candidate solution, we assume
p(i) = 0 for all previously mutated positions in the current iteration and remove these
positions as forbidden from the sets Ω0(i) and Ω1(i). For illustration in Fig. 2 the rou-
lette wheels are shown for three 8-bit candidate solutions, where the parent solution is
x = [0 1 1 0 0 0 1 0], the mutation indexes are: w0-1 = [-0.1, 0.5, 0.8, -0.4, -0.6, -0.2,
0.9, 0.0], w1-0 = [0.4, -0.3, -0.8, 0.5, 0.9, 0.6, -0.9, 0.1], and the random numbers are
r = 0.76, 0.28 and 0.59.

Fig. 2. The roulette wheels for the three successive candidate solutions generated from the
parent solution x = [0 1 1 0 0 0 1 0]. (Dark sectors correspond to ones in the parent solution,
and white sectors correspond to zeros.)

The mutation parameter u allows to control the selection pressure. The higher u
value increases the selection pressure. Since the function (4) does not reach zero there
is nonzero probability of mutation of each bit in both directions.

3 Tournament Mutation

Analogically to the roulette wheel mutation, in the tournament mutation the mutation
intensity indexes w0-1(i) and w1-0(i) are defined. For each candidate solution h bit posi-
tions are sampled uniformly at random with replacement, where h = 1, 2, … is the
tournament mutation size. Among h positions the one with the highest value of wd(i)(i)
is chosen, and the value of this position is changed to the opposite one.

Note that here we do not need to calculate the probability of mutation and the sizes
of sectors such as in the case of the roulette wheel mutation, because in the tourna-
ment selection procedure there is not important what is the difference between the
mutation index values wd(i)(i) corresponding to the bit positions competing in the
tournament.

 Tournament Feature Selection with Directed Mutations 195

The tournament size h controls the selection pressure. If h = 1, the tournament mu-
tation is reduced to the classical random mutation.

Restriction used in TFS, that every candidate solution is mutated in a different po-
sition, is implemented here in such a way that the positions mutated in the previously
considered candidate solutions do not participate in the tournament for the current
candidate solution.

The roulette wheel and tournament mutations should bring good results in the tasks
where the i-th bit value influences the value of objective function in the same way,
independently of the bit context (values of the remaining bits in the solution).

4 Application Examples

The proposed TFS method with roulette wheel and tournament mutations was verified
on several test problems of data classification. Benchmark datasets, described in Ta-
ble 1, were taken from the UCI Machine Learning Repository. The features in the
datasets were standardized to zero-mean and unit-variance.

Table 1. Description of data used in experiments

Dataset Size Features Classes
Optimal
k value

Ionosphere 351 34 2 3
Cancer 569 30 2 4

Heart Statlog 270 13 2 7
Wine 178 13 3 4
Glass 214 9 6 5

Diabetes 768 8 2 14

where: Cancer – the Wisconsin diagnostic breast cancer dataset.

k-nearest neighbor method (k-NN) was used as a classifier, with k determined a
priori for all features (optimal k values are shown in Table 1). The classification accu-
racy was determined in the leave-one-out procedure. For each dataset the feature
space was optimized running algorithms 30-times. The number of solutions generated
in the searching process was the same for all mutation variants: 40⋅round(m/2)2. The
parameter values are listed below:

• tournament size in TFS: l = round(m/3),
• incrementation/decrementation constant u = 0.1,
• tournament mutation size: h = 2 or 4.

Experiments were carried out using TFS with standard mutation (SM), roulette wheel
mutation with replacement (the same mutations for different candidate solutions are
possible, RWM1), roulette wheel mutation without replacement (the same mutations
for different candidate solutions are not possible, RWM2), tournament mutation with
replacement for h = 2 (TM1), tournament mutation without replacement for h = 2
(TM2) and tournament mutation with replacement for h = 4 (TM3).

196 G. Dudek

The results are presented in Table 2, where Accmean, Accmin, Accmax are accuracies
of the classifier using selected features (mean, minimal and maximal accuracies re-
turned in 30 runs) and σAcc is the standard deviation of accuracy.

The convergence curves averaged from 30 runs for SM, RWM2 and TM2 are
shown in Fig. 3. Characteristically, the convergence curve for SM is the lowest. This
indicates the large variance of the searching process (we observe high variability of
the process). Directed mutations RWM and TM reduce the variance leading the
searching process to the promising regions of the solution space, which have been
identified in an earlier stage of searching and stored in the mutation indexes. But from
Table 2 it can be seen that TFS with the simple standard mutation usually leads to no
worse results than the directed mutations.

Table 2. Results of classification using k-NN and TFS

Dataset SM RWM1 RWM2 TM1 TM2 TM3
Without

FS
Ionosphere Accmean 94.78 94.09 94.12 94.68 94.62 94.23 84.33

 Accmin 94.59 92.88 92.88 94.30 94.02 92.88
 Accmax 95.44 94.87 94.87 95.44 95.44 94.87
 σAcc 0.26 0.45 0.47 0.35 0.26 0.40

Cancer Accmean 98.25 97.87 97.89 98.05 98.01 97.91 96.61
 Accmin 97.89 97.72 97.72 97.72 97.54 97.36
 Accmax 98.42 98.24 98.42 98.42 98.42 98.42
 σAcc 0.18 0.15 0.17 0.20 0.23 0.22

Heart Accmean 86.16 85.84 85.84 86.06 86.04 85.83 82.22
Statlog Accmin 85.93 84.81 84.81 85.93 85.93 85.19

 Accmax 86.30 86.30 86.30 86.30 86.30 86.30
 σAcc 0.18 0.30 0.32 0.18 0.17 0.27

Wine Accmean 98.88 98.86 98.86 98.88 98.88 98.67 96.07
 Accmin 98.88 98.31 98.31 98.88 98.88 98.31
 Accmax 98.88 98.88 98.88 98.88 98.88 98.88
 σAcc 0.00 0.10 0.10 0.00 0.00 0.28

Glass Accmean 74.77 74.77 74.77 74.77 74.77 74.77 65.89
 Accmin 74.77 74.77 74.77 74.77 74.77 74.77
 Accmax 74.77 74.77 74.77 74.77 74.77 74.77
 σAcc 0.00 0.00 0.00 0.00 0.00 0.00

Diabetes Accmean 77.21 77.21 77.20 77.21 77.21 76.94 73.96
 Accmin 77.21 77.21 76.69 77.21 77.21 76.30
 Accmax 77.21 77.21 77.21 77.21 77.21 77.21
 σAcc 0.00 0.00 0.10 0.00 0.00 0.33

In order to confirm the faster convergence of TFS with directed mutation, we

check whether the difference d between the average evaluation of the parent solutions
in all iterations and runs of the algorithm in the case of TFS with standard mutation
and TSF with directed mutation is statistically significant. Because we cannot assume
a normal distribution of accuracies we use for this purpose two nonparametric tests:
the sign test for the null hypothesis that the difference d has zero median and

 Tournament Feature Selection with Directed Mutations 197

0 200 400 600 800
92.5

93

93.5

94

Iteration

A
cc

ur
ac

y

Ionosphere

SM

RWM2
TM2

0 200 400 600 800
97.5

97.6

97.7

97.8

97.9

Iteration

A
cc

ur
ac

y

Cancer

0 100 200 300 400
82.5

83

83.5

84

84.5

85

85.5

Iteration

A
cc

ur
ac

y

Heart Statlog

0 100 200 300 400

97

97.5

98

98.5

Iteration

A
cc

ur
ac

y

Wine

0 50 100 150 200 250
70

71

72

73

74

Iteration

A
cc

ur
ac

y

Glass

0 50 100 150 200

75.5

76

76.5

Iteration

A
cc

ur
ac

y

Diabetes

Fig. 3. The mean convergence curves

Wilcoxon rank sum test for equality of medians of two distributions. The 5% signific-
ance level is applied in this study. The test results confirmed that in all cases TFS with
the directed mutation (RWM1, RWM2, TM1, TM2 and TM3) converges faster than
TFS with standard mutation.

Fig. 4 demonstrates how for the Diabetes dataset the transformed values of the mu-
tation indexes changed during the searching process. Decreasing values of w0-1 and in
the same time increasing values of w1-0 for features 1, 3, 4 and 5 inform, that these
features are irrelevant, because switching bits corresponding to them from 0 to 1 most
frequently resulted in the deterioration of the classifier accuracy, and switching these
bits from 1 to 0 resulted in increased accuracy. The w1-0(2) decreases very rapidly
which means that the mutation of the second bit from 1 to 0 is unfavourable. As a
result, this bit often takes value 1, so the mutation from 0 to 1 does not occur and
w0-1(2) cannot adapt its value (straight line for w0-1(2) in Fig. 4(a)). A similar but op-
posite situation is for the 4-th feature.

198 G. Dudek

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Iteration

f(
w

0-
1)

1

2
3

4

5

6
7

8

Feature:

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

f(
w

1-
0)

Fig. 4. The mutation index values transformed using logistic function (4) during the searching
process for Diabetes data and RWM2

5 Conclusion

The article describes an attempt to improve the performance of the tournament feature
selection method by introducing new methods of mutation, in which the probability of
the bit mutation depends on the effectiveness of mutation of this bit in an earlier stage
of the searching process.

In the early iterations of the algorithm the probability of mutation of all bits are
equal. This ensures the thorough search of the solution space in the whole range. In
the course of the search process information about whether the change of the specific
bit from 0 to 1 and vice versa improves or deteriorates the solutions are stored. This
information is used in subsequent iterations to adapt mutation probabilities of individ-
ual bits: bits that mutation from 0 to 1 (1 to 0) increased the solutions are mutated in
this direction more often. As a result, the algorithm exploitation capabilities are en-
hanced: the neighborhood of the best solution is searched more intensively. This
mechanism is effective when the value of the bit affects the evaluation of solutions in
the same way, regardless of the context.

The results of this investigation have shown that the convergence of the algorithm
was improved through the use of the roulette wheel and tournament mutations, but
better classifier accuracy than using tournament feature selection with the standard
mutation operator were not achieved.

References

1. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artificial Intelligence 1-2,
273–324 (1997)

2. Dudek, G.: Artificial Immune System for Classification with Local Feature Selection.
IEEE Transactions on Evolutionary Computation (in print)

3. Dudek, G.: Tournament Searching Method to Feature Selection Problem. In: Rutkowski,
L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS
(LNAI), vol. 6114, pp. 437–444. Springer, Heidelberg (2010)

4. Cairns, J., Overbaugh, J., Miller, S.: The Origin of Mutants. Nature 335, 142–145 (1988)

