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Abstract. A tournament searching method with new mutation operators for a 
problem of the feature subset selection is presented. The probability of the bit 
mutation in a classical approach is fixed. In the proposed methods this probabil-
ity is dependent on the history of the searching process. Bit position whose mu-
tation from 0 to 1 (from 1 to 0) improved the evaluation of the solution in early 
iterations, are mutated more frequently from 0 to 1 (from 1 to 0). The roulette 
wheel method and the tournament method are used to select the bits for the mu-
tation according to the adaptive probability. The algorithms were tested on sev-
eral tasks of the feature selection in the supervised learning. The experiments 
showed the faster convergence of the algorithm with directed mutations in rela-
tion to the classical mutation.  

Keywords: feature selection, tournament feature selection, directed mutation, 
roulette wheel mutation, tournament mutation, supervised learning, k-nearest 
neighbour method. 

1 Introduction 

Feature selection (FS) is an important stage in the design of classification and ap-
proximation systems, as well as in modelling the phenomena, processes and physical 
objects in general. The aim of FS is to reduce the dimension of the input vectors by 
the feature (variable) subset selection which describes object in the best manner and 
ensures the best quality of the model. In this process the irrelevant, redundant and 
unpredictive features are omitted. 

The methods of  FS can be generally divided into filter and wrapper ones [1]. Filter 
methods do not require application of learning model to select relevant features. They 
select features as a preprocessing step, independent on the choice of the predictor. 
They also use information included in the dataset, e.g. the correlation between vari-
ables or discriminatory abilities of the individual features, to create the most promis-
ing feature subset before commencement of learning. The main disadvantage of the 
filter approach is the fact that it totally ignores the effect of the selected feature subset 
on the performance of the learning model. 

The wrapper approach operates in the context of the learning model – it uses fea-
ture selection algorithm as a wrapper around the learning algorithm and has usually 
better predictive accuracy than the filter approach. The wrapper approach using the 
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learning model as a black box is remarkably universal. However, this approach can be 
very slow because the learning algorithm is called repeatedly. The comparative ex-
periments between the wrapper and filter models confirmed that it is inappropriate to 
evaluate the usefulness of an input variable without taking into consideration the algo-
rithms that built the classification or regression model [1].  

Some learning models have internal build-in mechanisms of FS. For example deci-
sion trees (CART, ID3, C4.5) which incorporate FS routine as a subroutine and heu-
ristically search the space of feature subsets along tree structure during the learning 
process or artificial immune system proposed in [2] which includes the local feature 
selection mechanism. This approach,  inspired by the binding of an antibody to an 
antigen, which occurs between amino acid residues forming an epitope and a para-
tope, allows the detection of many relevant feature sets (a separate relevant feature set 
is created for each learning point and its neighborhood). 

In [3] the wrapper method of FS called tournament feature selection (TFS) was 
proposed. The solution strings processed by TFS are vectors composed of bits 
representing all m features: x = [x1, x2, …, xm]. Ones and zeros in these vectors indi-
cate whether the feature is selected or not. TFS is a simple stochastic search mechan-
ism which explores the solution space starting from an initial solution and generating 
new ones by perturbing it using a mutation operator. This operator switches the value 
of one randomly chosen bit (but different for each candidate solution) of the parent 
solution. When the set of new l candidate solutions is generated (l represents the tour-
nament size), their evaluations are calculated. The best candidate solution (the tour-
nament winner), with the highest value of the criterion function, is selected and it 
replaces the parent solution, even if it is worse than the parent solution. This allows us 
to escape from the local maxima of the criterion function. If l is equal to 1, this proce-
dure comes down to a random search process. On the other hand, when l is equal to 
the total number of features this method becomes a hill climbing method where there 
is no escape from the local maxima. 

  The TFS turned out to be very promising in the feature selection problem, better 
than a genetic algorithm and simulated annealing, as well as deterministic sequential 
forward and backward selection algorithms [3]. The TFS method, similarly to the 
genetic algorithm, has a parallel structure – several candidate solutions can be gener-
ated and evaluated at the same time. This results in the runtime decreasing. The main 
advantage of TFS is only one parameter to adjust – the tournament size l.  

This paper presents TFS with specialized binary search operators: roulette wheel 
and tournament mutations. These operators use information gained during the search-
ing process about the effect of mutations at different bit positions on the solution 
quality. Bit position whose mutation from 0 to 1 (or 1 to 0) improved the evaluation 
of the solution in earlier iterations are more frequently mutated from 0 to 1 (or 1 to 0). 
This mechanism should speed up the convergence of the algorithm. 

The biological inspiration for the proposed directed mutations is a hypothesis of  
directed mutagenesis proposing that organisms can respond to environmental stresses 
through directing mutations to certain genes or areas of the genome [4].    
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2 Roulette Wheel Mutation  

In the roulette wheel method the mutation intensity is determined individually for 
each bit position i = 1, 2, …, m. The indexes of mutation intensity from 0 to 1 w0-1(i) 
and from 1 to 0 w1-0(i) are introduced and initialized with zeros for each position i. 
The index values are updated after each algorithm iteration according to the following 
scheme: 

• if the solution evaluation after mutation increases, the index values for mutated 
positions increase, i.e. w0-1(i) or w1-0(i) (respectively to the direction of mutation 
(from 0 to 1 or from 1 to 0) and the mutated bit position) is incremented by u.  

• if the solution evaluation after mutation decreases, the index values for mutated 
positions decrease, i.e. w0-1(i) or w1-0(i) is decremented by u. 

• if the solution evaluation after mutation does not change, the index values remain 
unchanged. 

This can be expressed by formulas: 
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where: u > 0 – the incrementation/decrementation constant, x, x' – the solution before 
and after mutation, M – the set of mutated position in the solution x, F(x), F(x') – the 
evaluation values of the solution x before and after mutation, respectively. 

The high value of the index w0-1(i) (w1-0(i)) informs that in the current realization of 
the searching process the change of the i-th bit value from 0 to 1 (from 1 to 0) caused 
improvement of the evaluation in the most cases. Thus the probability of the mutation 
of this bit from 0 to 1 (from 1 to 0) in the next iterations should be adequately high, 
depending on the value of w0-1(i) (w1-0(i)) index. The mutation probability is calcu-
lated according to the formula: 
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where: wd(i) = w0-1(i) if the i-th bit value in the mutated solution is equal to 0 and  
wd(i) = w1-0(i) otherwise, Ω0(i) is a set of positions of zeros and Ω1(i) is a set of posi-
tions of ones in the mutated solution, f(.) is a logistic function of the form:  
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The task of the logistic function having an “S” shape is to reduce the mutation prob-
ability of positions with large values of the mutation indexes and transform the nega-
tive values of indexes to the positive ones. This is illustrated in Fig. 1. Index values 
after transformation using (5) are in the range from 0 to 1. The positive values of  
indexes are necessary for the proper operation of the roulette wheel method. The re-
duction of mutation probability for positions with large index values eliminates the 
premature convergence to the superindividuals. The mutation probability is propor-
tional to the value of f(wd(i)(i)) now, and not to the value of wd(i)(i), which may  
increase/decrease to +/- infinity during the searching process and which may affect 
the mutation probabilities in an undesirable way. The mutation probability of z2 in 
Fig. 1 is only about 11% larger than the mutation probability of z1, although z2 is two 
times larger than z1.      
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Fig. 1. The logistic function transforming the mutation index values 

The mutation positions are chosen according to the probabilities p(i) using the rou-
lette wheel. The roulette wheel is composed of m sectors which  sizes depend on p(i), 
and their boundaries are determined as follows: 
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The circuit of the roulette wheel equals 1.  
The scheme of the roulette wheel mutation for TFS is as follows:  

1. For each position i = 1, 2, …, m, according to the values of w0-1(i) and  
w1-0(i) indexes, the values of probability p(i) are calculated from equation (3). 

2. For each candidate solution the roulette wheel is constructed taking into account 
sector boundaries (5). 
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3. For each candidate solution the uniformly distributed random number r from the 
range (0, 1] is drawn. The sector including number r determines the position and 
direction of the mutation.  

In the original TFS algorithm, each candidate solution is mutated in a different posi-
tion. If we want to introduce such a requirement in the roulette wheel mutation, before 
calculating probabilities (3) for the mutated candidate solution, we assume  
p(i) = 0 for all previously mutated positions in the current iteration and remove these 
positions as forbidden from the sets Ω0(i) and Ω1(i). For illustration in Fig. 2 the rou-
lette wheels are shown for three 8-bit candidate solutions, where the parent solution is  
x = [0 1 1 0 0 0 1 0], the mutation indexes are: w0-1 = [-0.1, 0.5, 0.8, -0.4, -0.6, -0.2, 
0.9, 0.0], w1-0 = [0.4, -0.3, -0.8, 0.5, 0.9, 0.6, -0.9, 0.1], and the random numbers are  
r = 0.76, 0.28 and 0.59.    

 

 
Fig. 2. The roulette wheels for the three successive candidate solutions generated from the 
parent solution x = [0 1 1 0 0 0 1 0]. (Dark sectors correspond to ones in the parent solution, 
and white sectors correspond to zeros.)  

The mutation parameter u allows to control the selection pressure. The higher u 
value increases the selection pressure. Since the function (4) does not reach zero there 
is nonzero probability of mutation of each bit in both directions. 

3 Tournament Mutation  

Analogically to the roulette wheel mutation, in the tournament mutation the mutation 
intensity indexes w0-1(i) and w1-0(i) are defined. For each candidate solution h bit posi-
tions are sampled uniformly at random with replacement, where h = 1, 2, … is the 
tournament mutation size. Among h positions the one with the highest value of wd(i)(i) 
is chosen, and the value of this position is changed to the opposite one. 

Note that here we do not need to calculate the probability of mutation and the sizes 
of sectors such as in the case of the roulette wheel mutation, because in the tourna-
ment  selection procedure there is not important what is the difference between the 
mutation index values wd(i)(i) corresponding to the bit positions competing in the 
tournament.   
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The tournament size h controls the selection pressure. If h = 1, the tournament mu-
tation is reduced to the classical random mutation. 

Restriction used in TFS, that every candidate solution is mutated in a different po-
sition, is implemented here in such a way that the positions mutated in the previously 
considered candidate solutions do not participate in the tournament for the current 
candidate solution. 

The roulette wheel and tournament mutations should bring good results in the tasks 
where the i-th bit value influences the value of objective function in the same way, 
independently of the bit context (values of the remaining bits in the solution). 

4 Application Examples  

The proposed TFS method with roulette wheel and tournament mutations was verified 
on several test problems of data classification. Benchmark datasets, described in Ta-
ble 1, were taken from the UCI Machine Learning Repository. The features in the 
datasets were standardized to zero-mean and unit-variance. 

Table 1. Description of data used in experiments 

Dataset Size Features Classes 
Optimal  
k value 

Ionosphere 351 34 2 3 
Cancer 569 30 2 4 

Heart Statlog 270 13 2 7 
Wine 178 13 3 4 
Glass 214 9 6 5 

Diabetes 768 8 2 14 

where: Cancer – the Wisconsin diagnostic breast cancer dataset. 
  

k-nearest neighbor method (k-NN) was used as a classifier, with k determined a 
priori for all features (optimal k values are shown in Table 1). The classification accu-
racy was determined in the leave-one-out procedure. For each dataset the feature 
space was optimized running algorithms 30-times. The number of solutions generated 
in the searching process was the same for all mutation variants: 40⋅round(m/2)2. The 
parameter values are listed below: 

• tournament size in TFS: l = round(m/3), 
• incrementation/decrementation constant u = 0.1, 
• tournament mutation size: h = 2 or 4. 

Experiments were carried out using TFS with standard mutation (SM), roulette wheel 
mutation with replacement (the same mutations for different candidate solutions are 
possible, RWM1), roulette wheel mutation without replacement (the same mutations 
for different candidate solutions are not possible, RWM2), tournament mutation with 
replacement for h = 2 (TM1), tournament mutation without replacement for h = 2 
(TM2) and tournament mutation with replacement for h = 4 (TM3).    
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The results are presented in Table 2, where Accmean, Accmin, Accmax are accuracies 
of the classifier using selected features (mean, minimal and maximal accuracies re-
turned in 30 runs) and σAcc is the standard deviation of accuracy.  

The convergence curves averaged from 30 runs for SM, RWM2 and TM2 are 
shown in Fig. 3. Characteristically, the convergence curve for SM is the lowest. This 
indicates the large variance of the searching process (we observe high variability of 
the process). Directed mutations RWM and TM reduce the variance leading the 
searching process to the promising regions of the solution space, which have been 
identified in an earlier stage of searching and stored in the mutation indexes. But from 
Table 2 it can be seen that TFS with the simple standard mutation usually leads to no 
worse results than the directed mutations. 

Table 2. Results of classification using k-NN and TFS 

Dataset  SM RWM1 RWM2 TM1 TM2 TM3 
Without 

FS 
Ionosphere Accmean 94.78 94.09 94.12 94.68 94.62 94.23 84.33 

 Accmin 94.59 92.88 92.88 94.30 94.02 92.88  
 Accmax 95.44 94.87 94.87 95.44 95.44 94.87  
 σAcc 0.26 0.45 0.47 0.35 0.26 0.40  

Cancer Accmean 98.25 97.87 97.89 98.05 98.01 97.91 96.61 
 Accmin 97.89 97.72 97.72 97.72 97.54 97.36  
 Accmax 98.42 98.24 98.42 98.42 98.42 98.42  
 σAcc 0.18 0.15 0.17 0.20 0.23 0.22  

Heart  Accmean 86.16 85.84 85.84 86.06 86.04 85.83 82.22 
Statlog Accmin 85.93 84.81 84.81 85.93 85.93 85.19  

 Accmax 86.30 86.30 86.30 86.30 86.30 86.30  
 σAcc 0.18 0.30 0.32 0.18 0.17 0.27  

Wine Accmean 98.88 98.86 98.86 98.88 98.88 98.67 96.07 
 Accmin 98.88 98.31 98.31 98.88 98.88 98.31  
 Accmax 98.88 98.88 98.88 98.88 98.88 98.88  
 σAcc 0.00 0.10 0.10 0.00 0.00 0.28  

Glass Accmean 74.77 74.77 74.77 74.77 74.77 74.77 65.89 
 Accmin 74.77 74.77 74.77 74.77 74.77 74.77  
 Accmax 74.77 74.77 74.77 74.77 74.77 74.77  
 σAcc 0.00 0.00 0.00 0.00 0.00 0.00  

Diabetes Accmean 77.21 77.21 77.20 77.21 77.21 76.94 73.96 
 Accmin 77.21 77.21 76.69 77.21 77.21 76.30  
 Accmax 77.21 77.21 77.21 77.21 77.21 77.21  
 σAcc 0.00 0.00 0.10 0.00 0.00 0.33  

 
In order to confirm the faster convergence of TFS with directed mutation, we 

check whether the difference d between the average evaluation of the parent solutions 
in all iterations and runs of the algorithm in the case of TFS with standard mutation 
and TSF with directed mutation is statistically significant. Because we cannot assume 
a normal distribution of accuracies we use for this purpose two nonparametric tests: 
the sign test for the null hypothesis that the difference d has zero median and  
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Fig. 3. The mean convergence curves 

Wilcoxon rank sum test for equality of medians of two distributions. The 5% signific-
ance level is applied in this study. The test results confirmed that in all cases TFS with 
the directed mutation (RWM1, RWM2, TM1, TM2 and TM3) converges faster than 
TFS with standard mutation. 

Fig. 4 demonstrates how for the Diabetes dataset the transformed values of the mu-
tation indexes changed during the searching process. Decreasing values of w0-1 and in 
the same time increasing values of w1-0 for features 1, 3, 4 and 5 inform, that these 
features are irrelevant, because switching bits corresponding to them from 0 to 1 most 
frequently resulted in the deterioration of the classifier accuracy, and switching these 
bits from 1 to 0 resulted in increased accuracy. The w1-0(2) decreases very rapidly 
which means that the mutation of the second bit from 1 to 0 is unfavourable. As a 
result, this bit often takes value 1, so the mutation from 0 to 1 does not occur and  
w0-1(2) cannot adapt its value (straight line for w0-1(2) in Fig. 4(a)). A similar but op-
posite situation is for the 4-th feature.   
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Fig. 4. The mutation index values transformed using logistic function (4) during the searching 
process for Diabetes data and RWM2 

5 Conclusion 

The article describes an attempt to improve the performance of the tournament feature 
selection method by introducing new methods of mutation, in which the probability of 
the bit mutation depends on the effectiveness of mutation of this bit in an earlier stage 
of the searching process.  

In the early iterations of the algorithm the probability of mutation of all bits are 
equal. This ensures the thorough search of the solution space in the whole range. In 
the course of the search process information about whether the change of the specific 
bit from 0 to 1 and vice versa improves or deteriorates the solutions are stored. This 
information is used in subsequent iterations to adapt mutation probabilities of individ-
ual bits: bits that mutation from 0 to 1 (1 to 0) increased the solutions are mutated in 
this direction more often. As a result, the algorithm exploitation capabilities are en-
hanced: the neighborhood of  the best solution is searched more intensively. This 
mechanism is effective when the value of the bit affects the evaluation of solutions in 
the same way, regardless of the context. 

The results of this investigation have shown that the convergence of the algorithm 
was improved through the use of the roulette wheel and tournament mutations, but 
better classifier accuracy than using tournament feature selection with the standard 
mutation operator were not achieved. 
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