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1    Introduction 

Unit commitment (UC) is the process of determining the optimal set of generating units and their genera-
tion levels within a power system to satisfy the required demand and system operating constraints at any 
time. The scheduling period is from a day to a week. This problem is defined as a non-linear, mixed-
integer combinatorial optimization problem. UC in the daily operation and planning of the power system 
may save the electric utilities millions of dollars per year in production costs. 

The optimal solution to the problem can be obtained only by the complete enumeration method, 
which is, however, useless for realistic power systems because of the immense size of the solution space. 
Various optimization methods have been employed to approach the UC problem, such as the priority or-
dering methods (Lee, 1988; Senjyu et al., 2007), dynamic programming (Pang et al., 1981; Kumara & 
Palanisamy, 2007), Lagrangian relaxation (Merlin & Sandrin, 1983; Zhuang & Galiana, 1988), the 
branch-and-bound method (Cohen & Yoshimura, 1983), and the integer and mixed-integer programming 
(Garver, 1962) (a detailed literature synopsis is summarized in (Sheblé & Fahd, 1994; Sen & Kothari, 
1998; Yamin, 2004)). Among these methods, the priority list is easy to implement and the simplest, but 
the quality of the solution is usually far from optimal due to the incomplete search of the solution space. 
Many classical methods such as branch-and-bound, dynamic and integer programming suffer from the 
“curse of dimensionality” because the problem size and the solution time increase rapidly with the num-
ber of generating units to be committed. To reduce the search space several approaches have been adopt-
ed. Most of them are based on the priority list technique (Pang et al., 1981), thus the solution obtained is 
suboptimal. The Lagrangian relaxation approach, compared with other methods, has higher computation-
al efficiency and is more flexible for handling different types of constraint. However, because of the dual 
nature of the algorithm, its primary difficulty is associated with obtaining solution feasibility. Further-
more, the optimal value of the dual problem is not generally equal to that of the primal (original) prob-
lem. 

Another class of methods applied to the UC problem are the artificial intelligence methods such as 
the expert systems (Padhy et al., 1997; Padhy, 2000; Ouyang & Shahidehpour, 2004), neural networks 
(Padhy et al., 1997; Wong et al., 2000; Kumara & Palanisamy, 2007), fuzzy logic (Padhy et al., 1997; 
Padhy, 2000; Saber et al., 2007), genetic algorithms (Dasgupta & McGregor, 1994; Kazarlis et al., 1996; 
Dudek, 2004; Dang & Li, 2007) and simulated annealing (Mantawy et al., 1998; Wong, 1998; Saber et 
al., 2007; Dudek, 2010). In the expert system approach, the knowledge of experienced power system op-
erators and UC experts is combined to create an expert system rule base. However, a great deal of opera-
tor interaction is required in this approach, making it inconvenient and time-consuming. Neural networks 
based on a database holding typical load curves and corresponding UC schedules are trained to recognize 
the most economical UC schedule associated with the pattern of the current load curve. The fuzzy ap-
proach allows taking into account many uncertainties involved in the planning and operation of power 
systems. The key factors such as load demand and reserve margin are treated as fuzzy variables. A fuzzy 
decision system has been developed to select the units to be on or off based on these fuzzy variables. Ge-
netic algorithms (GA) represent a class of stochastic, adaptive and parallel search techniques based on the 
mechanism of natural selection and genetics. They search from a population of individuals and use prob-
abilistic transition rules. By adding problem-specific genetic operators and by the proper choice of varia-
bles and their representation, good near-optimal solutions to the UC problem can be obtained. Simulated 
annealing (SA) is a general-purpose stochastic optimization method, principally for combinatorial opti-



mization problems such as UC, which has been theoretically proved to converge with the optimum solu-
tion with probability 1. The main advantages of this method are that a complicated mathematical model 
of the problem under study is not needed, the starting point can be any given solution and the algorithm 
will attempt to improve the solution, the final solution does not strongly depend on the initial solution, 
and SA does not need large computer memory. One main drawback and limiting factor of this method is 
that it takes a great deal of CPU time to find the near-optimal solution. In order to improve the perfor-
mance, SA is combined with other methods: the genetic algorithm (Mantawy et al., 1999; Yin & Wong, 
2001; Cheng et al., 2002), the neural network (Nayak & Sharma, 2000), the tabu search (Mantawy et al., 
1999), and the evolutionary programming (Rajan & Mohan, 2007). 

This paper presents an optimization model for the unit commitment problem using a stochastic hy-
brid algorithm combining simulated annealing and evolutionary algorithm. Heuristic genetic operators: 
mutation, recombination and transposition, a method of the elimination of cost function constraints, and 
an annealing scheme are proposed. The cost function includes generation costs and start-up costs. The 
constraints are: the load demand constraint, units generation capability limits, units minimum up and 
down times and the spinning reserve. The efficiency of the proposed method is illustrated with an exam-
ple described in Section 4. Results for comparative computations using simulated annealing, Monte Carlo 
method and the limit time characteristic method are reported in the same section. 

2    The Mathematical Model of Unit Commitment 

The UC problem can be mathematically formulated as follows (list of symbols is given in the Appendix): 
 

Objective function:  

 F = α i(t)Ci[Pi(t)]+α i(t)[1−α i(t −1)]SCi(toffi )( )
i=1

N

∑
t=1

T

∑ .  (1) 

Constraints: 

a) Load Balance 

 ∀t : α i(t)Pi(t) = D(t).
i=1

N

∑  (2) 

 

b) Unit Power Generation Limits 

 ∀i,t : α i(t)Pmin i ≤ Pi(t) ≤α i(t)Pmaxi .  (3) 
 

c) Set of Unit Power Generation Limits 
 

∀t : α i(t)Pmin i
i=1

N

∑ ≤ D(t),        (4) 

 ∀t : α i(t)Pmaxi
i=1

N

∑ ≥ D(t)+ R(t).  (5) 



 

d) Minimum Up/Down Time 
 ∀i : toffi ≥ tdowni ,  (6) 

 ∀i : toni ≥ tupi ,  (7) 

where the variable production cost of unit i at time t, Ci[Pi(t)] is conventionally approximated by the 
quadratic function: 
 Ci(Pi ) = aiPi

2 + biPi + ci ,  (8) 

and the start-up cost of unit i, SCi(toffi) is expressed as a function of the number of hours the unit has been 
down: 

 SC i(toffi ) = ei exp(−gitoffi )+ fi exp(−hitoffi ).  (9) 

To take into account the costs connected with unit shut-down at time t, in the event that it remains 
in an off state to the end of time period T, it is assumed that: 

• unit start-up costs are evenly distributed over the number of hours of unit down time, 

• unit start-up occurs at time τ after the end of the optimization period T (τ ∈ {1, 2, 3, ...}). 

Taking these assumptions into account, start-up costs in time period T for unit staying in down 
time until the end of time period T are calculated using the formula: 

 SCi(T − t) = SCi(T − t +τ )
T − t +τ

(T − t).  (10) 

3    The Proposed Hybrid Approach to Unit Commitment 

The hybrid algorithm SA+EA is proposed combining features of the simulated annealing and evolution-
ary algorithm.  SA+EA has a structure of SA, i.e. the inner-loop where the candidate solutions (chromo-
somes) are generated and the outer-loop where the temperature is updated and the chromosomes ex-
change information. There is many parallel annealing processes, i.e. the solution space is searched by a 
population of chromosomes (as in EA), which are modified independently by means of move operators: 
mutation and transposition. The Kirkpatrick cooling schedule specifying an initial value of the tempera-
ture and a temperature update function was applied (Kirkpatrick et al., 1983). The chromosomes returned 
by the inner-loop exchange information among themselves in the process of recombination. The infeasi-
ble solutions are repaired or penalized. Initial population is generated randomly. The flowchart of SA+EA 
is shown in Fig. 1.     

 

 

 



 
Figure 1: The flowchart of the proposed SA+EA algorithm. 

 

3.1    Decision Variables and their Representation 

The decision variables are on/off unit states αi(t). The solution string (chromosome) is composed of bits 
representing all unit states at the following hours of the optimization period T: x = (α1(1), α1(2), …, αN(T)). 
For the N units and T hours the string has N⋅T bits and the size of the solution space is 2N⋅T. 

Based on the solution x the generation levels of units Pi(t) are determined using the economic dis-
patch procedure.  

 



3.2    The Evaluation Procedure of Solutions 

If solutions violate a set of unit power generation limit constraints, (4) or (5), the following repair algo-
rithm is applied. Let Ω1(t) be a set of units in on status at the t-th hour and let Ω0(t) be a set of units in off 
status at the t-th hour (these sets are determined by the solution string). If constraint (4) is not met at the t-
th hour, one unit i is chosen from the Ω1(t) and its status is reset to off at the t-th hour (e.g. a bit in the 
solution string representing the status of unit i at the t-th hour is changed from 1 to 0). Similarly, if con-
straint (5) is not met, the status of one unit j from the Ω0(t) is changed. Repair can be greedy – i is the 
most economical unit, e.g. one having the lowest incremental cost at full load, whereas j is the least eco-
nomical unit, or random – units i and j are chosen at random from sets Ω1(t) and Ω0(t) respectively. The 
repair algorithm is activated for every hour t, until the moment constraints (4) and (5) are met.  

For solutions which violate the minimum up/down time constraints (6) or (7), a penalty function is 
created (Dudek, 2003): 

 F ' = M 1+m [g(i)+ h(i)]
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
,  (11) 

where g(i) is calculated as follows:  

 g(i) = βi(k)[tdowni − toffi(k)]
k=1

ndowni

∑ .  (12) 

βi(k) is expressed as follows:  

 βi(k) =
1     if toffi(k) < tdowni ,
0    if toffi(k) ≥ tdowni ∨τ oni(k) > T .

⎧
⎨
⎪

⎩⎪
 (13) 

h(i) is given by: 

 h(i) = γ i(k)[tupi − toni(k)]
k=1

nupi

∑ .  (14) 

γi(k)  is calculated as follows:  

 γ i(k) =
1     if toni(k) < tupi ,
0    if toni(k) ≥ tupi ∨τ offi(k) > T .

⎧
⎨
⎪

⎩⎪
 (15) 

The substitute cost function (11) is linearly dependent on the level of violation of constraints (6) 
and (7), and ensures a worse evaluation of individuals violating constraints (6) or (7) from feasible indi-
viduals. At the starting phase of the searching process the level of violation of the constraints (6) and (7) 
is minimized. At a certain point in the process chromosomes that are feasible according to these con-
straints start to appear and become the majority in the population due to their lower costs.   

The parameter m in (11) is chosen so as to ensure the similar variation ranges of cost functions for 
feasible and infeasible solutions (1) and (11): max(F) – min(F) ≈ max(F′) – min(F′), where: 

 max(F ') = M 1+mT
2

(tdowni + tupi − 2)
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
,  (16) 



 min(F ') ≈max(F) ≈ M ,  (17) 

 min(F) =

Fmin .  (18) 

Hence: 

 m = M −

Fmin

M T
2

(tdowni + tupi − 2)
i=1

N

∑
.  (19) 

The constant M should be higher than the estimated maximal value of the objective function (1). Here M 
is expressed as below:  

 M = T Ci(Pmaxi )
i=1

N

∑ .  (20) 

Formula (20) corresponds to the situation when all units are loaded at full power at any hour of period T. 
Formula (16) represents the substitute cost of the worst possible solution violating constraints (6) 

or (7), i.e. such solution in which units are alternately turned off and switched on in the successive hours.  
To determine the generation levels of units Pi for each chromosome satisfying constraints (4) – (7) 

the economic dispatch (ED) procedure is performed. ED is a computational process where the total re-
quired generation is distributed among the generation units (the set of generating units is encoded in the 
chromosome) at the lowest possible cost. ED is performed for each hour t and determines the power out-
put of each unit. Since the production cost (8) is a quadratic function (convex and continuous), the eco-
nomic dispatch problem is solved using a method of Lagrange multipliers leading to the lambda-iteration 
procedure (Wood & Wollenberg, 1996), based on the principle of equal incremental cost. Lambda-
iteration method is used for various generating unit schedules obtained by the SA+EA. Generation levels 
Pi(t) determined in this procedure are used to calculate unit production costs (8) and the value of objec-
tive function (1). This method guarantees that unit power generation limit constraints (3) are met if the set 
of unit power generation limit constraints (4) and (5) are met. 

3.3    The Annealing Schedule 

The basic form of SA algorithm is the following: 

1. Generate the initial solution x. 

2. Calculate the cost of the initial solution x: Φ(x). 

3. For k = 1 to K do 

3.1. For l = 1 to L do  

3.1.1. Generate the candidate solution x′ from the neighborhood of the current solution x 
(move operation). 

3.1.2. Calculate the cost of the candidate solution x′: Φ(x′). 

3.1.3. Calculate the difference in costs of x and x′: Δ = Φ(x′) – Φ(x). 



3.1.4. Accept the candidate solution (x = x′) with probability (for the minimization):    

 pa(Δ,Tk ) =min 1,exp
−Δ
Tk

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
.  (21) 

3.2. Update the temperature T.  

Parameters defining the cooling strategy (initial temperature T1, the temperature update function, the 
number of the outer and inner-loop iterations K and L) are often chosen heuristically. The initial tempera-
ture is a parameter strictly dependent on the problem and according to the recommendations of the au-
thors (Kirkpatrick et al., 1983) should be high enough to ensure acceptance of all candidate solutions. 
The acceptance probability of the candidate solution which is worse than the current solution x, at the end 
of the process of annealing approaches zero. 

In the Kirkpatrick scheme the temperature changes in successive iterations k according to the geo-
metric progression (Kirkpatrick et al., 1983): 

 Tk+1 = rTTk , k =1,2,...,(K −1),  (22) 

where rT < 1 is a temperature reduction factor. Assuming the acceptance probability of the worst candi-
date solution at the beginning of the annealing process: pa(Δmax,T1) = 0,99, from (21) we get: 

 T1 =
Δmax

− ln pa(Δmax,T1)
≈100Δmax,  (23) 

where Δmax is the highest value of the difference in costs that occurs at the transition from the current so-
lution to the candidate one. 

It is assumed that in the final phase of the process, for k > κ = 0.8K, the acceptance probability of 
the candidate solution worse than the current one is less than 0.1, hence the temperature of the process 
advanced in 80% is: 

 Tκ = Δmin

− ln pa(Δmin ,Tκ )
≈ 0,43Δmin ,  (24) 

where Δmin is a constant smaller than the smallest expected difference between cost of x and x′. Formula 
(22) can be written as: 

 Tk+1 = rT
kT1, k =1,2,...,(K −1).  (25) 

Hence: 

 rT
κ = Tκ

T1
.  (26) 

Substituting (23) and (24) to (26) we get the formula for the temperature reduction factor: 

 rT = 0,0043 Δmin

Δmax

⎛
⎝⎜

⎞
⎠⎟

1
κ −1
.  (27) 



The biggest change in cost takes place at the transition from the solution close to the optimal to the 
worst possible infeasible solution. Using (16) and (18) this value may be estimated as follows: 

 Δmax = M 1+mT
2

(tdowni + tupi − 2)
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
−

Fmin .  (28) 

3.4    Mutation 

Using the classic mutation method, the probability of bit mutation (bits represent on/off states of units) 
does not depend on the unit production cost, its start-up cost, or load demand. Therefore this operator will 
turn off economical units at peak load as well as less economical units at minimum value of the load 
curve with the same probability. This leads the algorithm to “wander” and results in a much less effective 
search of the solution space. In the proposed method of mutation, probability of mutation is made de-
pendent on the necessity of meeting the load demand of the number of units, cost of unit production and 
its start-up costs (Dudek, 2003). The probability of a bit change from 0 to 1, dependent on the number of 
units necessary to meet load demand at moment t is calculated in the formula: 

 pup1(t) = q1 + (1− q1)
nmin (t)+ nmax (t)

2N
1≤ t ≤ T ,  (29) 

where q1 ≤ pup1 ≤ 1.  
If through L1 we denote a list of units sorted in decreasing order in terms of their upper generation 

limit Pmax, then the minimum number of units necessary to meet load demand is obtained by summing the 
Pmax of succeeding units from list L1 until the sum exceeds load demand and the spinning reserve: 

 nmin (t) =min n : Pmaxi ≥ D(t)+ R(t)
i=L1(1)

L1(n)
∑⎧

⎨
⎩

⎫
⎬
⎭
,  (30) 

where n is the auxiliary variable which denotes the number of units. 
The maximum number of units necessary to meet load demand is obtained as follows: a list L2 of 

units sorted in ascending order in terms of their lower generation limit Pmin is introduced. The Pmin of 
succeeding units from list L2 is summed which gives the maximum number of units n, at which the sum 
does not exceed load demand: 

 nmax (t) =max n : Pmin i ≤ D(t)
i=L2 (1)

L2 (n)
∑⎧

⎨
⎩

⎫
⎬
⎭
.  (31) 

Parameter q1 in formula (29) has the function of limiting the range of probability pup1. 
The probability of a bit change from 0 to 1 is dependent on unit production costs as follows: 

 pup2 (i) = q2 + (1− q2 )
ui − umin
umax − umin

1≤ i ≤ N ,  (32) 

where: 

 ui =
min

j=1,2,...,N
Cj (Pmax j ) / Pmax j{ }

Ci(Pmaxi ) / Pmaxi
,  (33) 



 umin = min
i=1,2,...,N

{ui},  (34) 

 umax = max
i=1,2,...,N

{ui},  (35) 

and q2 ≤ pup2 ≤ 1. 
The probability pup2 has the minimum value, equal to q2 for units of the greatest production cost per 

unit at maximum load, and the maximum value, equal to 1, for units of the lowest production cost per unit 
at maximum load. 

The joint probability of bit mutation, representing the state of unit i at moment t, from 0 to 1, is 
given by:  

 pup(i,t) =

1     if pup1(t)+ pup2 (i)− 1+ q2

2
>1,

0     if pup1(t)+ pup2 (i)− 1+ q2

2
< 0,

pup1(t)+ pup2 (i)− 1+ q2

2
     otherwise,  

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (36) 

where 

max 0,q1 −
1− q2
2

⎛
⎝⎜

⎞
⎠⎟ ≤ pup ≤1

. 

 

An analogous probability of bit change from 1 to 0, denoting a unit being turned off, is dependent 
on the number of units necessary to meet load demand according to the formula: 

 pdown1(t) =1− (1− r1)
nmin (t)+ nmax (t)

2N
1≤ t ≤ T ,  (37) 

where r1 ≤ pdown1 ≤ 1. 
The probability of bit change from 1 to 0, depending on the production costs of unit i are obtained 

using the formula: 

 pdown2 (i) =1− (1− r2 )
ui − umin
umax − umin

1≤ i ≤ N ,  (38) 

where r2 ≤ pdown2 ≤ 1.  
For units of the lowest production cost per unit at maximum load the probability pdown2 assumes the 

maximum value, equal to 1, whereas for units of the highest production cost per unit at maximum load 
the probability pdown2 assumes minimum value of r2. 

The dependence of the probability of bit mutation from 1 to 0 on unit i start-up cost is defined by 
the formula: 

 pdown3(i) = r3 + (1− r3)
vi − vmin
vmax − vmin

1≤ i ≤ N ,  (39) 

where: 



 vi =
min

j=1,2,...,N
{SCj (toffx )}

SCi(toffx )
,  (40) 

 vmin = min
i=1,2,...,N

{vi},  (41) 

 vmax = max
i=1,2,...,N

{vi},  (42) 

and r3 ≤ pdown3 ≤ 1.  
The probability pdown3 assumes a minimum value of r3 for units with the highest start-up costs after 

down time toffx, and a maximum value of 1 for units with the lowest start-up costs. 
The joint probability of bit mutation, representing the state of unit i at moment t, from 1 to 0, is 

calculated as follows: 

 pdown(i,t) =

1  if pdown1(t)+ pdown2 (i)+ pdown3(i)− 1+ r2
2

− 1+ r3
2

>1,

0  if pdown1(t)+ pdown2 (i)+ pdown3(i)− 1+ r2
2

− 1+ r3
2

< 0,

pdown1(t)+ pdown2 (i)+ pdown3(i)− 1+ r2
2

 − 1+ r3
2

 otherwise,  

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (43) 

where 

max 0,r1 −
1− r2
2

− 1− r3
2

⎛
⎝⎜

⎞
⎠⎟ ≤ pdown ≤1

. 

The values of parameters q1, q2, r1, r2, r3 and toffx are chosen heuristically. For q1 = 1 probability 
pup1(t) does not depend on the load demand and is equal to 1 for each unit i and each hour t. While q1 = 0 
the probability pup1(t) is the most diversified, dependent on the load demand within time period T. E.g. for 
q1 = 0 and load data considered in the application example (Fig. 4) the pup1 changes in the range from 
0,6667 (for the minimum load demand at time t = 4) to 0,9583 (for the peak load demand at time t = 18). 
The larger the value of q1 (0 ≤ q1 ≤ 1) the more the range of the pup1(t) narrows and nears 1, which means 
a reduction in the influence of the load demand value on the probability of unit start-up. The greatest “se-
lective pressure” is acquired for q1 = 0 and such a value is recommended. 

The component pup2(i) – (1+ q2)/2 in formula (36) signifies the correction added to probability 
pup1(t) which allows the differentiation of the probability of unit start-up from unit production costs. This 
correction changes in the range from –(1+ q2)/2 (for the unit of the highest production cost) to (1+ q2)/2 
(for the unit of the lowest production cost). If q2 = 1 the probability of unit start-up pup(i, t) is not depend-
ent on the production costs, whereas if q2 = 0 this dependence is the greatest – the correction assumes 
values from the range (–0.5, 0.5). The value of q2 = 0.8 gives the range of correction (–0.1, 0.1) and 
seems to be a reasonable compromise. 

Formula (43) includes corrections differentiating the probability of the unit shut-down pdown(i, t) 
from unit production costs: pdown2(i) – (1+ r2)/2 and unit start-up costs: pdown3(i) – (1+ r3)/2. The influence 
of the production costs on pdown(i, t) is the greatest if r2 = 0 (then the correction range is from –0.5 for the 
unit of the lowest production cost to 0.5 for the unit of the highest production cost). The influence of the 
start-up costs on pdown(i, t) is the greatest if r3 = 0 (then the correction range is from –0.5 for the unit of the 



highest start-up cost after down time toffx to 0.5 for the unit of the lowest start-up cost after down time 
toffx). If r2 =  r3 = 0.9 the range of each correction is (–0.05, 0.05) (jointly for both corrections (–0.1, 0.1)), 
which means an equal influence of production and start-up costs on the probability of unit shut-down.  

The parameter toffx means expected unit down time. If start-up costs change for each unit uniform-
ly, i.e. vi is constant for each unit, apart from down time toffx (just like in the application) this parameter is 
not important. If the start-up curves (9) cross each other, it is safer not to take into account the start-up 
cost assuming r3 = 1. In other cases, for different toffx different probabilities pdown3(i) are obtained but if 
the unit order in respect of start-up cost is constant for different toffx, the unit order in respect of values of 
pdown3(i) is constant as well. 

There are no hard rules for setting up the above parameters of mutation method. In accordance 
with what was written above the advisable values of these parameters are q1 = r1 = 0, q2 = 0.8, r2 = r3 = 
0.9, toffx = 8 if vi is constant for each unit, apart from down time toffx or q1 = r1 = 0, q2 = r2 = 0.8, r3 = 1 in 
other cases. The probabilities pup and pdown for the application example defined in Section 4 are shown in 
Fig. 2.  

If the bit b(i, t) chosen for mutation, which represents the state of unit i at moment t, changes its 
value from 0 to 1 (from 1 to 0) and the bits representing the state of unit i at neighbouring moments (t–1) 
and (t+1) have the same value as bit b(i, t) before mutation, then the probability of a change in the state of 
unit i for these moments is analysed. If  pup(i, t–1) > pup(i, t+1) (or  pdown(i, t–1) > pdown(i, t+1) in the case 
of outage) then the value of bit  b(i, t–1) and succeeding bits b(i, t–2), b(i, t–3), ..., is changed, on condi-
tion that they are of the same value as bit b(i, t) before mutation. A bit with the opposite value finishes 
this process. If pup(i, t–1) < pup(i, t+1) (or  pdown(i, t–1) < pdown(i, t+1)) then bits b(i, t+1), b(i, t+2) and so 
on, are changed analogously. A change in succeeding bits of the same value means a change in the off 
state or on state of units. This mechanism, suggested in (Mantawy et al., 1998) as a solution to the prob-
lem of UC using simulated annealing, allows for the avoidance of cases of multiple changes in the on 
state or off state of units in period T and quickens the convergence of the algorithm.  

3.4    Transposition 

A transposition operation (introduced in (Dudek, 2003)) exchanges fragments of the chromosomes that 
encode the states (during period T) of two randomly chosen units. The expected number of the chromo-
some transpositions is nt. This operation is shown in Fig. 3.  

This transposition can considerably help the evolution process, particularly in the last phase, pene-
trating the local minimums by changing the work states of pairs of units. 

3.5    Recombinations and Micro-Simulated Annealing 

3.5.1    Random Recombination 

After the new temperature is determined, the chromosomes returned by the inner-loop undergo selection 
and recombination. A selection method is the binary tournament (Michalewicz, 1994). The recombination 
is analogous to the one-point crossover in EA. The chromosomes to crossover are chosen randomly. 
Crossover occurs with probability pc. As a result of crossover new population of chromosomes is gener-
ated. This population is then processed in the inner-loop at a lower temperature value. 
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(b) 

 
 

Figure 2: The probability of a bit change from 0 to 1 – pup. (a) and from 1 to 0 – pdown. (b) for 
the problem defined in Section 4. Assumed: q1 = r1 = 0, q2 = 0.8, r2 = r3 = 0.9, toffx = 8. 

 

 



 
 
 
 
 
 
  

 
 

Figure 3: An illustration of the transposition. 
 

3.5.2    Recombination with the Best Chromosome 

In this approach, each chromosome of the population returned by the inner-loop recombine (one-point 
crossover) with the best chromosome found by the algorithm so far. Because the number of chromosomes 
in the population is constant, only one recombinant offspring is included to the population, replacing its 
parent. This strategy preserves genetic material of the best chromosome and searches the space around it. 

3.5.3    Micro-Simulated Annealing 

This approach is analogous to micro-genetic algorithm which refers to a small population GA with rei-
nitialization. The idea was suggested by some theoretical results obtained by Goldberg (Goldberg, 1989), 
according to which a population size of 3 was sufficient to converge, regardless of the chromosomic 
length. The process suggested by Goldberg was to start with a small randomly generated population, then 
apply to it the genetic operators until reaching nominal convergence (e.g. when all the individuals have 
their genotypes either identical), and then to generate a new population by transferring the best individu-
als of the converged population to the new one. The remaining individuals would be randomly generated. 
This ensures delivery of new genetic material. 

In our algorithm chromosomes returned by the inner-loop are replaced with the best chromosome 
found so far. This means that all processes at the next temperature value starts from the same chromo-
some and searches its neighborhood. This strategy does not apply recombination. New genetic material is 
introduced in the inner-loop through mutation and transposition operations. Subsequent restarts of the 
searching process occur at a lower temperature, which means the increasing the selective pressure. 

3.6    Elitism 

To protect the best solutions in SA+EA using recombination elitism is used: one of the processes in the 
inner-loop starts with the best chromosome found by the algorithm so far.  

4    Application Example 

The proposed hybrid algorithm for the UC problem described above was implemented in Matlab and has 
been applied to a practical power system with 12 units. The scheduling time horizon is 24 hours. Table 1 



presents the parameters of unit cost characteristics and Fig. 4 presents the load data. The spinning reserve  
R(t) for all t is equal to 5% of the maximum daily load demand, i.e. 175 MW. It is assumed: ∀i: Pmini = 
180 MW, Pmaxi = 350 MW, tupi = tdowni = 5 h and τ = 7 in (10). 

 

Unit 
Initial 
statusa a b c e f g h 

h $/(MW2⋅h) $/(MW⋅h) $/h $ $ h-1 h-1 

1 –24 0.004531 7.3968 643.24 -2889.45 5466.28 0.3680 -0.0112 
2 –4  0.004683 7.5629 666.27 -2893.81 5474.51 0.3680 -0.0112 
3 –4 0.004708 7.4767 672.77 -2888.84 5465.13 0.3680 -0.0112 
4 on 0.004880 7.4742 686.58 -2882.77 5453.66 0.3680 -0.0112 
5 on 0.004214 7.2995 601.53 -2863.94 5418.07 0.3680 -0.0112 
6 on 0.004582 7.3102 641.99 -2843.13 5378.74 0.3680 -0.0112 
7 on 0.004267 7.5494 609.07 -2876.16 5441.15 0.3680 -0.0112 
8 on 0.003572 6.6577 531.63 -2903.29 5492.22 0.3680 -0.0112 
9 on 0.004788 7.7184 678.40 -2892.73 5472.47 0.3680 -0.0112 

10 on 0.003485 6.2115 503.60 -2928.65 5540.14 0.3680 -0.0112 
11 on 0.003658 6.5492 528.19 -2894.88 5476.32 0.3680 -0.0112 
12 on 0.003671 6.4137 527.81 -2915.53 5515.34 0.3680 -0.0112 
a “on” indicates unit is in the on-state, “–x“ indicates unit is in the off-state for x hours. 

Table 1: Parameters of the cost characteristics and initial state of units. 

    
Figure 4: Load demand. 

On the basis of preliminary experiments the following parameters of the algorithm were assumed: 

• number of outer-loop iterations: K = 100, 

• number of inner-loop iterations: L = 20, 

• population size: 50, 

• expected number of chromosome mutations: nm = 1, 
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• expected number of chromosome transpositions: nt = 0.25, 

• probability of crossover in the random recombination: pc = 0.9, 

• parameters of the proposed mutation: q1 = r1 = 0, q2 = 0.8, r2 = r3 = 0.9, toffx = 8, 

• estimated value of the minimal cost: minF


= $645000, 

• Δmin = $2.5 (constant in (24)). 

Experiments were carried out for three variants of the algorithm: 

• using random recombination: SA+EA(RR) 

• using recombination with the best chromosome: SA+EA(RB) 

• using micro-simulated annealing: micro-SA+AE. 

Each variant of the algorithm ran 10 times. All variants used the same initial populations (random). The 
results are shown in Table 2 where: Fmin, Fmax, Fmean are the minimum, maximum and average costs of the 
best solutions found by the algorithm in 10 runs, respectively, σF is the standard deviation of the costs of 
the best solutions Pbest, fbest is the frequency of the best solution, nbest is the average number of evaluations 
necessary to find the best solution and tbest is the average computational time necessary to find the best 
solution (Pentium III 800 MHz). The best solution found by the algorithm is shown in Table 3 and Fig. 5. 
 

 

Table 2: Simulation results. 

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 
1 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.01 0.00 350.00 290.27 307.72 
2 0.00 0.00 0.00 180.00 180.00 180.00 180.00 253.57 0.00 323.91 262.49 280.03 
3 0.00 0.00 0.00 180.00 180.00 180.00 180.00 254.57 0.00 324.95 263.47 281.01 
4 0.00 0.00 0.00 180.00 180.00 180.00 180.00 243.50 0.00 313.60 252.66 270.24 
5 0.00 0.00 0.00 180.00 180.00 180.00 180.00 247.78 0.00 317.98 256.84 274.40 
6 0.00 0.00 0.00 180.00 180.00 180.00 180.00 263.63 0.00 334.22 272.32 289.83 
7 0.00 0.00 0.00 180.00 180.00 180.00 180.00 282.69 0.00 350.00 290.93 308.38 
8 0.00 0.00 0.00 234.78 292.61 267.92 259.69 350.00 0.00 350.00 350.00 350.00 
9 0.00 0.00 238.06 229.95 287.03 262.78 254.18 350.00 0.00 350.00 350.00 350.00 

10 0.00 0.00 239.40 231.25 288.53 264.16 255.66 350.00 0.00 350.00 350.00 350.00 
11 0.00 0.00 227.70 219.96 275.45 252.14 242.75 350.00 0.00 350.00 350.00 350.00 
12 0.00 0.00 255.51 246.80 306.53 280.72 273.44 350.00 0.00 350.00 350.00 350.00 
13 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00 350.00 
14 0.00 0.00 269.32 260.12 321.97 294.91 288.68 350.00 0.00 350.00 350.00 350.00 
15 0.00 0.00 206.60 199.59 251.88 230.46 219.47 350.00 0.00 350.00 350.00 350.00 
16 0.00 0.00 231.54 223.66 279.74 256.08 246.98 350.00 0.00 350.00 350.00 350.00 
17 0.00 281.05 288.69 278.80 343.60 314.81 310.05 350.00 0.00 350.00 350.00 350.00 
18 0.00 284.45 292.07 282.07 347.38 318.28 313.78 350.00 261.97 350.00 350.00 350.00 
19 0.00 260.02 267.77 258.63 320.23 293.31 286.97 350.00 238.07 350.00 350.00 350.00 
20 0.00 255.55 263.33 254.34 315.27 288.75 282.06 350.00 233.70 350.00 350.00 350.00 
21 0.00 235.03 242.92 234.64 292.46 267.78 259.54 350.00 213.63 350.00 350.00 350.00 
22 0.00 195.52 203.62 196.73 248.55 227.40 216.18 350.00 180.00 350.00 350.00 350.00 
23 0.00 180.00 180.00 180.00 190.18 180.00 180.00 314.16 0.00 350.00 321.66 339.00 
24 0.00 180.00 180.00 180.00 180.00 180.00 180.00 251.05 0.00 321.34 260.03 277.58 



Algorytm Fmin, $ Fmax, $ Fmean, $ σF, $ fbest nbest tbest, h 
SA+EA(RR) 645065 646450 645466 488 0.0 - - 
SA+EA(RB) 644951 645081 645026 50 0.2 57925 1.58 

Micro-SA+EA 644951 645440 645091 168 0.3 62411 1.40 

Table 3: The best solution Pbest. 

Figure 5: The best solution Pbest. 

The same example was solved by: 

• genetic algorithm with the same binary representation of on/off unit status and specialized muta-
tion and transposition operators, and  one-point crossover (Dudek, 2004). For solutions violating 
the constraints the repair algorithm combined with the penalty algorithm was used. 

• genetic algorithm with integer representation of unit start-up and shut-down times (Dudek, 
2007). Penalty functions were applied to the infeasible solutions. 

• adapted simulated annealing with the same representation and move operators as SA+EA 
(Dudek, 2010). Penalty algorithm was used for solutions violating the constraints. The tempera-
ture was adapted to the cost levels on which the algorithm operates during the annealing process. 
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The best solution found by these algorithms was the same as that found by SA+EA. The frequency of the 
best solution fbest was the highest for adaptive SA (0.5). The average number of evaluations necessary to 
find the best solution nbest and the average computational time tbest were the lowest for the GA with inte-
ger representation: nbest = 36550, tbest = 50 min. The computational time in SA+EA was lower than for 
adaptive SA and GA with the binary representation where tbest = 2 h 25 min and 2 h 15 min, respectively.  
The most stable solutions gave SA+AE(RB) (σF = $50) and GA with integer representation (σF = $48).    

For comparison, calculations were done using the simple simulated annealing algorithm, Monte 
Carlo method and the heuristic method of limit time characteristics (Toroń, 1962), which was used for 
many years in the Polish Electrical Power System. In SA the variable representation is the same as for the 
proposed algorithm, but the candidate solutions are generated by a change of one randomly chosen bit in 
the current solution. In the Monte Carlo method points in the solution space are randomly chosen from 
the uniform distribution, remembering the best solution. The number of evaluations of the cost function 
in these algorithms has been set at 100000, similar to the proposed SA+EA algorithm, and the calcula-
tions for every algorithm are done ten times. The costs of the best solutions found by these algorithms 
are: SA: $702379, the Monte Carlo method: no acceptable solution, the heuristic method: $665634.  

5    Conclusions 

In this work we have proposed a novel method for unit commitment problem based on a hybrid model 
which combine simulated annealing and evolutionary algorithm. The model gives stable and acceptable 
solutions that are near optimal. The best result was achieved using recombination with the best solution 
and micro-simulated annealing. The effectiveness of the algorithm achieved by the introduction of genet-
ic operators specific to the problem: mutation that makes the probability of bit change dependent on load 
demand, production costs and start-up costs of units, as well as the transposition searching through local 
minimums. The solutions obtained in simulation example are better by 3% from those obtained with the 
help of the heuristic method used in the Polish Electrical Power System. 

The calculation time can be reduced by implementing the algorithm in a programming environ-
ment that is faster than Matlab, and doing the calculations in a parallel machine environment.  
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Appendix A 

List of main symbols: 

αi(t) – on/off status of the i-th unit at the t-th hour, αi(t) ∈ {0, 1} 

ai, bi, ci – production cost function parameters of unit i 



Ci(Pi(t)) – variable production cost of unit i at time t ($/h) 

D(t) – load demand at the t-th hour (MW) 

ei, fi, gi, hi – start-up cost function parameters of unit i 

F, F′ – cost functions for the feasible solutions and the solutions violate constraints (6) or (7), respective-
ly 

Fmin  – estimated value of the minimal cost ($) 

i – unit number, i = 1, 2, ..., N  

N – total number of units 

ndowni – the number of periods in which unit i is in continuous off state during the optimization period T 

nupi – the number of periods in which unit i is continuously in on state in the optimization period T 

Pi(t) – power generation of unit i at time t (MW) 

Pmin i, Pmax i – lower/upper generation limit of unit i (MW) 

R(t) – spinning reserve requirement at the t-th hour (MW) 

SCi(toffi) – start-up cost of unit i after offit  hour off state ($) 

t – hour of the optimisation period, t = 1, 2, ..., T   

T – optimisation period (24 h) 

toffi, toni – time period during which unit i is continuously off /on (h) 

tupi, tdowni – minimum up/down time of unit i (h) 
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