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1    Introduction 

Load forecasting plays a key role in the control and scheduling of power systems and is an extremely im-

portant tool for energy suppliers, system operators, financial institutions, and other participants in the 

electric energy generation, transmission, distribution, and markets. The forecasting of hourly load carried 

out for one hour to seven days ahead is usually referred to as the short-term load forecasting (STLF). Pre-

cise short-term load forecasts are necessary for electric companies to make important decisions connected 

with electric power production and transmission planning, such as unit commitment, generation dispatch, 

hydro scheduling, hydro-thermal coordination, spinning reserve allocation, and interchange evaluation. 

Understanding the load behavior as the basic driver of electricity prices has become more important in 

restructured power markets. 

Several factors affect load behavior. These include weather (temperature, wind speed, cloud cover, 

and humidity), time, demography, economy, electricity prices, geographical conditions, and type and dai-

ly habits of consumers.  

Many STLF models have been designed. Conventional STLF models use smoothing techniques (e.g. 

[Christianse, 1971]), regression methods (e.g., [Papalexopoulos & Hesterberg, 1990]), and statistical 

analysis. Regression methods are usually applied to model the relationship between load consumption and 

other factors (e.g., weather, day type, and customer class) [Engle et al., 1992]. ARIMA and related mod-

els, where the load is modeled by an autoregressive moving average difference equation, are very popular 

[Gross & Galiana, 1987]. These models are based on the assumption that the data have an internal struc-

ture, such as autocorrelation, trend, and seasonal variation. 

In recent years, artificial intelligence methods (AI) have been widely applied to STLF [Metaxiotis et 

al., 2003]. AI methods of forecasting have shown the capability to give better performance in dealing with 

non-linearity and other difficulties in modeling of the time series. They do not require any complex ma-

thematical formulations or quantitative correlation between inputs and outputs. The AI methods most of-

ten used in STLF can be divided as follows: neural networks (multilayer perceptron, radial basis function, 

Kohonen, counterpropagation, recurrent) (e.g. [Peng et al., 1992; Khotanzad et al., 1997; Dudek, 2000; 

Osowski et al., 1996], fuzzy systems (e.g., [Miranda & Monteiro, 2000; Kiartzis & Bakirtzis, 2000; and 

Dudek, 2006b]), and expert systems (e.g., [Rahman & Bhatnager, 1988; Ho et al., 1990]). 

Expert systems are heuristic models, which are usually able to consider both quantitative and qualita-

tive factors. A typical approach is to attempt to imitate the reasoning of a human operator. Expert systems 

acquire knowledge from domain experts and encode it into formal steps of logic (the set of If-Then rules). 



Neural networks, on the other hand, do not rely on human experience but attempt to learn a function-

al relationship between system inputs and outputs by themselves. Fuzzy logic models map a set of input 

variables to a set of output variables. These variables need not be numerical and may be expressed in a 

natural language. Most commonly, a fuzzy logic model includes mapping of input values to output values 

using If-Then logic statements. 

To overcome some limitations of individual methods, hybrid models such as neural networks com-

bined with fuzzy systems [Kodogiannis & Anagnostakis, 2002; Liang & Cheng, 2003], neural network-

fuzzy expert systems [Dash et al., 1995; Tamimi & Egbert, 2000], evolving wavelet-based networks [Li 

& Fang, 2003], fuzzy logic and ARMAX model [Yang & Huang, 1998] or stochastic optimization me-

thods (genetic algorithm, particle swarm optimization), and neural networks [Erkmen & Ozdogan, 1997; 

Bashir & El-Hawary, 2007] have been constructed. 

New STLF methods are still being created. Some of them are based on machine learning and pattern 

recognition techniques, for example, regression trees [Dudek, 2004], cluster analysis methods [Dudek, 

2006a, Dudek, 2008b], support vector machines (e.g., [Pai & Hong, 2005]), fractal geometry [Dobrzańska, 

1991], point function method [Łyp, 2003], canonical distribution of the random vector method 

(Popławski & Dąsal, 2004), and artificial immune system [Dudek, 2008a].  

A survey of load forecasting methods is presented in several studies [Feinberg  & Genethliou, 2005; 

Kodogiannis & Anagnostakis, 2002; Metaxiotis et al., 2003]. 

This paper presents a class of similarity-based methods (SB) of STLF, which belong to nonparame-

tric regression methods where the regression function is estimated from data using mutual similarities 

between the data points. The data points in these models represent daily patterns of the load time series. 

In section 2, the main idea of SB forecasting methods is outlined. Definitions of patterns are described in 

section 3. Section 4 presents an analysis of the similarities between patterns. The SB methods of STLF, 

including k-nearest neighbor estimators, fuzzy estimators, and methods using clustering algorithms, are 

presented in section 5. In section 6, the application examples are described, wherein the SB methods are 

used to forecast the daily load curve for the next day.  

2    The Idea of the Similarity-based Forecasting Methods 

The load time series are characterized by annual, weekly, and daily cycles due to changes in indus-

trial activities and climatic conditions. In Figure 1, the load time series of the Polish power system is 

shown.  
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Figure 1: The load time series of the Polish power system in the yearly (a) and weekly (b) inter-

vals 



The SB methods use analogies between time series sequences with periodicities. A course of a time 

series can be deduced from the behavior of this time series in similar conditions in the past or from the 

behavior of other time series with similar changes in time. In the first stage of this approach, the time se-

ries is divided into sequences, which usually contain one period (in the considered STLF problem, the 

period equals 24 hours). To eliminate weekly and annual variations, the sequence elements are prepro-

cessed to obtain their patterns. The pattern is a vector with components that are functions of real time se-

ries elements, that is, hourly loads in this case. The input and output (forecast) patterns are defined as x = 

[x1 x2 … x24] and y = [y1 y2 … y24], respectively. The patterns are paired (xi, yi), where yi is a pattern of the 

time series sequence succeeding the sequence represented by xi, and the interval between these sequences 

(forecast horizon) is constant and equals . The SB methods are based on Assumption 1: 

If the process pattern xa in a period preceding the forecast moment is similar to the pattern xb 

from the history of this process, then the forecast pattern ya is similar to the forecast pattern yb. 

Patterns xa, xb,, and yb are determined from the history of the process. Pairs xa–xb and ya–yb are defined in 

the same way and are shifted in time by the same number of series elements (usually this is a multiple of 

the daily period).  

 The similarity measures are based on the distance measures (most often Euclidean or Manhattan), cor-

relation measures, or a function similarity measure.  

3    Patterns of Time Series Sequences 

The way the x and y patterns are defined depends on the time series nature (seasonal variations and 

trends) and the forecast horizon. Functions transforming series elements into patterns should be defined 

so that patterns can carry most information about the process, and the model quality becomes maximal. 

Moreover, functions transforming forecast sequences into patterns y should ensure the possibility of cal-

culating the real forecast of the time series elements.     
In the STLF problem, the forecast patterns y encode real loads in the following hours of the forecast 

day i+: Li+ = [Li+,1 L i+,2 … Li+,24], and the input patterns x map the hourly loads of the day preceding 

the forecast day – Li = [Li,1 Li,2 … Li,24]. In general, the input pattern can be defined based on an interval 

longer than 24 hours, for example, 168 hours. Moreover, the time series elements contained in this inter-

val can be selected to ensure the best quality of the model [Dudek 2006c]. Vectors y are encoded using 

actual process parameters (from the nearest past), which allows the consideration of the current variability 

of the process and ensures the possibility of decoding.  

Some of the pattern definitions xi = [xi,1 xi,2 … xi,24] and yi = [yi,1 yi,2 … yi,24] are presented below.  
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where i is the day number; h = 1, 2, …, 24 is the hour of the day;  is the forecast horizon; Li,h is the load 

at hour h of day i; 
i
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Definition (1a) expresses the normalization of the vectors Li. After normalization, they obtain unity 

length, zero mean, and the same variance. When we used the standard deviation of the vector Li compo-

nents in the denominator of equation (1a), we received vector xi with the unity variance and zero mean.  

The components of the patterns defined using Equations (2a) and (3a) express, respectively, the in-

dices and differences of loads in the following hours of the i-th day with respect to the mean daily load 
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Forecast patterns (1b), (2b), and (3b) are analogous to input patterns (1a), (2a), and (3a), respective-

ly. However, they are encoded using the actual loads determined from the process history, which enables 

the decoding of the forecast vector Li+ after the forecast of pattern y is determined. 

Other definitions of the patterns were presented by Dudek [Dudek, 2006 c; Dudek, 2006d]. 

4    Analysis of the Pattern Similarities 

To confirm the correctness of Assumption 1, we will conduct the analysis of dependence on the similari-

ties between patterns x and y. Here, similarity is a synonym of closeness with respect to a specified me-

tric. The analysis is performed on the statistical sample consisting of the pattern pairs: 

((xi, yi), (xj, yj)) , (4) 

where i = j = 1, 2, ..., n; i ≠ j; and n is the number of the pattern pair.  

The sample size is m = n(n-1). We define the random variables Dx and Dy, which express the distance be-

tween the x patterns and the distance between y patterns in the same pair, respectively. The realization 

vector of the pairs of these random variables, that is, distances between each pattern pair (4), has the fol-

lowing form:   

[(d(xi, xj), d(yi, yj))] = [(d(x1, x2), d(y1, y2)) (d(x1, x3), d(y1, y3)) ... (d(xn, xn-1), d(yn, yn-1))] , (5) 

where d(xi, xj) is the distance between patterns xi and xj; and d(yi, yj) is the distance between patterns yi 

and yj. 

To show the stochastic interdependence of the random variables Dx and Dy, the null hypothesis H0 is 

formulated: The observed differences in numbers of occurrence of the sample elements in the specified 

categories of random variables’ Dx and Dy values are caused by random nature of the sample. This hypo-

thesis is verified using the chi-square test creating a contingency table, which shows joint empirical dis-

tribution of random variables Dx and Dy. The number of categories of Dx is g and that of Dy is h. The 



boundaries of the categories for Dx are quantiles of order 0, 1/g, 2/g,…, and 1 and that for Dy are quartiles 

of order 0, 1/h, 2/h, …, and 1. The strength of association between Dx and Dy is measured using the Cra-

mer contingency coefficient V and the Pearson correlation coefficient :  
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are the mean values of Dx and Dy; and SDx, SD are the standard deviations of Dx and Dy, 

respectively. 

Table 1 contains an example of the values of the statistics mentioned above for the time series of 

hourly loads of the Polish power system from the period 2002-2006, the forecast horizon  = 1, the Eucli-

dean and Manhattan distances, and pattern definitions (1), (2) where 'L = "L =
i

L  and (2) where L' = L'' = 

Li-1,h. The significance level of  = 0.05, and 49 degrees of freedom (8 categories for Dx and Dy) is as-

sumed. The critical value of 2-statistic is 66.34. The calculated values of the 2 test lie in all cases in the 

critical region, which justifies rejection of the null hypothesis in favor of the alternative hypothesis. The 

values of V and  coefficients indicate significant, moderately strong, and positive correlation between Dx 

and Dy, which emphasizes for patterns (1). Both metrics gave similar results. 

 
Patterns Distance 2

 V  

(1) 
Euclidean 1.04∙106 0.35 0.67 
Manhattan 9.88∙105 0.35 0.65 

(2) where 'L = "L =
i

L  
Euclidean 7.25∙105 0.30 0.49 
Manhattan 6.87∙105 0.29 0.50 

(2) where 'L = "L =
hi

L
,1

 
Euclidean 8.32∙105 0.32 0.24 
Manhattan 7.97∙105 0.31 0.25 

Table 1: Statistical values of the analyzed time series and sample (4) 

The interdependence between Dx and Dy becomes stronger if we analyze the distances only for pat-

tern pairs representing the same days of the week (Monday to Sunday). In this case, the sample has the 

same form as in (4), but j is now the index of patterns representing the same day of the week as pattern i 

(this variant is denoted by V2, while the variant considered earlier is denoted by V1). For the time series 

analyzed in variant V2, we received the higher value of the Cramer’s V (0.45) and a similar value of the 

correlation coefficient (for patterns (1) and the Euclidean distance). 

In the next part, we proved the statistically significant dependence between random variables Dx and 

Dy, where Dx expresses the distance between pattern xi and its K nearest neighbors xi*,k, k = 1, 2, ..., K,  

and Dy expresses the distance between pattern yi and patterns yi*,k associated with patterns xi*,k. The ele-

ments of the sample are the pattern pairs: 

((xi, yi), (xi*,k, yi*,k)) , (8) 

where i = 1, 2, ..., n; k = 1, 2, ..., K; xi*,k, yi*,k are the k-th nearest neighbor of pattern xi and pattern y asso-

ciated with it, respectively.  



The sample size is nK. The realization vector of pairs of these random variables has the following form:  

     [(d(xi, xi*,k), d(yi, yi*,k))] = [(d(x1, x1*,1), d(y1, y1*,1)) (d(x1, x1*,2), d(y1, y1*,2)) ... (d(xn, xn*,K),  

 d(yn, yn*,K))] . 
(9) 

To show the interdependence of random variables Dx and Dy,, the null hypothesis analogous to the 

null hypothesis formulated above for sample (4), is stated. The analysis was performed on the same time 

series as that previously for two variants V1 and V2 and for K = 5. Table 2 presents the statistical values 

in the case of the Euclidean distance is used (results for the Manhattan distance are similar).  

 
Patterns Variant 2

 V  x
D  

y
D  

(1) 
V1 1583 0.20 0.34 0.13 0.53 
V2 2425 0.25 0.62 0.16 0.38 

(2) where 'L = "L =
i

L  
V1 588 0.12 0.21 0.05 0.19 
V2 1163 0.18 0.53 0.06 0.13 

(2) where 'L = "L =
hi

L
,1

 
V1 353 0.10 0.20 0.06 0.18 
V2 904 0.15 0.37 0.07 0.14 

Table 2: Statistical values for analyzed time series and sample (8) 

Clearly, stronger dependence between random variables occurs in variant V2 for patterns (1). Table 

2 shows the mean values of Dx and Dy. In variant V2, lower mean distances between patterns yi and yi*,k 

are observed,  which translate into lower errors in the SB forecasting models. 

5 Pattern Similarity-based Forecasting Methods 

The SB methods of the STLF can be divided into several classes. One uses a set of reference pattern pairs 

(x, y). For a given input pattern x*, the most similar patterns x in the reference set are found, and the fore-

cast pattern ŷ  is formed from the patterns y associated with them [Malko et al., 1996; Dudek 2006b]. In 

another class, only patterns x are used. The parameters of the function transforming real time series se-

quences into patterns are forecast as well [Osowski et al., 1996]. The model presented in Dudek [2006a], 

which uses only patterns y, avoids the forecasting of these parameters.  

The original patterns are used as the reference patterns, or the new patterns are defined by clustering 

the original patterns. Examples of models using the original patterns are the k-nearest neighbor method 

[Dudek, 2009b] or a method based on the fuzzy sets [Dudek, 2006b]. Dudek used different methods for 

pattern clustering, for example, hierarchical clustering, the self organizing Kohonen map and the neural 

gas method, the counter propagation neural network, the radial basis neural network, the k-means method, 

and the artificial immune system. Clustering allows the reduction of the number of reference patterns, 

decreases the data noise influence, and improves generalization.  

The SB forecasting methods are based on the nonparametric approach to regression function estima-

tion. Flexibility of nonparametric models is very useful in the preliminary analysis of a dataset and may 

be helpful in the construction of parametric models, which are usually more convenient to use but not 

necessarily more precise. The general model of nonparametric regression is in the following form: 



 )(xmy  , (10) 

where y is the response variable; x is the predictor;  is the error, which is assumed to be normally and 

independently distributed with a zero mean and constant variance; and m(x) = E(Y | X = x) is a regression 

curve. 

The aim of nonparametric regression is to estimate the function m(.). Most methods implicitly as-

sume that this function is smooth and continuous. The most popular nonparametric regression models are 

the kernel estimators, k-nearest neighbor estimators, orthogonal series estimators, and spline smoothing 

[Härdle, 1994].  

Selected SB methods of the STLF are described below.  

5.1 STLF Model based on k-Nearest Neighbor Estimators 

The k-nearest neighbor estimator (k-NN) of m(.) is a weighted average in a varying neighborhood defined 

by the x-variables, which are among the k-nearest neighbors of x. In this case, the estimator of the regres-

sion function has the following form (Härdle 1994): 
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where wi(x) are the weights defined as follows: 



 


otherwise0

)( if/
)(

xikn
xw

k

i
 , (12) 

where k(x) is the set of indexes of k observations nearest to x. 

In the STLF problem described above, vectors x are the predictors, and y are the response variables. 

In this case, the definition of estimator m(.) is expanded by introducing the possibility of weight differen-

tiation:  
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where x* is the input pattern associated with forecast pattern ŷ . 

The weights depend on the distance between pattern x* and the patterns from its nearest neighbor-

hood in the following way:   
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where i  k(x*); xk is k-th nearest neighbor of pattern x* in the reference set including pairs (x, y) from 

the history of the process; and p  (0, 1) is the parameter controlling the weight differentiation level, as if 

p = 0 the weights are most differentiated, if p = 1 the weights are equal, and equation (13) is reduced to 

(11). 

Figure 2 shows how the weights change depending on their definition, distance d(x*, xi), and the 

value of parameter p. 
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Figure 2: Values of the weights of the different definitions ((14) – solid lines, (15) – dashed 

lines, (16) – dotted lines) and two values of parameter p (p = 0 – black, p = 0.75 – gray) 

In another approach the weights depend on the rank r  (1, k) of the pattern in the nearest neighbor 

ranking rather than on the distance between patterns:  

1)(  rkwi x  . (17) 

The number of nearest neighbor k plays the role of a smoothing parameter, which controls the 

smoothness of the estimated curve. Usually, k depends on the number of observations. A large value of k 

decreases the variance of the model but increases its bias. 

The procedure of forecasting using the k-NN estimator runs in the following steps: 

1. Preprocessing–preparation of the patterns x and y 

2. For input pattern x* representing the load pattern of the day type s (Monday to Sunday), the k near-

est neighbors in the reference set representing the same day type s are found. 

3. The weight values of the nearest neighbors are calculated using (14) – (17). 

4. Estimator (13) is calculated. 

5. The forecast of the daily load curve L̂  is calculated from Equation (1b), (2b), or (3b). 

The reference set composed of pairs (x, y) often contains untypical and noised patterns. To reduce 

the influence of these patterns on the forecast, each pair (x, y) is marked with a degree of confidence, ex-

pressing the representativeness of this pair. If the pair (x, y) contains a pattern that is untypical, the confi-

dence degree has a lower value than those when the pair contains typical patterns. These degrees of con-

fidence are used for the determination of the forecast. Modified Equation (13) has the following form: 
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where vi(x, y)  (0, 1) is the degree of confidence assigned to the reference pattern pair (xi, yi). 

The patterns with a higher confidence degree now have bigger influence on the forecast pattern 

forming. Two methods are proposed in Dudek (2006c and 2009b) to estimate the confidence degrees: one 

is based on the correlation coefficients between the distances of patterns x and y, and the other is based on 

the forecast errors determined on the training set.  

5.2 STLF Model based on Fuzzy Estimators 

Estimator m(.) can be defined in an alternative way using fuzzy sets: 
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where n is the number of patterns x representing the same day type s as pattern x* in the reference set, 

and ( x*, xi) is the membership function of patterns x to the neighborhood of pattern x* depending on 

their mutual distance.  

The membership function is defined as follows: 
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where  and r are the width parameters, and  is the shape parameter. 

Patterns yi associated with patterns xi closer to pattern x* have bigger influence on the forming of re-

sponse ŷ  calculated as the mean of patterns yi weighted by the membership degrees ( x*, xi).  

The membership function (20) is a Gaussian function with the centre at point x*. An alternative 

Cauchy membership function (21) is characterized by fatter tails than the Gaussian function, which results 

in bigger influence of more distant patterns on the forecast. The parameter r in (22) defines the neighbor-

hood radius. In this case, only these patterns y take part in forecast forming, which are associated with 

patterns xi lying inside the hypersphere of radius r and the centre at point x*. If  = 1, function (22) is 

linear. 

The membership degrees and estimator m(.) can be calculated using the equations derived based on 

the fuzzy version of the k-means method [Bezdek, 1981]: 
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where q > 1 is the parameter determining the fuzziness degree, and )*,(
j

d xx  > 0. 

Membership function (23) depends not only on the distance between xi and x* but also on the dis-

tances of the remaining points in the reference set from point x* and on the reference set size.    

Example plots of the membership functions are presented in Figure 3.  

 

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

d



 

 











 

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

d



 

 











 
(a) 

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

d



 

 









r

r

r

r

r

 
(c) 

(b) 

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

d



 

 

q=2

q=3

q=4

 
(d) 

Figure 3: Example plots of the membership functions (a) – (20), (b) – (21), (c) – (22), and (d) – (23) 

5.3 STLF Models using Clustering of Patterns 

The goal of clustering is to distinguish groups of the time series sequence patterns representing common 

properties. The group characteristics, represented by centroids, memorize information about the features 



of the load patterns and can be useful in the forecasting procedures, as shown below. Three forecasting 

procedures are proposed. 

5.3.1 Forecasting Procedure FP1 

In the first forecasting procedure, the patterns xi and the corresponding forecast patterns yi are concate-

nated and form patterns vi = [xi,1 x i,2 … x i,24 y i,1 y i,2 … y i,24]. During the forecasting of the load curve for 

the day type s (Monday to Sunday), the subset of patterns is grouped, with the y-parts as the forecast pat-

terns of the s-type days and the x-parts as the patterns of the preceding days (e.g., only the v-patterns con-

taining the x-pattern of the Saturday and the y-pattern of the Sunday are grouped for forecasting the Sun-

day load curve). 

After the clustering phase, each cluster C is represented by the centroid m, mapping the patterns as-

signed to this cluster. Similar to the v-patterns, the centroids m have two parts: mx corresponding to pat-

terns x and my corresponding to patterns y.      

During the forecasting phase, the input pattern v* only has the first part x*. This pattern is assigned 

to the group represented by the closest (to the x-part) centroid m*. The second part of the centroid m* is 

the estimator m(x*).   

5.3.2 Forecasting Procedure FP2 

During the forecasting of the load curve for the s-type day in the second procedure, the patterns x and y 

are grouped independently into K and L clusters, respectively, where y are the patterns of s-type days and 

x are the patterns of the preceding days. Two populations of clusters represented by centroids mx and my 

are created. After grouping, the empirical conditional probabilities P(Cy,l|Cx,k) that associate the forecast 

pattern yi to cluster Cy,l when the corresponding xi pattern is associated to cluster Cx,k, are determined. 

These probabilities are calculated for each pair of clusters based on the grouping of the training set. The 

forecast of the pattern ]ˆ...ˆˆ[ˆ
2421 yyyy  paired with the input pattern x*, which is assigned to group 

Cx,k*, is calculated as the mean of centroids my weighted by the conditional probabilities:  
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Centroids my have a stronger influence on the forecast forming of these clusters, for which the occur-

rence of the cluster Cx,k* in the training set is more frequent. 

This approach was inspired by a paper [Lendasse et al., 1998], where the Kohonen net was used as a 

clustering method. 

5.3.2 Forecasting Procedure FP3 

In this procedure, only y-patterns are defined. The patterns are grouped into K clusters. The cluster’s Ck 

characteristic is the centroid mk = [mk,1 mk,2 … mk,24]. After the clusterization phase, the clusters are la-

beled. The label contains information about the days represented by patterns belonging to the cluster: the 

day types s and the day numbers of the year u. To forecast the pattern representing day type s* and num-

ber u*, all labels are searched. For each cluster Ck,, the number of entries lk is memorized, which satisfies 

the conditions s = s* and u  , where  is an interval containing the numbers of g successive days be-

fore and g successive days after the day u*, including u*.  



The estimator m(.) is calculated as the mean of centroids mk weighted by the numbers of entries lk:   
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This approach can be applied without pattern clustering. To forecast a pattern representing day type 

s* and number u*, the patterns that represent day type s* and belong to the interval  are then chosen 

from the reference set. The forecast is calculated by averaging these patterns.   

The neural gas algorithm is described below as an example of pattern clustering.   

5.3.3 STLF Model using Neural Gas Algorithm (Dudek 2009a) 

The neural gas algorithm was introduced in a study [Martinetz et al., 1993] as an unsupervised learning 

method based on idea of the Kohonen’s self organizing map. The neural gas consists of a set of M units 

(neurons) C = (c1, c2, …, cM) with associated weight vectors (called reference or codebook vectors) wi  

Rn, indicating their position in the input space. In the training process, the weight vectors are iteratively 

updated. For a given input point (v, x, or y pattern depending on the forecasting model), the neurons are 

sorted according to their distance from this point. All neurons are moved towards the input point depend-

ing on their position ri (rank) in the sorted list according to the following: 

)]()[,()()()1( kkiGkkk
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wzww    , (27) 

where k = 1, 2, …, kmax is the iteration number; z is the input point; and (k) is the learning rate calculated 

as follows: 
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G(k) is the neighborhood function defined as follows: 
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where ri= 0, 1, …, M-1is the rank of the i-th unit, and (k) is the positive number:  
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 and  decrease after every training step to ensure convergence. max and max are their initial values, 

while min and min are their final values. 

The learning algorithm of the neural gas used in the forecasting procedures can be summarized as 

follows: 

1. Initialize set C that contains M units ci with the weight vectors wi located in the centre of the 

training points (v, x or y depending on the forecasting procedure). Initialize the iteration counter k 

= 0 and the algorithm parameters max, max, min, min, and kmax. 

2. For each training point, repeat steps 3 and 4.  

3. Order all elements of set C according to the distance of their weight vectors wi to the input point 

and give them the ranks ri. 



4. Adapt the weight vectors according to (1). 

5. Increase the iteration number k and calculate the new values of , , and G according to (28), 

(30), and (29), respectively. 

6. If k < kmax and the adaptation of the weight vectors is significant (bigger than the threshold), con-

tinue from step 2. 

For the time dependent parameters, suitable initial and final values have to be chosen. In the experi-

mental part of this work, the values suggested in [Martinetz et al., 1993] were adopted. 

6 Application Examples  

The SB forecasting models described above were tested on the time series presented in Table 3. Usually, 

the smaller the power system, the more irregular and harder it is to forecast the load time series. The 

measure of the load time series regularity can be the forecast error (MAPE, which is traditionally used in 

STLF models) determined by the naïve method. The forecast rule in this case is as follows: the load curve 

of the day of forecast is the same as seven days ago. The mean forecast errors, calculated according to this 

naïve rule, are presented in the last row of Table 4. 
 

 

Data symbol Data description 

A Time series of the hourly loads of the Polish power system from the period 2002-

2006, the mean load of the system 16 GW 

B Time series of the hourly loads of the Polish power system from the period 1997-

2000, the mean load of the system 15,5 GW 

C Time series of the hourly loads of the local power system from the period July 2001-

January 2003, the mean load of the system 1,2 GW 

D Time series of the hourly loads of the local power system from the period June 

1998-July 2002, the mean load of the system 300 MW 

E Time series of the hourly load demands of the chemical plant from the period 1999-

2001, the mean load demand of the plant 80 MW 

Table 3: Description of the data used in experiments  

Each dataset was divided into two subsets: training and test. The first sequences of the time series 

(typically two-thirds of the whole time series) were included in the training set, and the latest sequences 

were included in the test set. Usually, the model parameters are determined on the training sets in the 

leave-one-out procedure. Sometimes the parameter values are set arbitrarily, for example, in the k-NN 

model where, according to Silverman (1986), it is assumed k = N0,5. The Euclidean distance is used as a 

similarity measure. The patterns were defined using (1a) and (1b) or (2a) and (2b), where 'L = "L =
i
L  

(these definitions of the patterns produced the most accurate models in the preliminary tests). 

Table 4 presents the results of the forecasting for some SB models. For comparison, the forecasts us-

ing the simple multilayer perceptron were calculated. This neural network contained of only one linear 

neuron and was trained using the Bayesian regularization. For each hour of the day, a separate net (24 

inputs and 1 output) was created and trained. This simple net structure is one of the best compared with 

other structures tested in [Dudek, 2006c] because of its good generalization properties.  



Forecasting procedure/ 

Algorithm 

Time series 

A B C D E 

k-NN estimator 1,84 2,14 4,21 3,70 8,30 

Fuzzy estimator 1,76 2,14 4,08 3,63 8,24 

FP1/k-means 1,99 2,39 4,62 4,16 9,45 

FP1/Fuzzy c-means 2,18 2,49 4,49 4,23 9,16 

FP1/Hierarchical clustering 2,44 2,52 4,99 4,63 9,43 

FP1/Kohonen net 2,66 2,71 5,31 4,82 9,42 

FP1/SOM 2,11 2,39 4,41 4,28 8,84 

FP1/Neural gas 1,94 2,55 5,12 3,98 9,18 

FP1/Artificial immune system 1,88 2,29 4,46 4,00 8,60 

FP2/k-means 2,03 2,37 4,36 4,08 8,94 

FP2/Fuzzy c-means 2,39 2,47 4,41 4,17 9,07 

FP2/Hierarchical clustering 2,40 2,41 4,46 4,21 10,10 

FP2/Kohonen net 2,21 2,50 4,31 4,63 8,86 

FP2/SOM 2,06 2,50 4,36 4,32 8,90 

FP2/Neural gas 2,24 2,49 4,72 4,09 8,96 

FP3/without clustering 2,29 2,53 4,25 4,73 10,24 

Multilayer perceptron 2,02 2,24 4,89 3,71 8,32 

Naïve method 4,25 4,38 6,59 7,45 17,46 

Table 4: Results (MAPE) of STLF using the SB methods (best results in italics) 

The ranking of the SB methods is shown in Figure 4, where the horizontal axis represents the mean 

percentage difference between the MAPE of the model and the best model. 

The highest accuracy for all time series shows the model based on fuzzy estimators. The analysis of 

this model has been the subject of recent studies by Dudek [Dudek, 2006b; Dudek, 2006c; Dudek, 2007]. 

Among the membership functions described in section 5.2, the best results are achieved for the Gaussian 

and Cauchy functions. Assuming the constant value of the exponent in the Gaussian function ( = 2) and 

the optimization of only one parameter (), only a minor deterioration of performance is caused: 2.0% on 

the training set and 0.6% on the test set on average. The popular distance measure between patterns, the 

Manhattan and the Euclidean distances, ensures the best results. The membership function shape does not 

seem to have a significant influence on the model performance provided that the function is monotonical-

ly decreasing and has unbounded support.   

The model sensitivity to the membership function width is limited. A 20% change of  causes an in-

significant change in the MAPE: 1.0% on the training set and 2.3% on the test set on average. 

The model sensitivity to incomplete input information, that is, when load vector L* from where pat-

tern x* is created, has indefinite values of l components, is also limited. Due to the lack of l component 

values, the distance *),( xx
t

d  is calculated without these components. It affects the distance distributions 

and consequently the values of membership degrees and the forecast pattern ŷ . Experiments show that 

errors increase nonlinearly along with the number of missing components. For small values of l, only the 

insignificant increase in errors is observed. The mean relative increase of the MAPE for the input vector 

incomplete in 50% (l = 12) is 9.8% on the training set and 5.5% on the test set. This leads to an important 



conclusion: the model does not require the estimation of the missing component values of the load vectors 

if their number is not big.      

The sensitivity to data noise depends on the width of the membership function, and it is bigger for 

data with a higher degree of regularity and a stronger relationship between patterns, which are modeled 

by narrow membership functions. 

Information about a forecast variable can be contained in an interval longer than 24 hours preceding 

the forecast moment. To check this, the input patterns are extended by adding components from the week 

interval (168 hours preceding the forecast moment). Not all input pattern components carry relevant in-

formation about the response variable. Moreover, the same information can be included in several com-

ponents. To select relevant components, two deterministic and two stochastic methods are used [Dudek 

2006c]: the forward feature selection and backward feature selection methods [Devijver & Kittler 1982], 

and the genetic algorithm and the (, ) evolution strategy [Michalewicz 1994], respectively. In the last 

method, each pattern component has a weight considered in the distance calculation. These weights are 

optimized to minimize the MAPE. The results of the component selection are ambiguous. Although the 

errors decreased on the training set, the error on the test set did not always diminish. Similarly, the en-

hancement of the model by adding the degree of confidence to the reference patterns did not produce the 

expected improvement of the test set results. 
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Figure 4: Ranking of the SB methods  

6 Conclusions 

The SB methods of the STLF are based on the assumption that if the patterns of the time series sequences 

are similar to each other, then the patterns of sequences following them are similar to each other as well. 

This means that the patterns of the neighboring sequences stay in a certain relation, which does not 

change significantly in time. The more stable this relation, the more accurate the forecasts are. If for a 

given time series the statistical analysis confirms the hypothesis that the dependence between similarities 

of input patterns and the similarities between forecast patterns associated with them are not caused by a 



random character of the sample, the sense of building and using models based on the similarities of pat-

terns of this time series is justified.  

The similarity of patterns y, which determines forecast errors, is bigger when the nearest neighbors 

are searched only among patterns representing the same day of the week as the input pattern. It results 

from the bigger stability of relationship between input and forecast patterns. This relation can be shaped 

by proper pattern definitions and strengthened by the elimination of outliers. 

The SB forecasting methods are characterized by simplicity. The best model based on fuzzy estima-

tors in the sufficiently accurate version has only one parameter—the width of the membership function. 

This parameter is easy to estimate, and the model sensitivity to its deviation from the optimal value is li-

mited. Models with a fewer number of parameters have better generalization properties. 

The disadvantage of the SB methods is their limited extrapolation capability. However, most models, 

for example, neural networks, have problems with extrapolation. Another problem is how to input addi-

tional information to the model that is not homogeneous with time series elements (loads), for example, 

wheatear factors.  
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