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Abstract. The Theta method attracted the attention of researchers and 

practitioners in recent years due to its simplicity and superior forecasting 

accuracy. Its performance has been confirmed by many empirical studies 

as well as forecasting competitions. In this article the Theta method is 

tested in short-term load forecasting problem. The load time series 

expressing multiple seasonal cycles is decomposed in different ways to 

simplify the forecasting problem. Four variants of input data definition are 

considered. The standard Theta method is uses as well as the dynamic 

optimised Theta model proposed recently. The performances of the Theta 

models are demonstrated through an empirical application using real power 

system data and compared with other popular forecasting methods. 

1 Introduction  

Short-term load forecasting (STLF) plays an important role in power systems and energy 

markets as accurate forecasting is beneficial for unit commitment, generation dispatch, 

hydro scheduling, hydro-thermal coordination, spinning reserve allocation, and other 

electric utility operations. As basic driver of electricity prices the system load should be 

forecasted with high accuracy which translates to financial performance of energy 

companies and other participants of energy markets.  

In the literature, there are numerous methods for STLF which can be roughly 

categorized into conventional methods and computational intelligence or machine learning 

methods. Machine learning methods use supervised learning to model relationships 

between predictors and load on historical data. Some well-known methods belonging to this 

category are artificial neural networks [1] and support vector machines [2]. The most 

commonly employed conventional approaches are the autoregressive integrated moving 

average (ARIMA) and exponential smoothing (ETS). The Theta method of forecasting, 

introduced by Assimakopoulos and Nikolopoulos [3], is a special case of simple 

exponential smoothing with drift. It is of interest to forecast practitioners because its 

simplicity and high accuracy in forecasting time series of various character and different 

frequencies. Its power was confirmed in M3-Competition [4], where it performed far better 

than the participating advanced methods and expert systems and outperformed the rest of its 

competitors, particularly for monthly series and microeconomic data.  
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In recent years a lot of work has been done in application of Theta method to real-world 

forecasting problems and testing its performance on different time series. For example in 

[5] new theoretical formulations for the application of the method on multivariate time 

series is proposed. Authors evaluate through simulations the bivariate form of the method 

and evaluate it in real macroeconomic and financial time series. In [6] the authors propose a 

new hybrid method that utilises the decomposition approach of the Theta method with 

nonlinear trends, apply smoothing to the data, and shrinkage approach to seasonal data  

instead of classical seasonal decomposition. The results on the M3-Competition data are 

very promising in terms of forecast accuracy. 

Many researchers' efforts are moving towards optimization of the Theta model. The 

weights of Theta lines are searched to reconstruct the original time series from the 

individual lines. In [7] an approach is presented for selecting the optimal value of the 

weight when a single Theta line is used and formulae for optimal weights when combining 

two Theta lines are provided. For optimizing the combination weights of the two Theta 

lines in the final forecast in [8] a neural network is applied. A generalization of Theta 

model in [9] is provided. The proposed dynamic optimised Theta model is a state space 

model that selects the best short-term Theta line optimally and revises the long-term Theta 

line dynamically. The superior performance of this model is demonstrated through an 

empirical application.  

In this work to STLF we apply the Theta method in the standard version and in more 

sophisticated dynamic optimised version proposed recently [9]. The Theta method was 

designed as a linear model for time series without seasonal variations. In STLF the models 

have to face a more difficult task, because the load time series is non-stationary in mean 

and variance, expresses nonlinear trend and multiple seasonal cycles. Taking into account 

the features of load time series, four variants of the STLF procedures using Theta models 

are proposed which differ in input data definition. 

The remainder of this paper is organized as follows. Section 2 elaborates standard and 

dynamic optimised Theta models. In Section 3 four variants of the STLF procedures are 

proposed differing in the definition of the input data on which the models are built. Section 

4 describes experimental study on real load data.  Some concluding remarks are drawn in 

the last section of this paper. 

2 Standard and dynamic optimised Theta models 

The Theta model [3] is a univariate forecasting method based on modifying the local 

curvature of the time series through a coefficient “Theta” (θ  ℝ) applied to the second 

differences of the data. In result of modification new lines are created having the mean and 

slope of the original time series. When Theta coefficient is from the range 0  θ < 1, the 

curve deflation is observed (the smaller θ, the larger the deflation degree) and long-term 

trends can be identified. In the extreme case where θ = 0 the time series is transformed to a 

linear regression line. For θ = 1 we get the original time series. If the Theta coefficient 

increases above 1, then the time series is dilated (see Fig. 1) and short-term behaviour is 

demonstrated.  

The original Theta model leading to the creation of a Theta line Z(θ) is achieved as the 

solution of the equation [9]: 

ntYZ tt ,...,4,3,)( 22          (1) 

where Y1, …, Yn is the original time series, and  is the difference operator (i.e. Xt = Xt − 

Xt−1).  
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Fig. 1. Original time series and Theta lines for θ = 0 and θ = 2. 
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Note that parameters a and b are only dependent on the original data. The resulting Theta 

line expressed by (2) is a linear regression model applied to the data directly. 

In the classical Theta model the original time series is decomposed into two Theta lines, 

i.e. θ = 0 and θ = 2 (this case in Fig. 1 is shown). The first one is the linear regression line 

of the data describing a linear trend. When θ = 2, the second line has second differences 

exactly twice the initial time series. Doubling the local curvatures it magnifies the short-

term behaviour. To get the forecast for h steps ahead the first Theta line is extrapolated in 

the usual way for a linear trend and the second Theta line is extrapolated via simple 

exponential smoothing. The combination of both lines with equal weights w = 0.5 gives the 

forecast. The Theta method is applied to non-seasonal time series. Seasonal time series 

should be first deseasonalised. The authors of [10] demonstrated that the standard Theta 

method is simply a special case of simple exponential smoothing with drift. 

The forecasting procedure when using Theta method is carried out in the following 

steps [9]: 

1. Deseasonalisation: Firstly the time series is tested for statistical significant seasonal 

behaviour. If it expresses a seasonal component, it is deseasonalised using typically 

classical multiplicative decomposition. 

2. Decomposition: The time series is decomposed into two Theta lines, Z(0) and Z(2).  

3. Extrapolation: Z(0) is extrapolated as a normal linear regression line, while Z(2) is 

extrapolated using simple exponential smoothing. 
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4. Combination: The forecast is generated from the extrapolated Z(0) and Z(2) lines by 

their combination with equal weights. 

5. Reseasonalisation: The forecast is reseasonalised if the original time series was 

identified as seasonal in step 1. 

  

The Theta method presented above uses only two Theta lines, but more Theta lines can 

be used for modelling and forecasting the original time series in order to extract more 

information from the data. The selection of the parameters θ can be optimized to achieve 

the lowest forecast errors. Another modification of the classical Theta method is to use of 

unequal weights in the recomposition procedure for the final forecasts. In such a case the 

two Theta lines are combined as follows [9]: 

)()1()( 21  ttt ZwwZY        (5) 

where w  [0, 1].  

Assuming than θ1 < 1 and θ2  1, the weight can be derived as w = (θ2 – 1) / (θ2 – θ1). So, it 

is dependent on θ–parameters. If we fix θ1 = 0 and searching for the optimal value of  

θ2 = θ > 1, the weight is of the form: w = 1/θ.  

Parameters a and b, defined by (3) and (4), respectively, are fixed for all t. In [9] they 

are considered as dynamic functions, i.e. at state t parameters at and bt are updated from the 

historical time series Y1, …, Yt. In such a case the model can be expressed by a state space 

model (see derivation in [9]):    
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where t = 1, 2, …, n, lt  ℝ is the level parameter,   [0, 1] is the smoothing parameter, 

and   1 represents θ2 (θ1 is assumed to be 0).  

The initial values of the states are assumed to be a0 = b0 = b1 = 
0Y = 0 as in [9]. The 

parameters: l0,  and  are estimated by minimising the sum of squared error: 
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For the forecast horizon h  2 the forecasts are generated recursively. The model is 

called dynamic optimised Theta model (DOTM). Note that due to dynamic functions at and 

bt the model is nonlinear.  
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3 STLF using Theta models 

Load time series usually express multiple seasonal variations: annual, weekly and daily 

ones. A trend and stochastic irregular component is also present. The noise level in a load 

time series depends on the system size and the customer structure, as well as a trend, and 

amplitudes of the annual, weekly and daily cycles. In STLF we focus on a daily profile. It 

changes over the year and  depends on the day of the week.  

Taking into account the features of load time series, four variants of the forecasting 

procedures are proposed differing in the definition of the input data on which the models 

are built. The first variant v1 bases on the original time series having both daily and weekly 

variations. Other variants are composed of the hourly loads selected from the original time 

series so as to simplify the input data, i.e. to remove weekly (v2), daily (v3) or both 

seasonality (v4). The four variants are: 

v1 –  The forecasting model generates forecasts for the next day (24 hours) in the recursive 

manner. The input data is the load time series including m previous days, so the length 

of the time series on which Theta model is built is n = 24m (assuming hourly load 

time series). In the experimental part of this work m is set to 21 days, so n = 504 data 

points. In such case input data series expresses daily and weekly seasonality (three 

weeks). Annual seasonality is not expressed in such short time series fragment. 

v2 –  As in version v1, the forecasting model generates forecasts for the next day hour by 

hour in the recursive manner. The input data is the load time series composed of p 

days of the same type as the forecasted day (Monday, …, Sunday) from the history. 

That is, when the forecasted day is Monday, the input time series includes 

concatenated profiles for p Mondays preceding the forecasted day. In the experimental 

part of the work p is set to 7, so n = 247 = 168 data points.  

v3 –  The forecasting model generates forecasts for hour h of the next day. The input data is 

the load time series composed of loads at hour h of n previous days. With such a 

definition of the input time series, the daily seasonality was eliminated. Input time 

series expresses weekly seasonality. In the experimental part of the work n is set to 21 

days, so three weekly cycles are observed in the input data. For forecasting load at 

hours h = 1, 2, …, 24 of the next day, twenty four Theta models are built.  

v4 –  As in version v3, the forecasting model generates forecasts for hour h of the next day. 

The input data is the load time series composed of loads at hour h of n previous days 

of the same type as the forecasted day (Monday, …, Sunday). For example, when the 

forecasted day is Monday and the forecasted hour is h, the input time series includes 

loads at our h of n Mondays preceding the forecasted day. In the experimental part of 

the work n is set to 7. Such definition of the input data eliminates all seasonal 

components. In this variant, for forecasting load at hours h = 1, 2, …, 24 of the next 

day, twenty four Theta models are built.    

The input time series are visualized in Fig. 2. Note that the Theta models are facing 

different forecasting problems in versions v1–v4. In variant v1 the input time series 

expresses full information about time series including daily and weekly seasonality. The 

model has to deal with the complex data to generate the forecast. In variant v2 we simplify 

input data eliminating weekly variation. Thanks to this, we expect an improvement in the 

forecast accuracy. Data in variant v3 are also simplified having only weekly seasonality and 

only 21 points, instead of 168 as in v2 or 504 as in v1. The most simplified input data, 

without any seasonality and having only 7 points, are in variant v4. But note that in variant 

v1 and v2 we build one model for forecasting 24 values of the daily pattern. The models 

work in the recursive manner. While in variants v3 and v4 we build 24 models generating 

forecasts for individual hours of the day. In the simulation study we compare the models 

accuracy.          
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Fig. 2. Original time series and the input time series in the proposed variants. 

4 Simulation study 

The standard Theta method (STM) and DOTM are evaluated in STLF problem on real data. 

Four variants of input data definition, v1–v4, are applied. The data used for the experiments 

were retrieved from www.entsoe.eu for the Polish power system. The dataset contains 

hourly electricity load data. The models are tested on data from 2015, i.e. 365 daily periods 

excluding a dozen or so atypical days such as public holidays. The mean absolute 

percentage error (MAPE) is used as a measure of prediction accuracy. 

In experiments we use STM and DOTM implementations in the forecTheta package 

(functions stm() and dotm(), respectively) of the R statistical software. The Theta 

models parameters are estimated using the Nelder-Mead algorithm by minimising the sum 

of squared errors. For comparison ARIMA and exponential smoothing (ETS) methods are 

used for STLF in four variants of input data definition v1–v4. For ARIMA and ETS we use 

implementations in R package forecast: auto.arima() and ets(), respectively. 

These functions uses stepwise procedures for traversing the model spaces and select 

automatically the optimal models according to Akaike Information Criterion.  

Fig. 3 shows sample input time series and forecasts generated by DOTM in variants v1-

v4. As we can see from this figure the model in variant v1 and v2 deals well with the daily 

seasonality. In Table I the forecasting results are summarized. The biggest errors are for 

variant v1, where the original time series is introduced as input data. Double seasonal 

patterns in data complicate the forecasting problem resulting in the increased errors. 

Filtering the weekly variation in variant v2 improves the result. Further improvement in 

variant v3 is evident when daily variation is filtered out and in variant v4 where the input 

time series does not express any seasonality. Note that errors for both Theta models and 

also ETS are at the same level within each variant v1–v4. ARIMA model produces 

significantly worse results.  

The forecasts generated by models for the sample weekly period in Fig. 4 are shown. 

Note almost identical forecasts for STM and DOTM. The percentage differences between 

the forecasts of these two models were: 0.05% in v1, 0.16% in v2, 0.35% in v3, and 0.65% 

in v4. Note also that in variant v3 some spikes in forecasts for Saturday and Sunday can be 

observed. The spikes appear when forecasts for successive hours of the day are predicted 

independently by separate models. This unfavorable effect is visible both for Theta models 

and for comparative models. Another effect which is visible from Fig. 4 especially for v1, 

is inertia effect. The level of the forecast profile for the next day is similar to the level of 

the last input daily profile. So, the forecasts for Saturdays and Sundays are overestimated, 
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while forecasts for Mondays are underestimated. The inertia effect results from the fact that 

the models cannot cope with double seasonality. This is more apparent in Fig. 5 where 

errors for each day of the week are shown. Note much bigger errors for Mondays, 

Saturdays and Sundays when v1 is used.  

 

 

 

 

Fig. 3. Sample input time series and forecasts generated by DOTM in the proposed variants. True 

forecasted values are shown with dashed lines or marked by “x”.   
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Fig. 4. The forecasts generated by the examined models for sample weekly period (from Monday to 

Sunday). 
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Table 1. Forecast errors and their interquartile ranges (MAPE/IQR) for the examined models. 

Variant STM DOTM ARIMA ETS 

v1 5.64/9.01 5.61/8.94 6.90/7.48 5.57/8.03 

v2 2.87/2.91 2.87/2.96 4.11/4.22 2.84/2.96 

v3 2.40/2.05 2.35/1.99 3.18/3.03 2.14/1.99 

v4 2.37/2.32 2.44/2.41 2.60/2.52 2.52/2.42 

 

Fig. 5. Forecast errors for the individual days of the week. 

5 Conclusion 

In this work, the Theta method in the standard and dynamic optimised variants are applied 

to STLF problem. The DOTM optimally selects the Theta line to be used for extrapolation 

of the short-term component, and updates the model parameters at and bt in the long-term 

component at each time period. Unlike DOTM, STM has a very simple algorithm, in which 

Theta lines are not optimised and parameters a and b are determined from the data only 

once. Despite more sophisticated nature, DOTM did not achieve significantly better results 

than STM in STLF problem considered in the experimental part of the work. Both methods 

generated very similar results and also similar to exponential smoothing model used for 

comparison. All these models outperformed ARIMA model.  

Among four variants of the input data definition, the best results were observed when 

input data were selected from history in such a way that they did not express any 

seasonality (variant v4) or express only weekly seasonality (variant v3). The variant where 

input data represents the original time series having daily and weekly variations (variant v1) 

caused the models the greatest difficulties. It was manifested by two times bigger errors 

comparing to other variants. In addition, the models in variant v1 suffers from the inertia 

effect, giving overestimated or underestimated forecasts for the days differing in load levels 

from the previous days. 
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