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In this work several univariate approaches for short-term load forecasting based on neural networks are
proposed and compared. They include: multilayer perceptron, radial basis function neural network,
generalized regression neural network, fuzzy counterpropagation neural networks, and self-organizing
maps. A common feature of these methods is learning from patterns of the seasonal cycles of load time
series. Patterns used as input and output variables simplify the forecasting problem by filtering out a
trend and seasonal variations of periods longer than a daily one. Nonstationarity in mean and variance is
also eliminated. In the simulation studies using real power system data the neural network forecasting
methods were tested and compared with other popular forecasting methods such as ARIMA and
exponential smoothing. The best results were achieved for generalized regression neural network and
one-neuron perceptron learned locally.
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1. Introduction

Short-term load forecasting (STLF) is essential for power sys-
tem control and scheduling. Load forecasts of short horizon (from
minutes to days) are necessary for energy companies to make
decisions related to planning of electricity production and trans-
mission, such as unit commitment, generation dispatch, hydro
scheduling, hydro-thermal coordination, spinning reserve alloca-
tion, interchange and low flow evaluation. Electricity markets also
require the precise load forecasts because the load is the basic
driver of electricity prices. The forecast accuracy translates to
financial performance of energy companies (suppliers, system
operators) and other market participants and financial institutions
operating in energy markets.

Neural networks are widely used in STLF due to their flexibility
which can reflect process variability in uncertain dynamic envir-
onment and complex relationships between variables. The main
drivers of the power system load are: weather conditions (tem-
perature, wind speed, cloud cover, humidity, precipitation), time,
demography, economy, electricity prices, and other factors such as
geographical conditions, consumer types and their habits. The
relationships between explanatory variables and power system
load are often unclear and unstable in time. In this work we focus
on univariate forecasting methods, in which only historical load
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time series is used as input to predict the future values of power
system load.

The load time series contains a trend, multiple seasonal varia-
tions and a stochastic irregular component. From Fig. 1, where the
hourly electrical load of the Polish power system is shown (these
data can be downloaded from the website http://gdudek.el.pcz.pl/
varia/stlf-data), it can be observed annual, weekly and daily cycles.
A daily profile, on which we focus in STLF, depends on the day of
the week and season of the year. Moreover, it may change over the
years. The noise level in a load time series depends on the system
size and the customer structure. A trend, amplitude of the annual
cycle, weekly and daily profiles and noise intensity may change
considerably from dataset to dataset.

Due to the importance of STLF and the problem complexity
many various STLF methods has been developed. They can be
roughly classified as conventional and unconventional ones. Con-
ventional STLF approaches use regression methods, smoothing
techniques and statistical analysis. The most commonly employed
conventional models are: the Holt-Winters exponential smoothing
(ES) and the autoregressive integrated moving average (ARIMA)
models [1]. In ES the time series is decomposed into a trend
component and seasonal components which can be combined
additively or multiplicatively. ES can be used for nonlinear mod-
eling of heteroscedastic time series, but the exogenous variables
cannot be introduced into the model. The most important dis-
advantages of ES are overparameterization and a large number of
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Fig. 1. The hourly electricity demand in Poland in three-year (a) and one-week (b) intervals.

starting values to estimate. Recently developed exponentially
weighted methods in application to STLF are presented in [2].

ARIMA processes are well suited to express the stochastic
nature of the load time series. Modeling of multiple seasonal
cycles as well as introducing exogenous variables is not a problem
in ARIMA. The disadvantage of ARIMA models is that they are able
to represent only linear relationships between variables. The dif-
ficulty in using ARIMA is the problem of order selection which is
considered to be subjective. To simplify the forecasting problem
the time series is often decomposed into a trend, seasonal com-
ponents and an irregular component. These components, showing
less complexity than the original series, are modeled indepen-
dently (see [3]). Another decomposition way based on wavelet
transform is described in [4].

Unconventional STLF approaches employ new computational
methods such as artificial intelligence and machine learning ones.
These approaches are reviewed in [5,6]. They include: neural
networks (NNs), fuzzy inference systems, neuro-fuzzy systems,
support vector machines and ensembles of models. Among them
the most popular are NNs. They have many attractive features,
such as: universal approximation property, learning capabilities,
massive parallelism, robustness in the presence of noise, and fault
tolerance. But there are also some drawbacks of using NNs: dis-
ruptive and unstable training, difficulty in matching the network
structure to the problem complexity, weak extrapolation ability
and many parameters to estimate (hundreds of weights). These
issues with NNs as well as problems with load time series com-
plexity are addressed in STLF literature in various ways. For
example in [7] the Bayesian approach is used to control the mul-
tilayer perceptron (MLP) complexity and to select input variables.
As inputs are used: lagged load values (unprocessed), weather

variables, and dummies to represent the days of the week and
calendar variables. In [8] the load time series is decomposed using
wavelet transform into lower resolution components (approx-
imation and details). Each component is predicted by MLP using
gradient-based algorithm. After learning the MLP weights are
adjusted using evolutionary algorithm to get result nearer to the
optimal one. Similar decomposition of the load time series using
the wavelet transform for extraction relevant information from the
load curve was used in [9]. A particle swarm optimization algo-
rithm was employed to adjust the MLP weights. In [10] a generic
framework combining similar day selection, wavelet decomposi-
tion, and MLP is presented. The MLP is trained on the similar days
which are first decomposed using Daubechies wavelets. The
similar day is a day which has the same weekday index, day-of-a-
year index and similar weather to that of tomorrow (forecasted).

Another popular NN architecture used for STLF is radial basis
function NN (RBFNN). It approximates the relationship between
explanatory variables and load by a linear combination of radial
basis functions (usually Gaussian), which nonlinearly transform
the input data. Comparing to MLP the learning algorithm for
RBFNN is simpler (there is no need for laborious error back-
propagation). In [11] a hybrid system for STLF is described, where
RBFNN forecasts the daily load curve based on historical loads. The
RBFNN weights are optimized using genetic algorithm. Then the
Mamdani-type fuzzy inference system corrects the forecast
depending on the errors and maximal daily temperature. RBFNN is
employed in [12] to forecast loads based on historical loads and
historical and forecasted temperatures. Then the neuro-fuzzy
system corrects the forecast depending on changes in electricity
prices. In the approach described in [13] the load time series is
decomposed into five components using wavelet transform.
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Low-frequency component is predicted using RBFNN, while the
high-frequency components (details) are predicted by averaging
the details of few days of the same type as the day of forecast.

A self-organizing map (SOM) is another popular NN used in
STLF. This network is trained using unsupervised competitive
learning to produce a low-dimensional representation of the input
space. Input vectors are grouped and represented by neurons. The
hierarchical forecasting method composed of two SOMs is pre-
sented in [14]. One SOM maps the input vector composed of the
past loads and indicators of forecasted hour into the vector of
distances between neurons and the winning neuron. This vector is
an input for the second SOM, which maps it to the forecasted load
at hour t. The forecasts of loads for the next hours are obtained
recursively. In [15] SOM is used for grouping the variable vector
carrying information about the short-term dynamics of the load
time series. These variables include load characteristic points, such
as peaks, selected weather factors, and indicators of a day of the
week and a holiday. Then, for each group the regression model
was built using support vector regression with selected historical
loads and temperatures as inputs. SOM is applied in [16] to split
the historical data dynamics into clusters. A flexible smooth
transition autoregressive model is used to determine the forecast
based on the linear combination of autoregressive models identi-
fied for each cluster. The weights in this combination are deter-
mined dynamically using MLP. SOM with a planar layer of neurons
is used in [17] for grouping the standardized daily load curves.
Observing the responses of neurons for the successive training
samples, the probabilities of transitions between neurons are
determined. The forecast of the standardized load curve is calcu-
lated from the weights of these neurons for which the probability
of transition from the winner neuron is non-zero. To get the
forecast of the real loads, the forecasts of the daily load curve
mean and standard deviation are needed. For this purpose, the
authors use RBFNN. In [18] the vector of predictors is expanded by
the additional component: the forecasted variable. Such vectors
are grouped using SOM. After learning, vector of predictors is
presented (without additional component) and recognized by the
winning neuron. The weight of the winner corresponding to the
additional component of the input training vector is the forecast.
The predictors are historical loads projected into lower dimen-
sional space using curvilinear component analysis.

Many other types of NNs have been used for STLF including:
recurrent NNs, generalized regression NNs, probabilistic NNs,
adaptive resonance theory NNs, functional link NNs and counter-
propagation NNs. The survey of NN applications to STLF can be
found in [19,20].

In this work a specific way of data preprocessing is used to
simplify the STLF problem. We create patterns which contain
information about the shapes of daily curves. Input and output
patterns are defined which represent two types of daily periods.
The input pattern represents the daily period preceding the fore-
casted one and the output pattern represents the forecasted daily
period. Due to representing multiple seasonal time series using
patterns we eliminate nonstationarity in input data, and we
remove the trend and seasonal cycles of periods longer than the
daily one. To model the relationship between input and output
patterns we use NNs of different architectures. Each NN is opti-
mized on a set of patterns which are similar to the query pattern
(i.e. the input pattern for which we want to get the forecast). Thus
the NN is optimized locally in the neighborhood of the query
pattern (NN is locally competent). This approach maximizes the
model quality for particular query pattern. For another query
pattern the NN is learned and optimized again.

The rest of this paper is organized as follows. In Section 2 we
define patterns of daily cycles of the load time series. Section 3
presents neural models for STLF. The learning and optimization

procedures for each model are given. In Section 4 we test the
neural models on real load data. We compare results of the pro-
posed methods to other STLF methods. Finally, Section 5 concludes
the paper. At the end of the article the list of symbols is presented.

2. Data preprocessing and patterns

A time series of electrical load expresses a trend, which is
usually non-linear, and three seasonal cycles: annual, weekly and
daily ones (see Fig. 1). It is nonstationary in mean and variance.
Data preprocessing by defining patterns simplifies the forecasting
problem of the time series with multiple seasonal cycles. Two
types of patterns of seasonal cycles are introduced: input ones x
and output ones y. They are vectors: X=[X; X»...X,] € X=R" and
y=[y1 ¥>...¥a]" € Y=R", with components that are functions of
the actual time series points. The x-pattern represents the vector
of loads (L) in successive timepoints of the daily period: L=[L; L;...
L,]". By transforming a time series into a sequence of x-patterns
we eliminate a trend and seasonal variations of periods longer
than the basic period of length n (daily period in our case; n=24
for hourly load time series, n=48 for half-hourly load time series,
and n=96 for quarter-hourly load time series). Moreover, a time
series mapped into x-patterns can have some desirable features
like stationarity. The goal of y-patterns is to encode and unify the
daily cycles to be forecasted using time series characteristics
(coding variables) determined from the history. This allows us to
determine the forecast of the daily curve having the forecasted y-
pattern.

Functions mapping time series points L into x-patterns are
dependent on the time series nature (trend, seasonal variations),
the forecast period and horizon. They should maximize the model
quality. In this work we use the input patterns x; (representing the
i-th daily period) which components are defined as follows:
Lie—L

D; ’
where: i=1, 2, ..., N - the daily period number, t=1, 2, ..., n — the
time series element number in the period i, L;; — the t-th time
series point (load) in the period i, L; - the mean load in the period
i, Dj=1/>_, (Liyy—L;)* - the dispersion of the time series ele-
ments in the period i.

Definition (1) expresses normalization of the load vectors L;
representing the i-th daily period. After normalization we get
vectors X; having unity length, zero mean and the same variance.
Note that the time series which is nonstationary in mean and
variance is represented now by x-patterns having the same mean
and variance. The trend and additional seasonal variations, i.e. the
weekly and annual ones, are filtered. X-patterns carry information
only about the shapes of the daily curves.

Whilst x-patterns represent input variables, i.e. loads for the day
i, y-patterns represent output variables, i.e. forecasted loads for the
day i+ 7, where 7 is a forecast horizon in days. The output pattern y;,

Xit =

M

representing the load vector Li,=[Li ;1 Litz2 ... Liyen]’, has
components defined as follows:
Lisee—L
e i 2
Vit D; 2)

where: i=1,2,..,N, t=1,2, ..., n

This transformation is similar to (1) but instead of using coding
variables L;,, and D;,,= \/ZL 1 Liyr1—Liy,)* determined for
the day i+7, in (2) we use coding variables L; and D; determined
for the day i. This is because the coding values for the day i+ are
not known in the moment of forecasting. Using the known coding
values for the day i enables us to calculate the forecast of vector
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Fig. 2. Two fragments of the load time series (a) and their x-patterns (b) and y-
patterns (c).

L, when the forecast of pattern y; is generated by the model. To
do this we use transformed Eq. (2):

Ti+r,t Z?i,tDi +L;, 3)

wherey;, is the forecasted t-th component of the pattern y;.

Using transformation (1) we unify the level and dispersion of x-
patterns by subtracting L; (level of the i-th daily period) and
dividing the result by D; (dispersion of the i-th daily period). This is
shown in Fig. 2(a) and (b). It can be seen from these figures that
the daily cycles of different days of the week 6 € {Monday,...,
Sunday} and from different seasons of the year are represented by
x-patterns having the same mean and variance.

Using transformation (2) we unify the daily curves in y-pat-
terns for each day type & separately. This is because in (2) we use
the coding variables determined for the i-th day to encode L;, ..
The y-patterns of Mondays for 7=1 are located higher than y-
patterns of other days because we use L; of Sundays in (2), which
are usually lower than L;, ; of Mondays. For analogous reasons y-
patterns of Saturdays and Sundays are located at a lower level than
y-patterns of weekdays. This is shown in Fig. 2(c). The dispersions
of the y-patterns are also dependent on the day type 6 because in
(2) we use coding variables D; instead of D; ..

Because the level and dispersion of y-pattern depends on the
day type 8, we construct the forecasting model for the particular

day of the week using training set containing patterns from the
history corresponding to this day type: ®={(x;, y;): i € A}, where
A is the set of numbers of y-patterns representing the same day
type 0 as the forecasted y-pattern. For example when we build the
model for Monday and for 7=1 (next day forecast) the training set
contains x-patterns of Sundays and y-patterns of corresponding
Mondays from the history. If 7=2 (two days ahead forecast) we
use x-patterns of Saturdays and y-patterns of Mondays in the
training set. This approach and the unification of input and output
variables using patterns simplify the forecasting model in which
we do not need to implement weekly and annual cycles. The
information about the position of the daily period in the weekly
and annual cycles, which is contained in L;, we introduce to the
forecast /I?,-H’t in (3) by adding L;, as well as we introduce the
information about current dispersion of the time series multi-
plying y;, by D;. (It is assumed here that there are strong corre-
lation between levels L; and L;_, ., as well as between dispersions D;
and D;, ..) So when we forecast the load time series using the
pattern-based approach, first we filter out the information about
dispersion and the position of the days i and i+7 in the weekly
and annual cycles ((1) and (2)). Then we construct the model on
patterns and we generate the forecast of the y-pattern. Finally we
introduce the information about the position of the forecasted day
in the weekly and annual cycles and current dispersion using (3).

More functions defining patterns can be found in [21]. A frag-
ment of time series represented by x-patterns does not have to
coincide with the daily period. It can include several cycles or a
part of one cycle. Moreover, it does not have to include contiguous
sequence of timepoints. We can select points to the input pattern.
We can also use the feature extraction methods to create new
pattern components from the original time series (see for example
[21] were principal component analysis and partial least-squares
regression are used for defining x-patterns).

3. Neural models for STLF

In this section we present several approaches to STLF based on
NNs: multilayer perceptron (MLP), radial basis function NN
(RBFNN), generalized regression NN (GRNN), counterpropagation
NN (CPNN), and self organizing map (SOM). A common feature of
these approaches is that they work on patterns defined in Section
2. GRNN, CPNN and SOM generate the forecast of y vector as
output, whilst MLP and RBFNN generate the forecast of one
component of y as output. The NNs are optimized and learned
separately for each query pattern x*.

The proposed NN models for pattern-based STLF can be sum-
marized in the following steps:

1. Map the original time series elements to patterns x and y using
(1) and (2).

2. Select the I nearest neighbors of the query pattern x* in ® and
create the set @ ={(x;, y;): i € 2}, where E is the set of numbers
of the [ nearest neighbors of x*.

. Optimize the NN model in the local leave-one-out procedure.

. Learn the NN model.

. Calculate the forecast of y or y, for x* using NN.

. Decode the forecast of y or y, to get the forecast of load
using (3).

oUW

In step 2 the set of [ nearest neighbors is selected using Eucli-
dean distance. The dot product can be used instead as a distance
measure because vectors X are normalized. The sets ® and ®
contain only historical patterns representing the same day types &
as x* and corresponding y which is forecasted.
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In step 3 we search for optimal values of hyper-parameters
such as number of nearest neighbors k or number of neurons.
Because the number of hyper-parameters in the proposed models
is small, one or two, the simple grid search is applied to deal with
this issue. Optimization is performed in the local leave-one-out
cross validation (LLOO), where the validation samples are chosen
one by one from the set ® of nearest neighbors of the query
pattern. So we optimize the NN model to get the best performance
for the neighborhood of the current query pattern. The learning
algorithms applied in step 4 are dependent on the NN type and are
described in the next sections.

3.1. Multilayer perceptron

The MLP learns using the local learning procedure [23]. In this
case the training samples are selected from the neighborhood of
the current query point x*. By the neighborhood of the query
pattern we mean the set of its k nearest neighbors in the training
set @. The model is optimized and learned to fit accurately to the
target function in the neighborhood of x* and is competent only
for this query pattern. Note that the local complexity of the target
function is lower than the global one. So we can use a simple MLP
model with not many hidden neurons that learns quickly. The
research reported in [23] showed that using only one neuron with
sigmoid activation function brings not worse results than net-
works with several neurons in the hidden layer. So in this work we
use one sigmoid neuron as an optimal MLP architecture.

The number of nearest neighbors k (learning points) is the only
hyper-parameter tuned in LLOO procedure. The MLP learns using
Levenberg-Marquardt algorithm with Bayesian regularization
[24], which minimizes a combination of squared errors and net
weights. This prevent overfitting. The MLP optimization is sum-
marized in Algorithm 1.

1. Find the set © of /
nearest neighbors of the
query patternx* in ®

2.Doforeachie =

2.3.Select the best
value of k for x;

3. Calculate the optimal
value of nearest
neighbors ko, as the
meanvalue of k
selectedin 2.3

4. Find the set ©"
of koo nearest
neighbors of
x*in®

2.1. Create the set
D'= D\(x, y)

!

2.2. Do for
k= Kpmin t0 Koy

5.Llearn MLP on ©'

6. Test MLP on x*

2.2.3. Test MLP on x; 2.2.1. Find the set

2.2.2. Learn MLP on ®"

" of k nearest
neighbors of x; in @'

Algorithm 1. MLP forecasting model optimization.

3.2. RBF network

RBFNN learns on the training set ®. The number of RBF neu-
rons is selected in the learning procedure by adding neurons one
by one until the specified error goal is met. Initially the RBF layer

has no neurons. A new neuron is added with weights equal to the
input pattern x with the greatest error. (This is implemented in
newrb function from Neural Networks Toolbox, Matlab 2012b.)
The spread of RBFs, orgr, determines the smoothness of the fitted
function. The larger the spread is, the smoother the function will
be. It is assumed that the spread is the same for all neurons and is
equal to the mean distance between each xe® and its k-th
nearest neighbor in ®. The number k is selected in LLOO proce-
dure. The weights of the linear neurons in the output layer are
calculated using simple linear algebra.

Although the RBFNN builds the global model for @, it is opti-
mized locally in LLOO. So we can expect good results only for the
current query pattern x*. The RBFNN optimization procedure is
shown in Algorithm 2.

1. Find the set © of /
nearest neighbors of the
query pattern x* in @

2.Doforeachie =

2.3. Select the best
value of k for x;

3. Calculate the optimal
value of nearest
neighbors k,,, as the —>
mean value of k
selected in 2.3

4. Calculate Gygras the
mean distance between

each x € ®and its k,,-th
nearest neighbor in ®

2.1. Create the set
D= D\(x, v

2.2. Do for
k= K £0 Ky

2.2.1. Calculate Opgr
as the mean distance
between each
x € ®and its k-th
2.2.2. Learn RBFNN on @' nearest neighbor in ®

]

5. Learn RBFNN on @

6. Test RBFNN on x*

2.2.3. Test RBFNN on x;

Algorithm 2. RBFNN forecasting model optimization.

3.3. Generalized regression neural network

GRNN is a type of RBFNN with a one pass learning and highly
parallel structure [25]. This is a memory-based network, where
each learning pattern X; is represented by one neuron with RBF:
Gi(x) with the center C;=X;, i € A. The algorithm provides smooth
approximation of a target function even with sparse data in a
multidimensional space. The advantages of GRNN are fast learning
and easy tuning.

The layer of RBF neurons maps n-dimensional x-pattern space
into No-dimensional space of similarities between input pattern
and the training x-patterns: X —[G(X) Gx(X) ... Gna (X)], where
Na=IAlis the number of training samples. The output of GRNN is:
y= Z{\% 1 Gi(X)Yi. )

Zi 2, Gi(x)

The only parameter is the RBF spread, oggr. As in RBFNN it
determines the smoothness of the fitted function. We assume
the same spread for all neurons calculated as oggr=a-(the mean
distance between each xe @ and its 5-th nearest neighbor in
®). The value of a is adjusted in LLOO procedure. In [26] dif-
ferential evolution was applied for searching for the best values
of the N, spreads, i.e. spreads were adjusted individually for
each neuron. But this did not bring an expected reduction in the
test error.
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The GRNN optimization is presented in Algorithm 3.

1. Find the set © of /
nearestneighbors of the
query patternx* in ®

2.Doforeachie =

2.3. Select the best
valueof a forx,

4. Calculate oggr as

@, (mean distance

| betweeneachx e ®and

its 5-th nearest neighbor
in®)

3. Calculate the optimal
value of a () as the
meanvalueofa
selectedin 2.3

2.1.Create the set
D'=D\x, y)

5.Learn GRNN on @

2.2.Dofora=ay,to
Gy With step s

6. Test GRNN on x*

2.2.1. Calculate oggr
asa-(mean distance
betweeneachx € @

2.2.3. Test GRNN on x;

and its 5-th nearest
2.2.2.Learn GRNN on @' neighborin ®)

]

Algorithm 3. GRNN forecasting model optimization.

3.4. Fuzzy counterpropagation neural network

CPNN in a forward-only version [27] approximates a con-
tinuous function by a piecewise constant function (step function).
All input points belonging to the same cluster represented by the
j-th neuron from the competitive layer are mapped to the same
output point stored in the weights coming out of that neuron. To
make the fitting function continuous we introduce fuzzy mem-
bership the input point x in clusters represented by neurons.

Two models for STLF based on fuzzy counterpropagation NN
(FCPNN) are proposed. In the first one (FCPNN1) weights of the
competitive layer neurons are learned using fuzzy c-means clus-
tering [28]. The n-dimensional input space X is partitioned into ¢
fuzzy clusters with centers (or prototypes):

_ SN (i, W)X
T ki W)™

where: j=1, 2, ...,c,m > 1 is the weighting exponent and p(x;, w;)
is the degree of membership of x; in the j-th cluster.
The membership function u(x; wj;) is defined as [28]:

5 -1
c [1%; —w; [\ =T
(X, W) = <Zk—l <m> > ’ "

where X - wil is the distance between pattern x and a fuzzy center
w.

Clusters are represented by hidden neurons and the centers w;
are the weight vectors of neurons (instar weight vectors). The n-
dimensional outstar weight vector v; coming out of the j-th
neuron is calculated as the mean of y-patterns weighted by the
degree of membership of the x-patterns paired with them in the
Jj-th cluster:

)

S ki, W)™y,

L (7)
T ok Wy
The forecast for x* is calculated as follows:
o i1 HXE, W)
V= j=1 J J (8)

POHIRTTE SRUAL

Thus the forecast is the mean of the weight vectors v; weighted
by the degrees of membership of the query pattern x* in the
clusters j=1, 2,.., .

In the second approach (FCPNN2) the clusters are created in the
space Y by grouping y-patterns using fuzzy c-means method. The
cluster centers vj, which are the n-dimensional outstar weight
vectors coming out of the hidden neurons, are:

Vie SN YL )™y, )
T uyL )™

where the membership function u(y;, v;) is defined similarly
to (6).

Every of c instar weight vectors wj is calculated as the mean of
x-patterns weighted by the degree of membership of the y-pat-
terns paired with them in the j-th y-cluster:

Na X N My,
w, = Z'ij K- V) :,. (10)
Zi =1 ﬂ(yh Vj)

The forecasty is determined in the same way as in the first
approach, according to (8). The only difference between FCPNN1
and FCPNN2 is the way of weight vectors w; and v; learning. In
FCPNN1 the instar weight vectors w; represent centers of the
x-pattern clusters. And the outstar weight vectors v; represent
mean of y-patterns weighted by the membership of the x-patterns
paired with them in the j-th cluster. Note that the y-patterns
represented by v; can be dispersed in the Y-space and do not form
a compact clusters (i.e. the clusters overlap). In FCPNN2 the clus-
ters are detected in Y-space and represented by the outstar weight
vectors v;. So they represent neighboring y-patterns. But now the
instar weight vectors w; can represent dispersed x-patterns which
do not form compact clusters in X-space.

The two versions of FCPNN described above have the same archi-
tecture shown in Fig. 3. The optimization procedures for FCPNN1 and
FCPNN2 in which we search for the optimal number of neurons using
LLOO in Algorithms 4 and 5 are shown.

1. Find the set ® of /
nearestneighbors of the
query patternx* in @

I % B ulitatheoglimal 4.Find the instar weight
: P vectorsw by partitioning

numberof neuronsc,
Pt 1>| xe ®@intocclusters
asthe meanvalue of ¢ %

usingfuzzy c-means

selectedin 2.3 3
clustering

1

5. Calculate the outstar
weight vectors v
using(7)

2.Doforeachic £

2.3. Select the best
value of ¢ for x;

2.1. Create the set
O'=D\(x,y)

2.2.Dofor

€= Cpin O Crmox

2.2.3.Test FCPNN1 on x; 2.2.1.Find the instar
weight vectors w by
partitioningx € @'

222 Calcilatathe intoc clusters using

outstar weight vectors v fuuyc-m.eans
using(7) clustering

|

6. Test FCPNN1 on x*

Algorithm 4. FCPNN1 forecasting model optimization.
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3. Calculate the optimal
number of neurons ¢,
asthe meanvalueof ¢

selectedin 2.3

=

4. Find the outstar
weight vectors v by
partitioningy € ® into ¢
clusters using fuzzy
c-means clustering

2.3. Select the best
valueof ¢ forx,

2.1.Create the set
@'=d\(x,y)

2.2.Do for
€= Cmin tO Cmox

2.2.3. Test FCPNN2 on x;

2.2.2. Calculate the instar
weight vectors w
using (10)

2.2.1.Find the
outstar weight
vectorsv by
partitioningy & @'
into ¢ clusters using
fuzzy c-means

A

5. Calculate the instar
weight vectors w

using (10)

6. Test FCPNN2 on x*

I

Algorithm 5. FCPNN2 forecasting model optimization.

3.5. Self organizing map

Three approaches are proposed for STLF based on SOM. In the
first one (SOM1) the paired x- and y-patterns are concatenated
and form 2n-dimensional vectors z;=[x;" y;']", ie A. SOM learns
on vectors z; using “winner takes most” algorithm. After learning
each instar weight vector of the j-th neuron (wj;) represents the
cluster center. The weights vectors have two n-dimensional parts
corresponding to x- and y-patterns: wj=[w,; w,;']",j=1,2, ..., c.
In the forecasting phase the query pattern x* is presented and the
winning neuron is detected as that one having the nearest w,
to x*:
an

J* = arg min||x* —wy||.
ji=12,..c

The y-part of weight vector of the winner is the forecast for x*:
(12)

Thus the forecasted y-pattern is the mean of y-patterns forming
the nearest cluster represented by j*-th neuron. The number of
neurons c is selected in LLOO procedure (see Algorithm 6).
Increasing ¢ we increase the model variance and decrease its bias
(more accurate fitting to training data).

In the second approach (SOM2) inspired by [29] patterns x and
y from @ are clustered independently by two SOMs. After learning
the weight vectors of the first SOM (wyj, j=1, 2, ..., ¢) represent
centers of the x-pattern clusters, while the weight vectors of the
second SOM (wy, k=1, 2, ..., ¢,) represent centers of the y-pattern
clusters. On the basis of the training set the conditional prob-
abilities P(nyln;) that the pattern y; belongs to the cluster
represented by the k-th neuron (ny) of the second SOM (SOMy),
when the corresponding pattern x; belongs to the cluster repre-
sented by the j-th neuron (ny;) of the first SOM (SOMX) are esti-
mated. (This is done by presenting the successive training pairs (X;
y;) to both SOMs and counting the number of wins of each pair of
neurons Ny, and ny;.)

In the forecasting phase the query pattern x* is presented to
SOMx and the j*-th neuron is selected as the winner. The fore-
casted y-pattern is calculated as the mean of the weight vectors of

SOMy wy,, weighted by the conditional probabilities P(ny,klny;):

c
Zky: 1 P(ny,kl nxj*)wy,l<
C .
2k 1 Pyl )

The weight vectors of these SOMy neurons, which probability
of winning is the highest after having observed the winning of the
j*-th SOMx neuron, have the largest share in mean (13). The
numbers of neurons ¢, and c, were selected using grid search in
LLOO procedure according to Algorithm 7.

In the third approach (SOM3) the SOM learns using only
y-patterns. The training set contains all y-patterns from the his-
tory: Q={y;: i=1, 2, ..., N}. After learning n-dimensional weight
vectors w;, j=1, 2, ..., c represent centers of the y-pattern clusters.
The neurons are labeled. The label contains information about
days represented by y-patterns belonging to the cluster: the day
numbers i and the day types 8. For example the label of the neuron
representing five y-patterns can be in the form: (398 - Tue, 399 -
Wed, 400 - Thu, 764 - Thu, 765 - Wed), i.e. five entries: day
number-day type.

To forecast the y-pattern having the number i* and represent-
ing the day type 6* all labels are searched. For each label we count
the number of entries e; which satisfy two conditions:

13)

V=

1. the day is from the same period of the year as the forecasted
y-pattern:

ie[i*—Li*—1]v[i*—A—Li*~A+Lv[*—n-A—Li*—n-A+L, (14

where L is the number of days defining the period length, e.g.
30, A is the annual period (365 or 366 days), and n=1, 2, ... is
dependent on the length of the time series.

2. the day type is the same as for the forecasted y-pattern: 6=25".

The forecasted y-pattern is calculated as the mean of the
weight vectors w; weighted by the numbers of the corresponding
label entries satisfying the above conditions:

§= > 16w
Zf:l €

The number of neurons c is selected in LLOO procedure as
shown in Algorithm 8.

1. Find the set © of /
nearest neighbors of the
query patternx* in @

15)

3. Calculate the optimal 4. Create the set
' Bofareachii &S numberof neurons ¢y | | ¥={z:/ € A} containing
asthe mean value of ¢ concatenated x- and
selectedin 2.4 y-patterns from @
2.3. Select the best 2.1. Create the set i
value of ¢ for x; D'= D\(x, y) 5. Learn SOM with cop
neuronson'¥
2.2. Create the set l
Y= fz:1 € AV
= sl eiAv) 6. Test SOM with ¢,y
containing concatenated .
neuronsonx
x-and y-patterns from
=[x T )
I

2.2. Do for
€= Crin 1O Crmax

2.3.2. Test SOM with 2.3.1. Learn SOM
cneuronson x; with ¢ neuronson ¥

r ]

Algorithm 6. SOM1 forecasting model optimization.
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1.Find the set © of /
nearest neighbors of the
query pattern x* in @

3. Select optimal
o numbers of neurons 4. Learn SOMx with ¢, .,
2.Doforeachic = . i
Cy,000 AN €, g which neuronsonx € ®
T minimize the error on © ¢
2.3. Select the 2.1.Create the set 5.learn SOMy with ¢,

bestvalue of ¢,
and ¢, for x,

D' = D\(x;,y;) neuronsony € @

6. Estimate conditional
2.2. Do for probabilities P(n, .|, ),
Cx = Cy,min 10 Cymax k=1,2,.., ¢ opn
1=1255 G
2.2.1.Learn SOMx with ¢

c,neurons onx € @'

7. Test SOMx with ¢,
neurons on x*

!

8. Using the winning
neuron and P(n,|n,;)
calculate the forecast

ofy

2.2.2.4. Using the 2.2.2.1. Learn SOMy

winning neuron and with ¢, neurons on i
P(n,|n,;) yed'
calculate the forecast
ofy, i
T 2.2.2.2. Estimate
conditional probabiliti

2.2.2.3.Test SOMx P(n,ln, ) k=1,2
with ¢, neurons on x; i=12, .. ¢

r

Algorithm 7. SOM2 forecasting model optimization.

1. Find the set © of /
nearest neighbors of the
query patternx* in @

)

3. Calculate the optimal

number of neurons cop

asthe mean of the best
cforeachy;

2. Do for
€= Crin 1O Cmax

4. Learn SOM with cope
neuronson Q

2.1. Learn SOM with
cneuronson Q

2.2.Doforeachie =

¢ from the same period as

5. Label neurons using Q

6. For each label count
the number of entries e,
satisfyingtwo
conditions: the day is

2.2.4. Calculate the 2.2.1. Create the set the forecasted y and its
forecast of y, using ¢; Q'=O\(x, y;) typeis the same as for
according to (15) l the forecasted y
2.2.3. For each label 2.2.2. Label neurons
X 7. Calculate the forecast
count the number of using Q' : i
ofy usinge; according

entriese; satisfying two
conditions: the day is
from the same period
asy;and its type is the
sameas fory;

r

Algorithm 8. SOM3 forecasting model optimization.

to(15)

v

4. Simulation study

In this section the proposed neural models are tested on STLF
problems (one day ahead forecasts, 7=1) using four real load time
series:

® PL: time series of the hourly load of the Polish power system
from the period of 2002-2004. The test sample includes data

from 2004 with the exception of 13 atypical days (e.g. public
holidays),

® FR: time series of the half-hourly load of the French power
system from the period of 2007-2009. The test sample includes
data from 2009 except for 21 atypical days,

® GB: time series of the half-hourly load of the British power
system from the period of 2007-2009. The test sample includes
data from 2009 except for 18 atypical days,

® VC: time series of the half-hourly load of the power system of
Victoria, Australia, from the period of 2006-2008. The test
sample includes data from 2008 except for 12 atypical days.

The number of nearest neighbors in LLOO procedures in all
cases was set to [=12. Other settings are:

for MLP (see Algorithm 1): kpin=2, kmax=30,

for RBFNN (see Algorithm 2): kmin=2, Kmax=20,

for GRNN (see Algorithm 3): @;3in=0.2, Aymax=1.6, s=0.2,

for FCPNN1 (see Algorithm 4): Cpin=2, Cmax=50,

for FCPNN2 (see Algorithm 5): Cin=2, Cmax=50,

for SOM1 (see Algorithm 6): cmin=2, Cmax=>50,

for SOM2 (see Algorithm 7): Cxmin=2, Cxmax=50, Cymin=2,
Cy.max: 50.

e for SOM3 (see Algorithm 8): L=30, Cjnin=>50, Cax=150.

The neural models were compared with ARIMA and exponen-
tial smoothing (ES). In ARIMA and ES we decompose the time
series into n separate series: one series for each t=1, 2, ..., n. This
eliminates the daily seasonality and simplifies the forecasting
problem. The ARIMA and ES parameters were estimated for each
forecasting task (i.e. the forecast of system load at time t of the day
i+7) using 12-week time series fragments immediately preceding
the forecasted day. Atypical days in these fragments were replaced
with the days from the previous weeks. Due to using short time
series fragments for parameter estimation (much shorter than the
annual period) and due to time series decomposition into n series
we do not have to take into account the annual and daily sea-
sonalities in the models. In such case the number of parameters is
much smaller and they are easier to estimate compared to models
with triple seasonality.

For each forecasting task we create seasonal ARIMA(p, d, q) x (P,
D, Q), model (where the period of the seasonal pattern appearing
v=7, i.e. one week period) as well as the ES state space model. ES
models are classified into 30 types [30] depending on how seasonal,
trend and error components are taken into account (they can be
expressed additively or multiplicatively, and the trend can be
damped or not). To estimate parameters of ARIMA and ES the
stepwise procedures for traversing the model spaces implemented
in the forecast package for the R environment for statistical
computing [31] were used. These automatic procedures return the
optimal models with the lowest Akaike information criterion value.

The forecasting errors for the test samples (mean absolute
percentage errors which are traditionally used in STLF,
MAPE =100 - mean(I(forecast - actual value)/actual valuel)) and
their interquartile ranges as a measure of error dispersion in
Table 1 are shown. In this table the errors of the naive method of
the form: the forecasted daily curve is the same as seven days
ago, are also presented for comparison. The errors generated by
the models were compared in pairs and the Wilcoxon rank sum
test with 5% significance level was used to confirm statistically
significant difference between them. The statistically best
results are marked in Table 1 with an asterisk and the second
best results are marked with a double asterisk.

As we can see from this table GRNN takes the first place among
tested models for all data. MLP was not much worse. In Fig. 4 the
ranking of the models are presented based on the mean error on
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the test sets for all time series. The worse among neural models
turned out to be those based on SOM. The conventional forecast-
ing models: ARIMA and ES work significantly worse than the best
NN models, but ES was better than ARIMA in all cases. Note that
the ARIMA and ES are optimized on the time series fragments (12-
week fragment in our case) directly preceding the forecasted
fragment. In the proposed approach the neural models are opti-
mized on the selected patterns which are the most similar to the
query pattern. These patterns represent fragments of the load time
series from different periods.

More detailed results, the probability density functions (PDF) of
the percentage errors (PE=100-(forecast - actual value)/actual
value) estimated using kernel density estimation, are shown in
Fig. 5. Note that only small differences can be observed in the PDF
for MLP and GRNN.

The learning and optimization procedure of the winning neural
STLF model, GRNN, is the simplest among other models. Note that
in GRNN only one parameter is estimated, the spread. The
dimensions of input and output patterns do not affect the number
of parameters to estimate unlike in other tested models. This
should be considered as a valuable property. The second winner,
one-neuron perceptron, has n+1 weights to learn and the number
of nearest neighbors k to select for each timepoint of the fore-
casted period t. FCPNN and SOM models require data clustering
and more complex learning. It is worth noting that the GRNN
model is very similar to the STLF model based on Nadaraya-
Watson estimator proposed in [32]. The only difference is that we

Input
layer

Competitive Normalization
layer

Output

layer layer

Fig. 3. The FCPNN architecture.

Table 1
Forecast errors and their interquartile ranges for the proposed and benchmark
models.

Model PL FR GB vC

MAPE  IQR MAPE  IQR MAPE  IQR MAPE  IQR

MLP 145" 138 1597 164 163 168 299 274
RBENN 1.67 153 1707 170 1.84 190 323 3.05
GRNN 138 133 164 171 156 164 283 259
FCPNN1  1.71 146  1.90 195 1.69 1.79 318 2.97
FCPNN2 163 150 1.82 186 166 171 322 2.99
SOM1 1.74 165 210 219 195 198 341 312
SOM2 1.73 153 195 204 178 1.89 328 3.08
SOM3 1.99 183 206 218 195 202 363 347
ARIMA 1.82 171 232 253 2.02 207 367 3.42
ES 1.66 157 210 229 185 184 352 335
Naive 3.43 342 505 596  3.52 382 454 420
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Fig. 4. Ranking of the STLF models.

use the product kernels as RBFs in the Nadaraya-Watson model.
The spreads (or bandwidths) in the case of product kernels are
determined for each dimension. So instead of one parameter as in
the case of GRNN we estimate n parameters. Errors achieved by
both models are similar (see [26]).

Patterns of the time series sequences enable us to simplify the
problem of forecasting non-stationary time series with multiple
seasonal cycles and trend. Time series representation by patterns
can be used in various forecasting models. In [22] local linear
regression models based on patterns were proposed. The rela-
tionship between input and output patterns is modeled locally in
the neighborhood of query pattern using linear regression. Results
generated by the best linear models, i.e. principal components
regression and partial least-squares regression are comparable
with results generated by the best NN models (see Table 2). In
these both linear models the components of input patterns are
constructed by linear combination of original components.

Another group of STLF models using patterns: models based on
the similarity between patterns of seasonal cycles are presented in
[33]. They include: Nadaraya-Watson estimator, nearest neighbor
estimation-based models and pattern clustering-based models
such as classical clustering methods and new artificial immune
systems. These models construct the regression curve aggregating
the forecast patterns from the history with weights dependent on
the similarity between input patterns paired with the forecast
patterns. Simulation studies reported in [33] were performed on
the same datasets as in this work so you can compare results (see
Table XI in [33]). Table 2 summarizes results for the above men-
tioned models.

5. Conclusions

The major contribution of this work is to propose and compare
new neural STLF models which learn using patterns representing
daily load curves. Due to patterns the problem of forecasting
multiple seasonal nonstationary time series simplifies. The sea-
sonal variations of periods longer than the daily one as well as a
trend observed in load time series are filtered. Thus the forecasting
model does not have to capture the complex nature of the process
expressed in the time series.

The forecasting results demonstrate that the neural models
learned using patterns perform remarkably well. The model based
on GRNN turned out to be the most accurate in STLF compared to
other neural models: MLP, RBFNN, FCPNNs and SOMs, as well as
the classical statistical models: ARIMA and ES. GRNN is the sim-
plest among tested methods. It has only one parameter to esti-
mate, the spread of RBFs. Such a model is easy to optimize and has
good generalization properties. Its learning and optimization
procedures are extremely fast. Another valuable feature of GRNN is
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Fig. 5. Probability distribution functions of the percentage errors (PEs).

Table 2
Forecast errors and their interquartile ranges for state-of-the-art pattern based
STLF models.

Model PL FR GB vC

MAPE IQR  MAPE IQR MAPE IQR  MAPE IQR
PCR 135 133 171 1.78 1.60 1.68 3.00 2.70
PLSR 1.34 132 157 1.61 154 1.61 283 2.60
N-WE 1.30 130 1.66 1.67 155 1.63 282 2.56
FNM 1.38 138 1.67 1.71 160 1.66 291 2.67

FP1+k-means 1.69 1.64 2.05 217 184 1.88 334 3.01
FP2+k-means 1.59 151 1.94 205 1.76 1.84 313 2.94

AIS1 1.50 1.50 1.93 195 1.77 1.84 3.04 2.75
AIS2 1.50 1.51 193 196 1.78 1.87 333 2.93
where:

PCR - principal components regression [22]

PLSR - partial least-squares regression [22]

N-WE - Nadaraya-Watson estimator [33]

FNM - fuzzy neighborhood model [33]

FP1+k-means - model based on k-means clustering of concatenated x- and
y-patterns (similarly to SOM1) [33]

FP2 +k-means - model based on k-means clustering of x- and y-patterns inde-
pendently (similarly to SOM2) [33]

AIS1 - artificial immune system working on concatenated x- and y-patterns
(similarly to SOM1) [33]

AIS2 - artificial immune system working on separate populations of patterns: type
x and y (similarly to SOM2) [33].

its ability to predict all components of y-pattern at once. The
dimension of y-pattern as well as the dimension of x-pattern do
not affect the number of parameters to estimate. The second best
model, MLP, predict only one component of y-pattern at once. Due
to the local approach to MLP learning only one-neuron model is
sufficient to approximate the target function in the neighborhood
of the query pattern.

The forecasting accuracy of the neural models was increased
due to the local approach to the model optimization. The model
hyper-parameters were tuned in the local version of leave-one-out
to get the best performance in the neighborhood of the query
pattern.

In general, the proposed approaches can be applied for differ-
ent power systems. The future improvement may include taking
into account additional input variables such as weather conditions.
This can be done by building correction models that learn rela-
tionships between errors of the forecasts generated by the basic
model and weather factors. Another improvement relates to con-
struction specialized forecasting models for atypical days. In the
future work we are going to apply the proposed models to other
time series representing processes and phenomena from different
areas: economy, meteorology, industry etc.

List of symbols

X=[x1 X2 ... x,] e X=R" — the input pattern

y=[V1 ¥ ... yu]" € Y=R" — the output pattern

X*—the query pattern

Yy —the forecast of y-pattern

w=[w; W, ... wy]Te X=R" — the instar weight vector of the
neuron from the competitive layer (in SOMs and FCPNNs)

v=[v; v ... 1]T € Y=R" — the outstar weight vector of the
neuron from the competitive layer in FCPNNs

¢ —the number of neurons representing clusters in SOMs
and FCPNNs

6 € {Monday, ..., Sunday} — day of the week

A —the set of numbers of y-patterns from the history representing
the same day type 0 as the forecasted y-pattern

Np= 1Al — the number of training samples in ®
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N —the number of training samples in €2
n —length of the daily period and the number of components in
vectors X and y
= —the set of numbers of the [ nearest neighbors of x* in ®
® ={(x;,y):i e A} — the training set containing pairs of pat-
terns
from the history, such that y; represent the same day of the
week 6 as the forecasted y-pattern
O={(x;,y):i € E} — the set containing pairs of patterns, such
that
X; is one of the I nearest neighbors of x* in ®
Q={y;:i=1,2,...,N} — the training set for SOM3 containing y-
patterns from the history
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