
ORIGINAL ARTICLE

Multilayer perceptron for short-term load forecasting: from global
to local approach

Grzegorz Dudek1

Received: 14 February 2018 / Accepted: 4 March 2019
� The Author(s) 2019

Abstract
Many forecasting models are built on neural networks. The key issues in these models, which strongly translate into the

accuracy of forecasts, are data representation and the decomposition of the forecasting problem. In this work, we consider

both of these problems using short-term electricity load demand forecasting as an example. A load time series expresses

both the trend and multiple seasonal cycles. To deal with multi-seasonality, we consider four methods of the problem

decomposition. Depending on the decomposition degree, the problem is split into local subproblems which are modeled

using neural networks. We move from the global model, which is competent for all forecasting tasks, through the local

models competent for the subproblems, to the models built individually for each forecasting task. Additionally, we consider

different ways of the input data encoding and analyze the impact of the data representation on the results. The forecasting

models are examined on the real power system data from four European countries. Results indicate that the local

approaches can significantly improve the accuracy of load forecasting, compared to the global approach. A greater degree

of decomposition leads to the greater reduction in forecast errors.

Keywords Data representation � Forecasting problem decomposition � Neural networks � Short-term load forecasting

1 Introduction

Short-term load forecasting (STLF) aims to predict the

future load demand ranging from an hour to a week ahead.

This is essential for power system control and scheduling.

From an energy generation point of view, STLF is neces-

sary for electric utility operations such as unit commitment,

generation dispatch, hydro scheduling, hydrothermal

coordination, spinning reserve allocation, interchange and

low flow evaluation, fuel allocation and network diagnosis.

Since electricity load demand is the basic driver of elec-

tricity prices, load forecasting plays an important role in

competitive energy markets. Forecast accuracy is a key

factor in determining the financial performance of energy

companies and other market participants and financial

institutions operating in energy markets. Improving the

STLF accuracy can significantly reduce the power system

operating cost.

Neural networks (NNs) have been widely used in STLF

since the early 90 s. This is due to the capacity of NNs to

capture the nonlinear relationship between explanatory

variables and load. Modeling this relationship is not an

easy task because it is unstable in time and strongly

dependent on the period of the year, day of the week, hour

of the day as well as other factors. NNs have many

attractive features, which are extremely useful in hard

forecasting problems. These include universal approxima-

tion property, capability of learning from examples, several

learning paradigms, many architectures, massive paral-

lelism, robustness in the presence of noise and fault

tolerance.

Many types of NNs have been used for STLF, such as

multilayer perceptron (MLP), radial basis function NN,

self-organizing map (SOM), recurrent NNs, generalized

regression NNs, probabilistic NNs, adaptive resonance

theory NNs, functional link NNs and counterpropagation

NNs. A survey of NN applications in STLF can be found in

both [1, 2] and comparison of their performances in [3].

& Grzegorz Dudek

dudek@el.pcz.czest.pl

1 Department of Electrical Engineering, Czestochowa

University of Technology, Al. Armii Krajowej 17,

42-200 Czestochowa, Poland

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-019-04130-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-2285-0327
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04130-y&domain=pdf
https://doi.org/10.1007/s00521-019-04130-y

New solutions in the field of NNs are quickly applied in

STLF. For example:

• deep convolutional NN—in [4], a hybrid method based

on a deep convolutional NN is introduced for short-term

PV power forecasting,

• long short-term memory recurrent NN—in [5], this

framework, which is the latest and one of the most

popular techniques of deep learning, is proposed for

STLF for individual residential households,

• stacked denoising autoencoders—in [6] this model, a

class of deep neural networks and its extended version

are utilized to forecast the hourly electricity price,

• pooling-based deep recurrent NN—in [7], this network

batches a group of customers’ load profiles into a pool

of inputs and is applied for household load forecasting,

• randomized algorithms for NN training—in [8], a novel

hybrid method of probabilistic electricity load forecast-

ing is proposed, including randomized training an

improved wavelet NN, wavelet preprocessing and

bootstrapping,

• second-order gray NN—in [9], a method based on

wavelet decomposition and a second-order gray NN

combined with an augmented Dickey–Fuller test is

proposed to improve the accuracy of load forecasting,

• echo state networks—in [10], the wavelet echo state

network is applied to both STLF and short-term

temperature forecasting,

• spiking NN—in [11], spiking NN short-term load

forecaster is proposed.

STLF problems are usually decomposed to make them

simpler to solve. Subproblems can be modeled using sim-

pler NN architectures, which are easier to learn and gen-

eralize better than one big NN designed for the complex

original problem. Different methods of decomposition have

been proposed. In the early works on neural models for

STLF, the separate models for different day types were

proposed. A typical example is [12], where seven NNs

were built corresponding to the 7 day types from Monday

to Sunday. In [13], the load patterns were classified into

weekday patterns and weekend-day patterns. The weights

of NN were estimated using previous load data for each

pattern. Then, the daily period was divided into three parts:

1–9, 10–19 and 20–24, and each part was modeled using

individual NN. A similar approach in [14] was applied. For

the forecasts of weekdays from Tuesday to Friday, there

was one NN for each of these days. For Saturdays, Sun-

days, Mondays and days after a holiday, the daily period

was divided into several parts, which were modeled by

separate NNs. Decomposition into day types was also used

in [15]. Separate NNs were formed for each day type, and

different input variables were used. More recent examples

of STLF problem decomposition into day types can be

found in [16, 17, 18].

Another common practice is to decompose the load time

series into 24 series, each one corresponding to an hour of

the day. Then, 24 NNs with a single output learn on these

series to provide load forecasts for the next day [19, 20]. In

[21] for each day and each hour of the 24 h, a new model

was trained on 20 previous days. Thus, this local approach

produced models which are competent only for just 1 hour

of the current forecasted day. For 24-h-ahead STLF in [10],

24 individual models were built based on wavelet echo

state networks, each one for a specific hour of the day.

Forecasting problem decomposition into 12 months was

used in [22]. The forecasting model consists of twelve

NNs. Each of them performs the final 24-h-ahead load

forecast for 1 month of the year. This decomposition is

justified due to the differences in the weather during the

year. A separate model is also designed for each month in

[23]. The proposed models are composed of two hybrid

NNs derived from fuzzy NNs.

Several levels of the STLF problem decomposition were

used in the forecasting system known as ANNSTLF [24],

which by the year 1997 was being used by over 30 utilities

in the USA and Canada. This system has three MLP

modules: an hourly module with 24 MLPs, a daily module

with 7 MLPs and a weekly module. The final load forecast

for each hour is found by a proper adaptive combination

(based on the recursive least squares) of the forecasts given

for this hour by the three MLP modules.

Another approach to STLF problem decomposition

relies on clustering the NN inputs and designing a separate

NN for each cluster. This approach combines unsupervised

and supervised learning concepts. In [25], unsupervised

learning is used to identify days with similar daily load and

temperature patterns. The training patterns for clustering

are selected among patterns from the same period of the

year as the forecast day and representing the same day

type. For each cluster, a NN with 24 output nodes, which

produce 24 hourly loads for the forecast day, is trained.

Thus, the relationship between input and output variables is

modeled locally within each cluster. In [26], two-stage

clustering was used. The SOM identifies similarities among

the different load patterns and forms clusters. Then, the k-

means algorithm identifies similarities among different

clusters and groups similar clusters together. A dedicated

MLP for each cluster is trained to properly forecast the load

curve. Clustering is also applied on the training set in [10].

After the clusters are formulated, NNs are trained sepa-

rately with the data of the corresponding clusters.

A completely different approach to the STLF decom-

position problem is based on the multilevel wavelet

transform (WT). A load time series consisting of both

global smooth trends and sharp local variations is

Neural Computing and Applications

123

decomposed into generalization and details, i.e., low- and

high-frequency components. These components are mod-

eled separately by NNs. In [10], each NN gets as inputs a

frequency component determined for the day d, next-day

temperature and day-type index. The output of NN is the

predicted next-day value of the corresponding component.

NN in the next layer is used to reconstruct the next-day

load forecast based on outputs (frequency components) of

the NNs from the previous layer. In [27], a forecasting

model composed of wavelet transform, NN and an evolu-

tionary algorithm was proposed. Each component is pre-

dicted by a combination of NN and the evolutionary

algorithm, and then by inverse WT, the hourly load fore-

cast is obtained. The key idea of the STLF method pro-

posed in [28] is to select the similar day’s load as the input

load, apply WT to decompose it into low-frequency and

high-frequency components and then use separate NNs to

predict the two components of tomorrow’s load.

Among other approaches to the STLF decomposition

problem, the following should be mentioned:

• decomposition of the load time series into two parts: the

daily average load and the intraday load variation, and

modeling these two parts independently using NNs

[29],

• decomposition of the STLF problem at the distribution

level into ‘‘regular’’ and ‘‘irregular’’ nodes based on

load pattern similarities [30]. These node types are then

forecasted separately. Each irregular node is forecasted

by an individual NN model.

• decomposition into geographical regions due to distinct

climate characteristics and consumer bases. In [31], the

load forecasting in the four regions of Taiwan is

independently performed using NNs.

In this paper, we apply MLP for STLF. This type of

network is the most widely used among NNs for modeling

nonlinear relationships due its valuable features such as

universal approximation property and flexible fitting to the

target function. This flexibility is achieved easily by adding

new hidden neurons. Training algorithms for MLP have

been developed for many years and are still being

improved. They can be implemented in many programming

languages and environments such as: MATLAB, Python,

R, C??, Java and Scala. There are also known effective

methods of dealing with overfitting in MLP such as regu-

larization. In the simulation study in this work, we use a

powerful and robust Levenberg–Marquardt learning algo-

rithm which interpolates between the Gauss–Newton

algorithm and the method of gradient descent. To avoid

overfitting, this algorithm is enriched by Bayesian regu-

larization, which provides effective and robust MPL

training.

MLP performs very well in STLF against other NNs. In

[3], a comparison of several neural STLF models on four

datasets is presented. The compared neural models are:

MLP, radial basis function NN, generalized regression NN

(GRNN), two models based on fuzzy counterpropagation

NNs and three models based on self-organizing maps. MLP

was trained using the local learning procedure. The fore-

casting results demonstrate that MLP and GRNN achieve

similar level of accuracy for all datasets (with a slight

advantage for GRNN). The MLP model performs very well

compared to other state-of-the-art models as well as the

classical statistical models: ARIMA and exponential

smoothing (see comparison in Table 9 in Sect. 4).

In this work, we analyze and compare the global and

local approaches to building the STLF models based on

MLP. In the global approach, we built a model competent

for each hour of the day and each day of the week. Local

approaches include four methods of the forecasting prob-

lem decomposition:

• forecasting for each day of the week separately using

seven NNs,

• forecasting for each hour of the day separately using 24

NNs,

• forecasting for each day of the week and each hour of

the day separately using 168 NNs,

• forecasting separately for each forecasting task using

NN built only for this task.

The daily curves of the load in the proposed models are

preprocessed to filter out the trend, weekly and annual

cycles, and are introduced to the models as input and

output variables. Depending on the approach, other input

data are used: period of the year, day of the week and hour

of the day. The performance of the model is dependent on

how data are represented. For day of the week, six methods

of coding are considered, while for hour of the day, five

methods are considered. In the experimental part of this

work, global and local approaches are examined as well as

data representation methods.

The paper is organized as follows. In Sect. 2, data rep-

resentation ways are described. The forecasting models in

global and local versions are presented in Sect. 3. In

Sect. 4, the models using different data representation

ways are tested on real load data and compared. Finally,

Sect. 5 concludes this paper.

2 Data representation

The proposed neural models generate forecast of the load at

timepoint t of the day i ? s, where i is the number of the

current day and s is the forecast horizon in days. The

forecasted day is located in some period of the year and

Neural Computing and Applications

123

represents some day of the week. It is assumed that the load

pattern of the current day i is available and can be used as

an input of the model. It is represented by a vector x = [x1
x2 … xn], where n is a number of timepoints in a daily

period (24 for hourly resolution). The load pattern of the

forecasted day i ? s is represented by a vector y = [y1 y2
… yn]. A neural model (MLP) generates one of the y-vector

component as an output: yt. The timepoint number t, hour

of the day in our case, is represented by a vector h. The

forecasted day is located in the period of the year repre-

sented by a vector p, and its type (Monday, …, Sunday) is

represented by a vector d. Vectors x, p, d and h can be used

as inputs of NNs, and component yt is an output. The

methods of representation of input and output data are

shown below.

2.1 Representation of load time series

The i-th daily period of the load time series Li = [Li,1 Li,2
… Li,n] is represented by the input vector xi = [xi,1 xi,2 …
xi,n] [X = Rn, which is an normalized version of the load

vector Li. The components of input vector are defined as

follows [32]:

xi;t ¼
Li;t � �Li

Di

ð1Þ

where: i = 1, 2, …, N is the daily period number, t = 1, 2,

…, n is the time series element number in the period i, Li,t
is the t-th load time series element in the period i, �Li is the

mean load in the period i and Di ¼
ffi

Pn
l¼1 ðLi;l � �LiÞ2

q

is

the dispersion of the time series elements in the period i.

Note that after normalization, all load vectors Li have

unity length, zero mean and the same variance. Thus, the

load time series, which is nonstationary in mean and

variance, is represented by x-vectors having the same mean

and variance. They carry information about the shape of

the daily load curve. (The trend and weekly and annual

variations are filtered.)

The forecasted daily period i ? s: Li?s = [Li?s,1 Li?s,2

… Li?s,n] is represented by an output vector yi = [yi,1 yi,2
… yi,n] [Y = Rn. The y-vector components are defined as

follows:

yi;t ¼
Liþs;t � �Li

Di

ð2Þ

where: i = 1, 2, …, N, t = 1, 2, …, n.

In (2), the coding variables �Li and Di determined for the

day i are used instead of the day i ? s. This is because their
values for the day i ? s are unknown at the moment of

forecasting. Using their known values for the i-th day

enables us to calculate the forecasted load value. To do so,

transformed Eq. (2) is used:

L
_

iþs;t ¼ y
_

i;tDi þ �Li ð3Þ

where y
_

i;t is the t-th component of the y-vector forecasted

by the NN.

As the daily periods of the load time series are coded as

x- and y-vectors, we unify the input and output data and

simplify the relationships between them. This is further

discussed in [32]. The expected result is a simpler and

more accurate forecasting model.

2.2 Representation of period of the year

A period of the year is represented by two-component

vector p:

p ¼ sin 2p
#ðiþ sÞ

366

� �

cos 2p
#ðiþ sÞ

366

� �� �

ð4Þ

where #(i ? s) = 1, 2, …, 366 is the forecasted day num-

ber in the year.

Days which are in the same position in time in a yearly

cycle have similar values of their p-vector components.

This way of period of the year representation was used in

many works, see [12, 10, 29].

2.3 Representations for day of the week

Index of the day of the week d has seven values: 1 for

Monday, 2 for Tuesday, … and 7 for Sunday. Six coding

ways for d are considered (dc = 1, 2,…, 6). In the first one,

the index of the day is scaled to the range [1/7, 1] (see

dc = 1 in Table 1). In this representation, successive days

of the week, from Monday to Sunday, have successive

values of the scaled index. The most distant days are

Mondays and Sundays for which d1 = 1/7 and 1,

respectively.

In the second representation, sine and cosine functions

are used for coding the day index in a similar way as in the

case of coding the period of the year (see dc = 2 in

Table 1). Note that in this ‘‘periodic’’ representation, the

Table 1 Representations for day of the week

dc 1 2 3 4 5 6

d1 d2 d3 d4 d5 d6

Monday d/7 [sin(2pd/7)

cos(2pd/7)]

1000000 001 001 00

Tuesday 0100000 010 011 01

Wednesday 0010000 011 010 01

Thursday 0001000 100 110 01

Friday 0000100 101 111 01

Saturday 0000010 110 101 10

Sunday 0000001 111 100 11

Neural Computing and Applications

123

last day of the week has similar d-vector values as the first

day of the week.

The third representation uses seven bits. The d-th day of

the week is represented by a vector having one at the d-th
position and zeros at remaining positions (see dc = 3 in

Table 1).

In the fourth representation, index d is encoded using the
natural binary system. Three bits are needed for coding

seven values of the index (see dc = 4 in Table 1). Note that

in this representation, two neighboring values of the index

can differ significantly in the binary space. For example,

values 3 and 4 are represented by vectors [011] and [100],

respectively, where all three bits are different. This disor-

der of regularity can affect learning of the neural network.

To improve this, in the fifth representation, Gray code is

used, in which two adjacent values of the index differ in

only one bit in the binary space (see dc = 5 in Table 1).

In the last representation, days of the week are grouped

according to the load pattern similarity. Four groups are

assumed: (1) Mondays, (2) Tuesdays–Fridays, (3) Satur-

days and (4) Sundays. The group number is binary encoded

(see dc = 6 in Table 1).

2.4 Representations for hour of the day

Hour of the day, t = 1, 2,…, 24, is represented in five ways

(hc = 1, 2, …, 5) corresponding to the first five ways of the

day of the week representation, see Table 2. In the third

representation, 24 bits are needed. The fourth and fifth

representations, i.e., natural binary coding and Gray cod-

ing, respectively, both use five bits.

The features of the coding method have an influence on

NN learning and its ability to map inputs into outputs. The

first important feature of coding is the adjacency property:

adjacent values in the original space are represented by

adjacent values in the code space. All representation

methods have this property except for natural binary cod-

ing. The second feature is the periodicity property: the

beginning and ending values in the original space are

represented by similar values in the code space. This

property can be important for periodically changing

variable such as load in daily, weekly and annual periods.

This property is evident only for representations based on

sine and cosine functions. Another important feature is the

number of components of the code vector. This corre-

sponds to the number of free parameters of NN (weights

connecting inputs with hidden neurons), which are used to

map the encoded variable into the output variable (in the

context of other input variables of course). The more

components (inputs) for a variable, the more weights for it,

which enables the network to model more complex rela-

tionships. In the case of day of the week and hour of the

day, the most inputs are delivered by the third represen-

tation methods: 7 for d3 and 24 for h3, respectively. In the

first representation method of these variables (d1 and h1,

respectively), there is only one component. One component

is also used in the case of the load time series representa-

tion. (Each load value is represented by one component of

x-vector.)

In Sect. 4, the representation methods are tested

experimentally.

3 Forecasting models for STLF based
on MLPs

Five variants of the forecasting models based on MLP are

examined, v.1–v.5. They correspond to the method of the

STLF problem decomposition. In each case, the forecasting

task is to forecast the power system load at hour v = 1,

2,…, 24 of the day i ? s.
For all cases, MLP with one hidden layer is used. The

Levenberg–Marquardt algorithm with Bayesian regular-

ization is applied for learning MLPs. In this algorithm,

combination of squared errors and net weights is mini-

mized. This expansion of the cost function to search not

only for the minimal error, but also for the minimal error

using the minimal weights prevents overfitting. Compared

to other methods of improving generalization in NNs,

Bayesian regularization gives very good results [33].

3.1 Global model (v.1)

This model is built for forecasting the system load at each

hour of the day, t = 1, 2,…, 24, and for each day of the

week, d = 1, 2,…, 7. Thus, the model is competent for

every forecasting task. The model inputs are:

• x-vector for the day i, xi,

• period of the year from which the forecasted day is,

pi?s,

• type of the forecasted day, di?s, and

• forecasted hour, ht.

Table 2 Representations for hour of the day

hc 1 2 3 4 5

h1 h2 h3 h4 h5

Hour 1 t/24 [sin(2pt/24)

cos(2pt/24)]

1000…0 00001 00001

Hour 2 0100…0 00010 00011

Hour 3 0010…0 00011 00010

… … … …
Hour

24

0000…1 11000 10100

Neural Computing and Applications

123

The input pattern is of the form [xi pi?s di?s ht]. The

output is yi,t. The model learns on the training set including

24 m samples:

fð½xipiþsdiþsht�; yi;tÞ : i ¼ 1; 2; . . .;m; t ¼ 1; 2; . . .; 24g
ð5Þ

and then is tested on the test set of size 24v samples:

fð½xipiþsdiþsht�; yi;tÞ : i ¼ mþ 1;mþ 2; . . .;mþ v;
t ¼ 1; 2; . . .; 24g ð6Þ

where m is the number of days in the training set and v is

the number of days in the test set.

In the experimental part of the work, the training set

contains samples from the first two or three years of the

data and the test set contains samples from the next year.

The model which is trained only once on the training set is

competent for the entire test period, i.e., for i = m ? 1 to

m ? v, where v is 366 for 1-year test period.

3.2 Separate NN for each day of the week (v.2)

In this approach, for each day of the week, a separate NN is

trained. Thus, there is no need to introduce the type of the

forecasted day di?s as input. The input pattern is in the

form: [xi pi?s ht]. The NN for the day-type d learns on the

training set:

fð½xipiþsht�; yi;tÞ : i 2 D1...m; t ¼ 1; 2; . . .; 24g ð7Þ

and then is tested on the test set:

fð½xipiþsht�; yi;tÞ : i 2 Dmþ1...mþv; t ¼ 1; 2; . . .; 24g ð8Þ

where Da…b = {i = a, a ? 1, …, b: type(i ? s) = d} and

type(i ? s) is the day of the week index of the forecasted

day.

Note that NN for the day-type d learns on the training

patterns representing just this type of the day. Each NN is

competent for the entire test period but only for one of the

seven days of the week.

3.3 Separate NN for each hour of the day (v.3)

For each hour of the day, a separate NN is built. Inputs do

not include the hour of the day ht. The input pattern is in

the form: [xi pi?s di?s]. The NN for hour v learns on the

training set:

fð½xipiþsdiþs�; yi;vÞ : i ¼ 1; 2; . . .;mg ð9Þ

and then is tested on the test set:

fð½xipiþsdiþs�; yi;vÞ : i ¼ mþ 1;mþ 2; . . .;mþ vg ð10Þ

Thus, 24 NNs are built. Each of them is competent for

the entire test period but only for one of the 24 h of the day.

Note that input patterns [xi pi?s di?s] for all 24 NNs are the

same, but target outputs are different. NN for hour v has v-
th component of y-vector as its output: yi,v.

3.4 Separate NN for each day of the week
and hour of the day (v.4)

In this case, we built 7 9 24 = 168 NNs. Each of them is

competent for the entire test period but only for a selected

hour of the selected day of the week. The input pattern

includes x-vector and p-vector: [xi pi?s]. The training set is

defined as:

fð½xipiþs�; yi;vÞ : i 2 D1...mg; ð11Þ

and the test set is defined as:

fð½xipiþs�; yi;vÞ : i 2 Dmþ1...mþvg ð12Þ

In this case, NN designed for the day-type d and hour v
learns on training patterns corresponding to days of type d
and hour v.

3.5 Separate NN for each forecasting task (v.5)

In this approach, the NN is constructed for each forecasting

task. The input pattern is composed only of xi. The output

is yi,v. For a given forecasting task—the forecast the power

system load at hour v of the day i ? s, whose day type is d,
and number is q—the training set is built in the form:

fðxi; yi;vÞ : i 2 D1...q�1g; ð13Þ

and one-element test set is:

fðxq; yq;vÞg ð14Þ

Note that in the case of this model, the historical period

from which the training set is generated is not limited to

m days, but also contains recent days from m ? 1 to q - 1,

i.e., all available data, up to the day, which is the last day

from the available history. Newer information hidden in

data, from i = m ? 1 to q - 1, is used for building a

forecasting model for the day q. In the case of models

described above, this information is not used. For example,

when we forecast last day of the 1-year test period

(v = 366) using models v.1–v.4, we use information older

than 1 year to train the model. Model v.5 learns on the most

recent information about the load time series. We expect

this to increase model performance.

In [34], a similar neural model was proposed, but it was

trained locally on the training samples (xi, yi,t), where x-

vectors belong to the set of k nearest neighbors of the

current x-vector. During experiments conducted as part of

this work, we noticed that increasing k counterintuitively

improves results. Thus, in this study, we do not limit the

Neural Computing and Applications

123

number of samples to k nearest neighbors, but train our

model using all samples from history [see i [D1…q-1 in

(13)].

4 Simulation study

In this section, the neural models v.1–v.5 as well as data

representation methods are evaluated on real data: four data

sets containing hourly loads of Polish (PL), British (GB),

French (FR) and German (DE) power systems in the period

2012–2015. (The source of data is www.entsoe.eu.) A one-

day-ahead STLF problem is considered (s = 1). Then, the

forecast accuracy of the best variant of the proposed neural

model is compared with levels of accuracy achieved by

state-of-the-art models applied to STLF. The comparative

models include neural networks, linear regression, non-

parametric regression, clustering-based models, artificial

immune systems, ARIMA, exponential smoothing and the

naı̈ve model.

The optimization and training procedures for neural

models in variants v.1–v.4 are as follows. First, the number

of hidden neurons and the best methods of input data

representation are selected. To do this, the training is

repeated for each variant of data representation as well as

for #neurons = 1, 2,…, g. For example, in the case of

model v.1, we have four input variables: xi, pi?s, di?s, ht.

The day of the week is encoded using one of six ways, and

the hour of the day is encoded using one of five ways.

Thus, there are 5 9 6 = 30 combinations of input data

representation. For each combination, we train the model

composed of 1, 2,…, g neurons. The training set is created

using data from the period 2012–2013. After training, the

model is tested on data from 2014. The best model is

selected having the lowest error on the test period. Then,

the best model is trained on data from the period

2012–2014 and then tested on data from 2015. The mean

error for the forecasting tasks from the test period (2015) is

a measure of the model quality.

In the case of the neural model in variant v.5, the

optimization and training procedures are different. This

model is trained for each forecasting task from the test

period (2015) independently. First, to select the number of

hidden neurons, ten models are built for ten forecasting

tasks from the history, which are similar to the current

forecasting task. The history from which these ten tasks are

selected is limited to the period covering year 2014 and the

period of 2015 preceding the current forecasting task for

the day q. By similar forecasting tasks to the current one,

we mean tasks for the same day-type d as the current task

and having x-vectors similar to the x-vector of the current

task (xq). The similarity measure between x-vectors is the

Euclidean distance. For example, when the forecasting task

concerns July 1, 2015, a Wednesday, we select ten similar

forecasting tasks from the period from January 1, 2014, to

June 29, 2015. For PL data ,these selected tasks are (ran-

ked in the order of similarity): June 11, 2014, June 25,

2014, June 17, 2015, June 24, 2015, July 2, 2014, July 16,

2014, July 9, 2014, June 18, 2014, July 30, 2014 and June

10, 2015. As we can see, these days are from the same

period of the year as the current forecasted day. The model

learns for each of the ten similar tasks independently on the

training set generated from the historical data according to

(13), where now q is the similar day number. The training

is repeated for #neurons = 1, 2,…, g, and the optimal

number of neurons is selected for which the mean error

determined on similar tasks is minimal. Then, the optimal

model learns on the training set (13) generated from the

period starting on January 1, 2012, and the forecast for the

current task is generated. Thus, for each forecasting task

from 2015, a separate NN is created and optimized on the

historical forecasting tasks which are most similar to the

current one.

The error measure applied in this study is the mean

absolute percentage error (MAPE), which is traditionally

used as an error measure in STLF. Atypical days such as

public holidays are excluded from the training and test sets

(between 10 and 20 days in a year).

The errors for the model v.1 with different methods of

encoding of the day type (dc) and hour of the day (hc) are

shown in Fig. 1. Note that in most cases binary coding for

the hour of the day provides much better results than other

ways of coding. In the case of PL and FR data, we get the

best results when hour of the day is coded on 24 bits and

the day of the week is coded using sine and cosine func-

tions. For GB data, best results are obtained when the hour

of the day is coded using natural binary code and the day

type is coded on seven bits. The best results for DE data are

achieved when the hour of the day is represented in natural

binary code, and the day type is encoded in two bits rep-

resenting one of four groups (dc = 6). The best methods of

data representation are summarized in Table 3, which also

shows the optimal numbers of hidden neurons and errors

for 2014 and 2015. The error for 2015, as an error on data

unseen during the learning and optimization procedures, is

the right measure of the model’s performance.

Table 4 shows results for the model in variant v.2. Note

that in optimization procedures in all cases, binary coding

was selected for the hour of the day. The forecasts for

Mondays are usually less accurate than forecasts for other

days of the week. Unexpectedly, mean errors generated by

model v.2 are higher than errors generated by model v.1 for

all datasets. This leads to the conclusion that the decom-

position of the forecasting problem on separate models for

each day of the week is not a good idea.

Neural Computing and Applications

123

http://www.entsoe.eu

Results for the models in variants v.3 and v.4 are pre-

sented in Tables 5 and 6, respectively. Note that the opti-

mal number of neurons for v.4 is about 2 or 3 on average

and for v.3 about 5–7. This is because models v.4 are

‘‘more local’’ than v.3, and the relationships between input

and output variables are easier and can be modeled by

simpler NN. The global approach v.1 needs 8–14 neurons,

and variant v.2, which is decomposed on 7 NNs needs 6–10

neurons on average. Thus, we can expect that the ‘‘most

local’’ approach v.5 will need even fewer neurons than v.4.

In Table 7, errors are shown for models v.5 in three

variants:

(a) optimization procedure is carried out to select the

optimal number of neurons for each forecasting task

(#neurons = 1, 2,…, 5),

hc
1 2 3 4 5

M
A

P
E

 2
01

4

1.2

1.3

1.4

1.5

1.6
PL dc=1

 2

 3

 4

 5

 6

hc
1 2 3 4 5

M
A

P
E

 2
01

4

2

2.2

2.4

2.6

2.8
GB

hc
1 2 3 4 5

M
A

P
E

 2
01

4

1.6

1.7

1.8

1.9

2

2.1
FR

hc
1 2 3 4 5

M
A

P
E

 2
01

4
1.6

1.8

2

2.2
DE

Fig. 1 Model v.1 performance with different methods of day of the week and hour of the day encoding

Table 3 Results for variant 1

PL GB FR DE

dc 2 3 2 6

hc 3 4 3 4

#neurons 12 13 8 14

MAPE 2014 1.24 2.12 1.65 1.67

MAPE 2015 1.35 2.81 1.70 1.66

Table 4 Results for variant 2

Mon Tue Wed Thu Fri Sat Sun Mean

PL

hc 4 5 5 3 4 4 4

#neurons 6 13 10 4 16 10 9 9.71

MAPE 2014 2.07 1.13 1.2 1.12 1.24 1.29 1.28 1.33

MAPE 2015 2.15 1.11 1.24 1.28 1.38 1.49 1.49 1.45

GB

hc 3 4 4 4 4 5 5

#neurons 5 9 8 9 7 6 6 7.14

MAPE 2014 2.38 3.12 2.56 3.05 2.66 3.36 3.34 2.92

MAPE 2015 3.88 3.53 3.49 3.83 3.23 3.41 3.43 3.54

FR

hc 4 5 4 5 5 4 4

#neurons 5 8 9 7 8 6 7 7.14

MAPE 2014 2.36 1.76 1.72 1.96 1.56 1.85 1.77 1.85

MAPE 2015 2.32 1.93 1.78 2.07 1.97 1.88 1.68 1.95

DE

hc 3 3 4 4 4 5 4

#neurons 1 6 7 9 10 8 6 6.71

MAPE 2014 2.64 1.2 1.39 1.39 1.59 1.56 1.56 1.62

MAPE 2015 2.27 1.86 2.33 1.58 1.84 1.88 1.64 1.91

Neural Computing and Applications

123

(b) there is no optimization phase—there is one neuron

in the hidden layer for all forecasting tasks, and

(c) there is no optimization phase—there are two

neurons in the hidden layer for all forecasting tasks.

The best results for each dataset in Table 7 are marked

with an asterisk (best results were confirmed by Wilcoxon

rank sum test with 5% level of significance). As we can see

from this table, there is no difference in errors between

Table 5 Results for variant 3

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PL dc 3 6 4 5 4 6 4 3 6 6 5 3

#neurons 2 7 11 8 10 7 6 3 8 5 8 7

MAPE 2014 0.56 0.66 0.71 0.74 0.84 0.92 1.09 1.21 1.23 1.16 1.23 1.25

MAPE 2015 0.49 0.67 0.74 0.79 0.92 1.00 1.19 1.21 1.60 1.27 1.33 1.33

GB dc 2 5 1 6 6 5 5 6 4 6 6 3

#neurons 4 3 6 2 5 5 8 5 7 8 3 5

MAPE 2014 0.43 0.94 1.10 1.38 1.63 1.82 1.99 1.90 1.96 2.09 2.69 3.36

MAPE 2015 0.66 0.99 1.31 1.54 1.63 2.05 2.18 2.25 2.35 2.37 2.69 3.78

FR dc 1 1 4 2 2 1 4 3 3 2 3 2

#neurons 6 14 7 10 18 16 8 4 4 10 7 9

MAPE 2014 0.38 0.62 0.78 0.86 0.96 1.15 1.39 1.54 1.41 1.33 1.36 1.47

MAPE 2015 0.41 0.60 0.85 1.04 1.10 1.30 1.54 1.59 1.42 1.59 1.44 1.59

DE dc 6 4 3 6 6 6 3 6 3 5 6 4

#neurons 1 10 3 5 15 3 7 10 5 6 8 5

MAPE 2014 0.41 0.58 0.69 0.80 0.84 0.94 1.25 1.29 1.31 1.23 1.30 1.29

MAPE 2015 0.38 0.65 0.73 0.82 0.92 0.98 1.39 1.49 1.55 1.32 1.41 1.48

Hour 13 14 15 16 17 18 19 20 21 22 23 24 Mean

PL dc 4 6 4 4 4 5 2 1 1 3 3 4

#neurons 7 5 6 7 3 7 7 9 8 5 8 6 6.67

MAPE 2014 1.31 1.38 1.38 1.50 1.48 1.40 1.33 1.30 1.17 1.08 1.12 1.14 1.13

MAPE 2015 1.44 1.50 1.44 1.64 1.65 1.43 1.36 1.37 1.36 1.19 1.19 1.22 1.22

GB dc 5 6 5 5 5 5 5 3 3 2 4 3

#neurons 6 7 5 7 8 4 3 3 2 3 2 3 4.75

MAPE 2014 3.92 4.24 4.42 4.39 4.09 3.52 2.93 2.67 2.48 2.26 2.12 2.25 2.52

MAPE 2015 4.21 4.99 5.19 4.72 4.09 3.84 3.11 2.98 2.51 2.33 2.37 2.62 2.78

FR dc 4 5 3 4 2 2 1 2 5 2 3 2

#neurons 9 5 9 6 6 5 5 4 3 6 3 6 7.50

MAPE 2014 1.56 1.80 1.96 2.10 2.21 2.00 1.88 1.76 1.71 1.71 1.64 1.67 1.47

MAPE 2015 1.67 1.87 2.41 2.22 2.37 2.11 1.93 1.80 1.81 1.83 1.64 1.73 1.58

DE dc 3 3 3 4 3 3 3 1 2 1 3 3

#neurons 2 5 5 6 7 6 4 7 12 5 2 2 5.88

MAPE 2014 1.40 1.48 1.63 1.59 1.61 1.54 1.41 1.32 1.34 1.26 1.31 1.36 1.22

MAPE 2015 1.40 1.59 1.73 1.73 1.73 1.54 1.44 1.49 1.56 1.26 1.33 1.36 1.30

Table 6 Results for variant 4

PL GB FR DE

#neurons 3.48 2.97 2.77 2.40

MAPE 2014 1.16 2.64 1.53 1.22

MAPE 2015 1.20 2.73 1.56 1.24

Table 7 MAPE for variant 5

PL GB FR DE

v.5a 1.17* 2.63* 1.63* 1.25*

v.5b 1.27 2.53* 1.61* 1.26

v.5c 1.16* 2.57* 1.62* 1.27*

Neural Computing and Applications

123

variants v.5a and v.5c. But note that variant v.5c does not

require the time-consuming optimization phase.

A comparison of the proposed approaches v.1–v.5 is

given in Table 8. The lowest errors are for PL data, then for

DE and FR data. In contrast, errors for GB data are up to

two times higher than for the other data sets. As in Table 7,

asterisks indicate best results, which have been statistically

confirmed. The most accurate approaches are v.5 and v.4.

These approaches do not use the day of the week and hour

of the day as inputs which means that searching for the best

way of representation is unnecessary for these models. In

variant v.5c, searching for the optimal number of neurons

is unnecessary as well, meaning the model in this variant

can be built very fast.

In Fig. 2, errors for each hour of the day and day of the

week are shown. In the case of PL, FR and DE data, the

most outlying errors are for Mondays. Errors for the ear-

liest hours of the day are the lowest, while for hours 12–18,

corresponding to the peak load, they are highest.

Finally, we compare the forecast accuracy of the best

variant of the proposed neural model, v.5, with the accu-

racy of the state-of-the-art models applied to STLF. The

models were tested in one-day-ahead STLF problems on

the following datasets:

• PL—hourly load time series of the Polish power system

in the period of 2002–2004,

• FR—half-hourly load time series of the of the French

power system in the period of 2007–2009,

• GB—the half-hourly load time series of the British

power system in the period of 2007–2009 and

• VC—the half-hourly load time series of the power

system of Victoria, Australia, in the period of

2006–2008.

The comparative models are:

• RBFNN—radial basis function NN,

• GRNN—generalized regression NN,

• FCPNN1—fuzzy counterpropagation NN, instar clus-

tering variant,

• FCPNN2—fuzzy counterpropagation NN, outstar clus-

tering variant,

• SOM1—self-organizing map, concatenated x- and y-

patterns clustering variant,

• SOM2—self-organizing map, independent x- and y-

patterns clustering variant,

• SOM3—self-organizing map, y-patterns clustering

variant,

• PCR—principal components regression,

• PLSR—partial least-squares regression,

• N-WE—Nadaraya-Watson estimator,

• FNM—fuzzy neighborhood model,

• FP1 ? k-means—model based on k-means clustering

of concatenated x- and y-patterns,

• FP2 ? k-means—model based on k-means clustering

of x- and y-patterns independently,

• AIS1—artificial immune system working on concate-

nated x- and y-patterns,

• AIS 2—artificial immune system working on separate

populations of x- and y-patterns,

• AISLFS—artificial immune system with local feature

selection,

• ARIMA—auto regressive integrated moving average

model ARIMA(p, d, q) 9 (P, D, Q)v,

• ES—exponential smoothing state space model,

• Naı̈ve—naı̈ve model: the forecasted daily curve is the

same as seven days ago.

The first seven models are based on different types of

NNs and were described in detail in [3]. The next two

models, PCR and PLSR [35], are linear regression models

in which the components of the input patterns are con-

structed by the linear combination of the original compo-

nents. In these models, the relationship between input and

output patterns is modeled locally in the neighborhood of a

query pattern. N-WE and FNM are nonparametric regres-

sion models [36], where the regression curve is a linear

combination of y-vectors weighted by the function which

nonlinearly maps the distance between x-vectors. FP1 ? k-

means and FP2 ? k-means [36] aggregate the x- and

y-patterns into clusters, assign the query pattern to the

cluster and reconstruct the forecasted y-pattern from the

cluster characteristics. Artificial immune systems, AIS1,

AIS2 and AISLFS [36, 37], are biologically inspired

computation methods, where the forecasting problem is

solved in the immune memory creation process. In these

models, antibodies are the recognition and prediction units,

which memorize features of the time series and reconstruct

the forecasted pattern. For ARIMA and ES, the time series

were decomposed for each hour of the day (or half hour,

depending on the time series resolution) and a separate

series was created. In this way, a daily seasonality was

eliminated. ARIMA or ES was used for the independent

modeling of these series. In the above list of forecasting

models, except ARIMA, ES and Naı̈ve, the time series are

Table 8 MAPE for the best models in each variant

v.1 v.2 v.3 v.4 v.5

PL 1.35 1.45 1.22 1.20 1.16*

GB 2.81 3.54 2.78 2.73 2.57*

FR 1.70 1.95 1.58 1.56* 1.62

DE 1.66 1.91 1.30 1.24* 1.27*

Neural Computing and Applications

123

represented by patterns defined in the same way as in this

work [see Eqs. (1) and (2)].

Table 9 gives the forecast errors for the test period (last

year of the time series) for the models listed above. The

lowest errors are in bold. As we can see from this table,

MLP v.5 is among the most accurate models. It should also

be noted that, in most cases, pattern-based methods out-

perform the classical methods such as ARIMA and ES.

5 Conclusions

The main contribution of this work is to examine global

and local versions of the neural models for STLF. The

models are analyzed in the context of data representation

methods. Daily load curve is introduced to the models as an

x-vector: the normalized vector of the hourly loads. This

preprocessing simplifies the forecasting problem by filter-

ing out both the trend and seasonal variations of periods

longer than a day. X-vectors express the shape of the daily

curve. Similar preprocessing is used for an output variable.

The day of the week is encoded in six ways and the hour of

the day in five ways. In optimization procedures, the best

ways of coding as well as the number of hidden neurons are

selected for each forecasting model.

In a global approach, the model is competent for each

day of the week and each hour of the day. The relationship

between input and output variables is complex in this case,

which means a more complex network with more hidden

neurons is required. Both the learning and optimization of

such model are difficult, time-consuming tasks. While the

accuracy of this model is limited, the decomposition of the

forecasting problem into subproblems, and modeling these

subproblems separately, should lead to an improvement in

accuracy. The first decomposition method relies upon

splitting the problem into seven subproblems, one for each

day of the week individually. However, an experimental

study did not confirm better results for this approach. The

second decomposition method splits the problem into 24

subproblems, one for each hour of the day. Local NNs are

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

PL v.1

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

PL v.2

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

PL v.3

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

PL v.4

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

PL v.5

Hour of the day
1 6 12 18 24

M
A

P
E

0

2

4

6

8
GB v.1

Hour of the day
1 6 12 18 24

M
A

P
E

0

2

4

6

8
GB v.2

Hour of the day
1 6 12 18 24

M
A

P
E

0

2

4

6

8
GB v.3

Hour of the day
1 6 12 18 24

M
A

P
E

0

2

4

6

8
GB v.4

Hour of the day
1 6 12 18 24

M
A

P
E

0

2

4

6

8
GB v.5

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

FR v.1

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

FR v.2

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

FR v.3

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

FR v.4

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

FR v.5

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

DE v.1

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

DE v.2

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

DE v.3

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

DE v.4

Hour of the day
1 6 12 18 24

M
A

P
E

0

1

2

3

DE v.5

Mon Tue Wed Thu Fri Sat Sun Mean

Fig. 2 Forecast errors for different hours of the day and days of the week

Neural Computing and Applications

123

built for each hour and results are improved. Further

improvement is achieved when the problem is decomposed

into subproblems representing each day of the week and

each hour of the day. In this case, the local relationships

between the input and output variables within the sub-

problems are simpler and can be modeled using less neu-

rons in easy optimization and learning procedures. Finally,

the most local decomposition method splits the problem

into separate forecasting tasks, i.e., forecasts for a given

hour of a given day. In this case, an individual NN learns

for each forecasting task and is competent only for this

task. New tasks require new NN learning. An advantage of

this method is that the model does not require an opti-

mization phase (selection of the number of neurons and

data coding method). In its optimal variant, it only has two

hidden neurons, so, its learning is very fast. The most local

models, v.4 and v.5, reduced the forecast errors signifi-

cantly, when compared to the global model.

The final recommendation for STLF is using the local

MLP models v.4 or v.5 due to the most accurate results.

Note that these models have very simple architecture: in

v.4 only 2–4 hidden neurons are needed, and in v.5 just two

or even one hidden neuron provides sufficiently accurate

forecasts. Such simple models learn much faster and are

more resistant to overfitting than more complex models

v.1, v.2 and v.3. Moreover, the landscape of the error

function for them is less complex, so finding a global

minimum is more likely.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for

short-term load forecasting: a review and evaluation. IEEE Trans

Power Syst 16(1):44–55

2. Kodogiannis VS, Anagnostakis EM (2002) Soft computing based

techniques for short-term load forecasting. Fuzzy Sets Syst

128:413–426

3. Dudek G (2016) Neural networks for pattern-based short-term

load forecasting: a comparative study. Neurocomputing

2015:64–74

Table 9 Forecast errors and

their interquartile ranges for the

proposed and comparative

models

Model PL FR GB VC

MAPE IQR MAPE IQR MAPE IQR MAPE IQR

MLP (v.5) 1.45 1.38 1.59 1.64 1.63 1.68 2.99 2.74

RBFNN 1.67 1.53 1.70 1.70 1.84 1.90 3.23 3.05

GRNN 1.38 1.33 1.64 1.71 1.56 1.64 2.83 2.59

FCPNN1 1.71 1.46 1.90 1.95 1.69 1.79 3.18 2.97

FCPNN2 1.63 1.50 1.82 1.86 1.66 1.71 3.22 2.99

SOM1 1.74 1.65 2.10 2.19 1.95 1.98 3.41 3.12

SOM2 1.73 1.53 1.95 2.04 1.78 1.89 3.28 3.08

SOM3 1.99 1.83 2.06 2.18 1.95 2.02 3.63 3.47

PCR 1.35 1.33 1.71 1.78 1.60 1.68 3.00 2.70

PLSR 1.34 1.32 1.57 1.61 1.54 1.61 2.83 2.60

N-WE 1.30 1.30 1.66 1.67 1.55 1.63 2.82 2.56

FNM 1.38 1.38 1.67 1.71 1.60 1.66 2.91 2.67

FP1 ? k-means 1.69 1.64 2.05 2.17 1.84 1.88 3.34 3.01

FP2 ? k-means 1.59 1.51 1.94 2.05 1.76 1.84 3.13 2.94

AIS1 1.50 1.50 1.93 1.95 1.77 1.84 3.04 2.75

AIS2 1.50 1.51 1.93 1.96 1.78 1.87 3.33 2.93

AISLFS 1.51 1.49 1.79 1.81 1.67 1.73 3.13 2.75

ARIMA 1.82 1.71 2.32 2.53 2.02 2.07 3.67 3.42

ES 1.66 1.57 2.10 2.29 1.85 1.84 3.52 3.35

Naı̈ve 3.43 3.42 5.05 5.96 3.52 3.82 4.54 4.20

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

4. Zang H et al (2018) Hybrid method for short-term photovoltaic

power forecasting based on deep convolutional neural network.

IET Gener Transm Distrib 12(20):4557–4567

5. Kong W, Dong ZY, Jia Y, Hill DJ, Xu Y, Zhang Y (2019) Short-

term residential load forecasting based on LSTM recurrent neural

network. IEEE Trans Smart Grid 10(1):841–851

6. Wang L, Zhang Z, Chen J (2017) Short-term electricity price

forecasting with stacked denoising autoencoders. IEEE Trans

Power Syst 32(4):2673–2681

7. Shi H, Xu M, Li R (2018) Deep learning for household load

forecasting—a novel pooling deep RNN. IEEE Trans Smart Grid

9(5):5271–5280

8. Rafiei M, Niknam T, Aghaei J, Shafie-Khah M, Catalão JPS

(2018) Probabilistic load forecasting using an improved wavelet

neural network trained by generalized extreme learning machine.

IEEE Trans Smart Grid 9(6):6961–6971

9. Li B, Zhang J, He Y, Wang Y (2017) Short-term load-forecasting

method based on wavelet decomposition with second-order gray

neural network model combined with ADF test. IEEE Access

5:16324–16331

10. Deihimi A, Orang O, Showkati H (2013) Short-term electric load

and temperature forecasting using wavelet echo state networks

with neural reconstruction. Energy 57:382–401

11. Kulkarni S, Simon SP, Sundareswaran K (2013) A spiking neural

network (SNN) forecast engine for short-term electrical load

forecasting. Appl Soft Comput 13(8):3628–3635

12. Papalexopoulos AD, Hao S, Peng T-M (1994) An implementa-

tion of a neural network based load forecasting model for the

EMS. IEEE Trans Power Syst 9(4):1956–1962

13. Lee KY, Cha YT, Park JH (1992) Short-term load forecasting

using an artificial neural network. IEEE Trans Power Syst

7(1):124–132

14. Srinivasan D (1998) Evolving artificial neural networks for short

term load forecasting. Neurocomputing 23(1–3):265–276

15. Topalli AK, Erkmen I, Topalli I (2006) Intelligent short-term

load forecasting in Turkey. Int J Electr Power Energy Syst

28(7):437–447

16. Methaprayoon K, Lee WJ, Rasmiddatta S, Liao JR, Ross RJ

(2007) Multistage artificial neural network short-term load fore-

casting engine with front-end weather forecast. IEEE Trans Ind

Appl 43(6):1410–1416

17. Fan S, Chen L, Lee WJ (2009) Short-term load forecasting using

comprehensive combination based on multimeteorological

information. IEEE Trans Ind Appl 45(4):1460–1466

18. Cecati C, Kolbusz J, Ró _zycki P, Siano P, Wilamowski BM (2015)

A novel RBF training algorithm for short-term electric load

forecasting and comparative studies. IEEE Trans Ind Electron

62(10):6519–6529

19. Kalaitzakis K, Stavrakakis GS, Anagnostakis EM (2002) Short-

term load forecasting based on artificial neural networks parallel

implementation. Electr Power Syst Res 63(3):185–196

20. Kodogiannis VS, Anagnostakis EM (1999) A study of advanced

learning algorithms for short-term load forecasting. Eng Appl

Artif Intell 12(2):159–173

21. Dillon TS, Sestito S, Leung S (1991) An adaptive neural network

approach in load forecasting in a power system. In: Proceedings

first international forum on applications of neural networks to

power systems, pp 17–21

22. Tamimi M, Egbert R (2000) Short term electric load forecasting

via fuzzy neural collaboration. Electr Power Syst Res

56(3):243–248

23. Hanmandlu M, Chauhan BK (2011) Load forecasting using

hybrid models. IEEE Trans Power Syst 26(1):20–29

24. Khotanzad A, Hwang RC, Abaye A, Maratukulam D (1995) An

adaptive modular artificial neural network hourly load forecaster

and its implementation at electric utilities. IEEE Trans Power

Syst 10(4):1716–1722

25. Djukanovic M, Ruzic S, Babic B, Sobajic DJ, Pao Y-H (1995) A

neural-net based short term load forecasting using moving win-

dow procedure. Int J Electr Power Energy Syst 17(6):391–397

26. Hernández L, Baladrón C, Aguiar JM, Carro B, Sánchez-Es-

guevillas A, Lloret J (2014) Artificial neural networks for short-

term load forecasting in microgrids environment. Energy

75:252–264

27. Amjady N, Keynia F (2009) Short-term load forecasting of power

systems by combination of wavelet transform and neuro-evolu-

tionary algorithm. Energy 34(1):46–57

28. Chen Y, Luh PB, Guan C, Zhao YG, Michel LD, Coolbeth MA,

Friedland PB, Rourke SJ (2010) Short-term load forecasting:

similar day-based wavelet neural networks. IEEE Trans Power

Syst 25(1):322–330

29. Ding N, Benoit C, Foggia G, Bésanger Y, Wurtz F (2016) Neural

network-based model design for short-term load forecast in dis-

tribution systems. IEEE Trans Power Syst 31(1):72–81

30. Sun X, Luh PB, Cheung KW, Guan W, Michel LD, Venkata SS,

Miller MT (2016) An efficient approach to short-term load

forecasting at the distribution level. IEEE Trans Power Syst

31(4):2526–2537

31. Chu WC, Chen YP, Xu ZW, Lee WJ (2011) Multiregion short-

term load forecasting in consideration of HI and load/weather

diversity. IEEE Trans Ind Appl 47(1):232–237

32. Dudek G (2015) Pattern similarity-based methods for short-term

load forecasting—part 1: principles. Appl Soft Comput

37:277–287

33. Ferreira VH, da Silva APA (2007) Toward estimating autono-

mous neural network-based electric load forecasters. IEEE Trans

Power Syst 22(4):1554–1562

34. Dudek G (2013) Forecasting time series with multiple seasonal

cycles using neural networks with local learning. In: Rutkowski L

et al (eds) Artificial intelligence and soft computing, ICAISC

2013, LNCS 7894, pp 52–63

35. Dudek G (2016) Pattern-based local linear regression models for

short-term load forecasting. Electr Power Syst Res 130:139–147

36. Dudek G (2015) Pattern similarity-based methods for short-term

load forecasting—part 2: models. Appl Soft Comput 36:422–441

37. Dudek G (2017) Artificial immune system with local feature

selection for short-term load forecasting. IEEE Trans Evol

Comput 21:116–130

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

	Multilayer perceptron for short-term load forecasting: from global to local approach
	Abstract
	Introduction
	Data representation
	Representation of load time series
	Representation of period of the year
	Representations for day of the week
	Representations for hour of the day

	Forecasting models for STLF based on MLPs
	Global model (v.1)
	Separate NN for each day of the week (v.2)
	Separate NN for each hour of the day (v.3)
	Separate NN for each day of the week and hour of the day (v.4)
	Separate NN for each forecasting task (v.5)

	Simulation study
	Conclusions
	Open Access
	References

