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Abstract. The short-term load forecasting is an essential problem in energy sys-
tem planning and operation. The accuracy of the forecasting models depends on 
the quality of the input information. The input variable selection allows to chose 
the most informative inputs which ensure the best forecasts. To improve the 
short-term load forecasting model based on the kernel regression four variable 
selection wrapper methods are applied. Two of them are deterministic: sequen-
tial forward and backward selection and the other two are stochastic: genetic al-
gorithm and tournament searching. The proposed variable selection procedures 
are local: the separate subset of relevant variables is determined for each test 
pattern. Simulations indicate the better results for the stochastic methods in re-
lation to the deterministic ones, because of their global search property. The 
number of input variables was reduced by more than half depending on the  
feature selection method.  

Keywords: feature selection, kernel regression, genetic algorithm, tournament 
feature selection, short-term load forecasting. 

1 Introduction 

The short-term load forecasting (STLF) is extremely important to balance the electric-
ity generated and consumed at any moment. Precise load forecasts are necessary for 
electric companies to make important decisions connected with electric power pro-
duction and transmission planning, such as unit commitment, generation dispatch, 
hydro scheduling, hydro-thermal coordination, spinning reserve allocation and inter-
change evaluation. 

Many STLF models have been proposed. Conventional STLF models use smooth-
ing techniques, regression methods and statistical analysis. In recent years artificial 
intelligence methods have been widely used to STLF: neural networks, fuzzy systems 
and expert systems. 

In this article nonparametric regression method is applied to STLF. The regression 
relationship can be modelled as [1]: 

 ε+= )(xmy  (1) 
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where: y is the response variable, x – the predictor, ε  – the error, which is assumed to 
be normally and independently distributed with zero mean and constant variance,  
m(x) = E(Y | X = x) is a regression curve. 

The aim of regression is to estimate the function m. This task can be done essen-
tially in two ways. The first approach to analyze a regression relationship is called 
parametric since it is assumed that the mean curve m has some prespecified functional 
form and is fully described by a finite set of parameters (e.g. a polynomial regression 
equation). In the alternative nonparametric approach the regression curve does not 
take a predetermined form but is constructed according to information derived from 
the data. The regression function is estimated directly rather than to estimate parame-
ters. Most methods of nonparametric regression implicitly assume that m is a smooth 
and continuous function. The most popular nonparametric regression models are [1]: 
kernel estimators, k-nearest neighbour estimators, orthogonal series estimators and 
spline smoothing. 

In [2] to STLF the multivariate generalization of the kernel Nadaraya-Watson es-
timator was described: 
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where n is the size of the random sample: 
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d is the dimension of the input pattern vector xj = [xj,1 xj,2 … xj,d], which represents a 
vector of hourly power system loads in the following hours of the day preceding the 
day of forecast Lj = [Lj,1 Lj,2 … Lj,d]: 
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and yj is the encoded value the forecasted system load Lj+τ,k at the kth hour of the day 
j+τ  (τ = 1, 2, … is the forecast horizon): 
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jL  in (4) and (5) is the mean load of day j. 
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The Gaussian kernel function used in (2) is of the form: 
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and h ∈ ℜ+ is a bandwidth (smoothing parameter). 
The choice of a kernel is not as important as the choice of a bandwidth value. The 

bandwidth values decide about the bias-variance tradeoff of the estimator. The small 
bandwidth value results in undersmoothing, whereas the large value results in over-
smoothing. In [3] there was shown that good results are obtained when hk is calculated 
using the Scott’s rule:   

 )4/(1 +−= d
kk nh σ , (7) 

where kσ  is the sample standard deviation of xk. 

Estimator (2) depends on how many and which variables xk are inputs of the mod-
el. In this article some wrapper methods of variable selection (VS) are tested: sequen-
tial forward selection (SFS), sequential backward selection (SBS), genetic algorithm 
(GA) and tournament feature selection (TFS) [4]. 

2 Methods of Variable Selection to the Kernel Regression 
Model  

The proposed methods of VS can be divided on deterministic and stochastic ones. 
SFS and SBS [5], which are suboptimal strategies, belong to the first group.  They 
based on simple greedy heuristics. SFS adds one new feature to the current set of 
selected features in each step. SBS starts with all the possible features and discards 
one at the time. The main drawback of these algorithms is that when a feature is se-
lected or removed this decision cannot be changed. This is called the nesting problem. 
The extension of these strategies is plus l-take away r method and floating search 
method, where forward and backward selection algorithms are used alternately. 

More effective, global optimization of the input variable space provide stochastic me-
thods, such as GA. GA with binary representation is naturally adapted to solve problems 
of combinatorial optimization with binary variables, which include the VS problem. The 
GA, as the method independent on domain, has been applied to many optimization prob-
lems because of their robustness in search for large spaces and mechanism of escaping 
from the local minima. Search for the solution space in GA is conducted in parallel by 
population of chromosomes which encode the solutions. GA for VS was applied to vari-
ous models: classifiers, clustering and approximation models.  

In the GA approach, the given variable subset is represented as a binary string 
(chromosome) with a zero or one in position i denoting the absence or presence of 
feature i: b = (b1, b2, …, bd) ∈ {0, 1}d. Each chromosome is evaluated taking into 
account the model error (the forecast error here). It may survive into the next genera-
tion and reproduce in dependence on this evaluation (fitness). New chromosomes are 
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created from old ones by the process of their crossover and mutation. One-point 
crossover and classical binary mutation are applied in this approach. Binary tourna-
ment is used as a chromosome selection method.  

The TFS method was introduced in [4] as an alternative to other stochastic VS me-
thods such as GA and simulated annealing. In comparison to other combinatorial 
optimization stochastic methods TFS is distinguished by simplicity. There is only one 
parameter in TFS controlling the global-local search properties which makes this 
algorithm easy to use.      

Data representation in TFS is the same as in GA. TFS explores the solution space 
starting from an initial solution and generating new ones by perturbing it using a muta-
tion operator. This operator switches the value of one randomly chosen bit (but different 
for each candidate solution) of the parent solution. When the set of new l candidate solu-
tions is generated (l represents the tournament size), their evaluations are calculated. The 
best candidate solution (the tournament winner), with the lowest value of the error func-
tion (MAPE here), is selected and it replaces the parent solution, even if it is worse than 
the parent solution. This allows us to escape from local minima of the error function. If l 
is equal to 1, this procedure comes down to a random search process. On the other hand, 
when l = d this method becomes a hill climbing method where there is no escape from 
the local maxima. 

This algorithm turned out to be very promising in the feature selection problem, better 
than a GA and simulated annealing, as well as deterministic SFS and SBS algorithms [4].  

The flowchart of GA and TFS are shown in Fig. 1. 
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Fig. 1. Flowcharts of TFS and GA to variable selection in the kernel regression based STLF model 
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3 Application Example 

The described above variable selection methods were applied to the forecasting model 
based on the Nadaraya-Watson estimator. The task of the model is to forecast the next 
day power system load (τ  = 1) at hour k = 1, 6, 12, 18 and 24. Time series studied in 
this paper represents the hourly electrical load of the Polish power system from the 
period 2002-2004. This series is shown in Fig. 2.  
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Fig. 2. The load time series of Polish power system in three year (a) and three week (b) intervals 

The time series were divided into training and test parts. The test set contained 30 
patterns from January 2004 (from 2 to 31 January) and 31 patterns from July 2004. 
The training set contained patterns from the period from 1 January 2002 to the day 
preceding the day of forecast.  

For each forecasting task (the forecast of system load at the kth hour of the day 
j+τ) the separate model was created using the training subset containing y-values 
representing loads from the days of the same type (Monday, …, Sunday) as the day of 
forecast and paired with them x-patterns representing the load vector of preceding 
days (e.g. for forecasting the Sunday load at hour k, model learns from x-patterns 
representing the Saturday patterns and y-values representing the loads at hour k on 
Sundays). This routine of model learning provides fine-tuning its parameters to the 
changes observed in the current behavior of the time series. 
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The parameters of the stochastic variable selection methods were as follows: 

• GA: number of generations – 100, population size – 8, probability of mutation – 
0.05, probability of crossover – 0.9, 

• TFS: number of iterations – 100, tournament size l = 8.  

The best subsets of the relevant variables were  determined in leave-one-out cross-
validation procedure. 

The training and test errors of the Nadaraya-Watson STLF model using different 
methods of VS are shown in Table 1. The selected variables of the input patterns and 
the bandwidth values corresponding to these variables for one of the forecasting task 
are shown in Table 2. 

Table 1. Errors of the Nadaraya-Watson STLF model using different VS methods 

VS metod 
January July Mean 

MAPEtrn MAPEtst MAPEtrn MAPEtst MAPEtrn MAPEtst 
Without VS 1.62 1.20 1.54 0.92 1.58 1.05 

SFS 1.37 1.25 1.32 0.90 1.34 1.07 
SBS 1.37 1.20 1.35 0.90 1.36 1.05 
GA 1.38 1.17 1.34 0.90 1.36 1.03 
TFS 1.34 1.17 1.30 0.90 1.32 1.03 

Table 2. The bandwidth values hk corresponding to the selected components of the input 
patterns in the model for hour 12 on 1 July 2004 

k 1 2 3 4 5 6 7 8 9 10 11 12 
SFS 0.037 - - - - - - - - - 0.041 0.040 
SBS 0.045 0.035 - - - 0.036 - 0.058 0.048 0.041 0.051 - 
GA 0.044 0.034 - - - 0.035 0.064 0.057 0.047 0.040 - - 
TFS 0.044 0.034 - - - 0.035 - 0.057 0.047 0.040 - - 

k 13 14 15 16 17 18 19 20 21 22 23 24 
SFS - - - 0.037 - - - - - - 0.039 - 
SBS - - 0.041 0.046 - - - - - 0.050 0.049 - 
GA - - - - 0.076 - - 0.092 - - 0.048 - 
TFS - 0.037 - 0.045 - - - - - 0.049 0.048 - 

All VS methods ensure the training error reduction, but only stochastic methods en-
sure the test error decreasing. However, the difference between the test errors in two 
cases: (i) using GA or TFS to VS and (ii) without VS turned out to be not statistically 
significant. This was proved using the Wilcoxon rank sum test for equality of medians. 
The 5% significance level is applied in this study. In the case of the training errors the 
Wilcoxon test in all cases indicates the statistically significant difference between errors.   

The average reduction in the number of input pattern components was: 76% for 
SFS, 52% for SBS, 60% for GA and 67% for TFS, which means that filtering more 
than half of the x-vector components should not adversely affect the accuracy of the 
model. The frequency of variable selection is shown in Fig. 3. Most information about 
the forecast are contained in the ending components of x representing the system load 
at hour 23 and 24. 
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Fig. 3. The frequency of variable selection 

4 Conclusion 

The article describes an attempt to improve the performance of the kernel regression 
based STLF model by the selection of input variables. Four methods of variable selec-
tion were tested: sequential forward and backward selection, genetic algorithm and 
tournament feature selection. The first two are deterministic and local search methods, 
while the last two are stochastic and global search methods.  

The empirical comparison between all of the presented variable selection method 
showed that the tournament feature selection provides the best performance of the  
forecasting model based on Nadaraya-Watson estimator. Both the training and test fore-
casting errors were the lowest when using this method. The global search property and 
simplicity (only one parameter controlling the balance between exploration and exploita-
tion of the solution space) make the tournament feature selection easy to use and fast. 

It is worth noting that the proposed routine of variable selection is local: for each test 
pattern a separate selection procedure and model learning is performed. Usually the fea-
ture selection methods are global, i.e. they determine one feature set for all test data. But 
in practice different features can be important in different regions of the input pattern 
space. The proposed approach enables the construction of an optimal model for the cur-
rent test sample. Such a local model loses its generality but leads to the more accurate 
estimation of the regression curve in the neighborhood of the test point.  
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