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  

Abstract—In this work a new forecasting model based on 

artificial immune system is proposed. The model is used for 

short-term electrical load forecasting as an example of 

forecasting time series with multiple seasonal cycles. Artificial 

immune system learns to recognize antigens representing two 

fragments of the time series: fragment preceding the forecast 

(input vector) and forecasted fragment (output vector). 

Antibodies as recognition units recognize antigens by selected 

features of input vectors and learn output vectors. In the test 

procedure new antigen with only input vector is recognized by 

some antibodies. Its output vector is reconstructed from activated 

antibodies. The unique feature of the proposed artificial immune 

system is the embedded property of local feature selection. Each 

antibody learns in the clonal selection process its optimal subset 

of features (a paratope) to improve its recognition and prediction 

abilities. In the simulation studies the proposed model was tested 

on real power system data and compared with other artificial 

immune system-based forecasting models as well as neural 

networks, ARIMA and exponential smoothing. The obtained 

results confirm good performance of the proposed model. 

 
Index Terms—artificial immune system, clonal selection, local 

feature selection, short-term load forecasting, time series 

 

I. INTRODUCTION 

IME series representing different phenomena and 

processes from industry, economy, demography, 

meteorology, etc., express various patterns. In general, there 

are four components to a time series: a trend, seasonal 

variations, cyclical variations, and irregular variations. A good 

example of time series expressing complex behavior is 

electricity demand in a power system. In Fig. 1 hourly load of 

the Polish power system is shown. This time series is 

nonstationary in mean and variance, it contains nonlinear 

trend, irregular component, and three seasonal periods: daily, 

weekly and annual. The daily and weekly profiles change 

during the year. The daily profile depends on the day of the 

week as well. These all features of load time series have to be 

captured by a flexible forecasting model. 

 The load time series forecasting in short horizons from 

minutes to days (short-term load forecasting; STLF) is 

essential for power system control and scheduling. The load 

forecast are necessary for energy companies to make 
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important decisions related to planning of electricity 

production and transmission. As a basic driver of electricity 

prices the power system load should be forecasted precisely. 

The forecast accuracy translates to financial performance of 

the energy market participants such as electricity producers 

and suppliers, energy trading companies, transmission and 

storage system operators, investment firms and also financial 

institutions. 

 The complexity of the STLF problem and its importance 

caused the development of variety of forecasting models in 

recent decades. They can be roughly classified as conventional 

and unconventional models. The former include statistical 

analysis, regression methods and smoothing techniques such 

as autoregressive integrated moving average (ARIMA) [1] and 

exponential smoothing (ES) [2]. The latter employ newer 

computational methods such as artificial intelligence and 

machine learning ones [3], [4]. Some of the most popular of 

them are: neural networks, fuzzy inference systems, neuro-

fuzzy systems, support vector machines and ensembles of 

models. 

 Seasonal ARIMA models can capture stochastic nature of 

the load time series and their multiple seasonal cycles. 

Exogenous variables can be included into the model. A 

limitation of ARIMA is its linear nature. Estimation of 

ARIMA parameters is usually considered subjective and 
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Fig. 1.  The hourly electricity demand in Poland in three-year (a) and one-

week (b) intervals. 
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difficult to apply.  

 ES can express heteroscedastic time series with seasonal 

variability and nonlinear relationships between their terms but 

exogenous variables cannot be included into the model. An 

overparameterization and a large number of starting values to 

estimate are disadvantages of ES. Recently proposed 

exponential smoothing formulations applied for STLF are 

presented in [2].     

 Neural networks, widely used in STLF, have many 

attractive features such as: universal approximation property, 

learning ability, and robustness to noise in data. Disadvantages 

of neural networks include: overfitting, instability in training 

(sensitivity to the initial parameter values),  difficulty in 

selection of an optimal architecture, weak extrapolation 

capacity and many parameters to estimate. Some recent 

algorithms to improve training of neural STLF models are 

presented and compared in [5]. The way of designing of STLF 

neural model to ensure an optimal generalization capacity in 

[6] is shown. 

 Fuzzy logic allows imprecise, incomplete and ambiguous 

information to be introduced into the STLF model. This is 

effective approach to deal with uncertainty. In neuro-fuzzy 

systems the knowledge for building if-then rule base is gained 

directly from data in learning process. But usually a structure 

of  neuro-fuzzy system is complex and the number of 

parameters is large, so learning is difficult and does not 

guarantee convergence to the global minimum. Many 

successful applications have been reported on using fuzzy 

systems as STLF models, e.g. [7], where fuzzy logic is 

combined with wavelet transform and neural network or [8], 

where interval type-2 fuzzy logic systems are used to directly 

model and handle uncertainties.  

 Another useful computational intelligence tools for STLF 

are artificial immune systems (AIS). AIS are biologically 

inspired computation methods having many attractive features 

from machine learning and computational intelligence 

perspectives. These include [9]: self-organization and self-

optimization, adaptation ability, learning from examples, 

distributed and parallel operation, pattern recognition and 

memorization, anomaly detection, multilayer structure and 

generalization capability.  

 The origin of AIS has its roots in the pioneering work of 

Farmer, Packard and Perelson [10], where theoretical immune 

network models were proposed to describe immune memory. 

Early works forming the basis of solid foundation for AIS 

focused on the immune network theory [11], and computer 

security (network intrusion detection, computer virus 

detection) [12], [13]. In the last years a diverse set of immune 

inspired algorithms have been developed to solve various 

computational problems. The four major concepts from 

immune systems underlie AIS algorithms [14]:  

 negative selection,  

 artificial immune networks,  

 clonal selection and  

 danger theory and dendritic cells. 

Application areas that have been addressed by AIS can be 

summarized as [15]:  

 learning (clustering, classification, recognition, robotic and 

control applications), 

 anomaly detection (fault detection, computer and network 

security applications) and 

 optimization (continuous and combinatorial). 

 AIS were used as STLF models [16], [17] (see AIS1 and 

AIS2 described in section V) and as learning methods for 

STLF models built on neural networks [18].     

 In this work the AIS with local feature selection (AISLFS) 

as a supervised learning regression algorithm for STLF is 

designed. The immune cells, antibodies (ABs), learn the time 

series patterns included in antigens (AGs). AGs are recognized 

by AB paratopes representing selected features of the input 

vector (time series fragment preceding the forecasted 

fragment). Each AB with its paratope represents a limited 

region of the input space corresponding to the hyperball 

defined in some subspace. AB recognition regions are shaped 

in a clonal selection procedure. This includes optimization of 

paratopes individually for each AB and corresponds to the 

local feature selection. Locally irrelevant or redundant features 

are omitted. ABs also learn output vectors representing 

forecasted fragments of the time series. The goal of AIS 

learning is to cover the input space by hyperballs defined in 

different subspaces in such a way that prediction capability of 

the system is maximized.  

The novelty of AISLFS is an alternative representational 

abstraction: each AB defines recognition region in a different 

subspace. Moreover, a final decision is made collectively by 

many ABs, which are competent only in their own recognition 

regions (weak learners). New representation way and 

collective response of immune cells are consistent with 

theoretical perspectives presented by McEwan and Hart [19]. 

They noted that an epitope is a discontinuous region on the 

three-dimensional surface of a molecule (our energetic 

residues). It is  not a predefined object but it becomes an 

epitope by virtue of binding to a receptor in the context of a 

particular interaction. This corresponds to an epitope 

definition in AISLFS (see Section II-B below). According to 

[19] the immune repertoire is not a population of centroids, 

prototypes, or support vectors, but an overcomplete dictionary 

of basis functions. Each cell receptor defines a different 

subspace of the original n-dimensional input space. The 

system is composed of many simple learners (immune cells) 

with weak representational capabilities. The search space for 

the immune repertoire is enriched to the space of classifiers 

(or regression models in our case), and the regression function 

becomes a weighted vote or averaged prediction amongst an 

ensemble of learners. As in boosting, a set of weak learners 

can be aggregated into an arbitrarily strong learning algorithm. 

An increase in representational power is achieved through the 

diversity of single learners (defined in low-dimensional 

subspaces) and an increase in stability through their 

integration. A motivation for dimensionality reduction, which 

is performed in AISLFS in local version, is a curse of 

dimensionality. This issue has been discussed by Stibor et al. 

[20]. In the context of AIS, where hyperballs define 

recognition regions, the problem is that the volume of a 
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hyperball quickly approaches zero with increasing 

dimensionality of the space and any metric becomes 

increasingly meaningless as data points tend to become 

equidistant. Thus, low dimensional intuitions about distance 

and density are highly inadequate and undermine the very 

concepts that traditional AIS abstractions build upon. 

In AISLFS AB can bind to many distinct epitopes (poly-

recognition) and, similarly, AG can be bound by many ABs 

(poly-clonality). This idea, called degeneracy, derived from 

the works of experimental and theoretical immunologists [21], 

gains recent interest in both immunology and its 

computational abstractions and generates interest in the AIS 

community [22], [23]. Researchers embrace this degeneracy as 

an important feature of the immune system [24]. In AISLFS 

degeneracy allows the system to train immune memory and to 

generate collective response of the immune cells.   

 This paper is organized as follows. In Section II the idea of 

AISLFS for STLF is presented. Time series representation is 

described, how antibody and antigens are built is shown and 

AB adaptation process and prediction procedure are outlined.  

The detailed AISLFS algorithm for STLF is presented in 

Section III and discussed in Section IV. In Section V the 

proposed forecasting model is tested on real load data. It is 

compared with two others AIS-inspired STLF models as well 

as with neural networks, ARIMA and exponential smoothing. 

Finally, Section VI concludes the paper. The symbols that 

appear in the following description of the AISLFS algorithm 

are listed in Table I. 

II. IDEA OF AISLFS FOR STLF 

This work is a continuation of research on AISLFS. In [25] 

AISLFS was proposed as a classifier with unique feature: the 

local feature selection. For each region of the input vector 

space represented by an AB a separate subset of relevant 

features is created. This allows the recognition system to 

improve its recognition capacity when different features are 

important in different regions of the input space.   

The local feature selection is inspired by the binding of an 

AB to an AG. This binding occurs between amino acid 

residues forming an epitope and a paratope. Only selected 

residues, so called energetic residues, take part in the binding. 

They correspond to the selected features. ABs are the 

recognition units with paratopes (corresponding to the subsets 

of selected features) formed in the learning process: immune 

memory creation process. Each AB has label with target 

output value (class symbol or function value). The final ABs 

with their paratopes form the immune memory. They 

correspond to the set of hyperballs defined in different 

subspaces. This hyperballs, called AB recognition regions, 

cover the input space in such a way that in each hyperball 

there are only training points having the same (in classification 

problems) or similar (in regression problems) labels. The 

biological inspirations behind AISLFS are further discussed in 

[25]. 

The similarities and differences between the proposed 

AISLFS for STLF and AISLFS classifier [25] can be 

summarized as follows: 

 In both algorithms samples are represented by AGs and 

recognition units are represented by ABs. Both AGs and 

ABs have labels. In AISLFS classifier labels include class 

symbol, while in AISLFS for STLF they include a forecast 

fragment of a time series. 

 The algorithm structures are similar. They include clonal 

selection loop which is performed for each AB. In both 

algorithms inside this loop the same searching process for 

finding best AB paratopes is implemented (tournament 

searching algorithm).  

 Hypermutation operators which modify clone paratopes 

are similar for both algorithms. But in the implementation 

of AISLFS classifier described in [25] only one bit of a 

paratope is mutated. In AISLFS for STLF proposed in this 

work more bits can be mutated (depending on the 

parameter value, by which we can control a mutation 

intensity). 

 Affinity measure is defined in the same way in both 

algorithms but the cross-reactivity threshold, on which it is 

based, has different meaning. In AISLFS classifier it 

depends on the classes of AB and neighboring AGs. In 

AISLFS for STLF it depends on the forecasting error 

estimated for each AG and AB.    

 

TABLE I 
LIST OF SYMBOLS 

Symbol Description 

 = {(xi, yi)} training set 

 AB paratope: the set of indices of selected features 

 set of indices of ABs which recognition regions cover the 

AG 

 set of indices of AGs in AB recognition region 

 threshold error determining r 

 parameter controlling the hypermutation range 

 forecast horizon in days 

Dk dispersion of the time series elements in the period k 

Lk,t t-th load time series element in the period k 

kL  mean load in the period k 

N number of training samples 

P AB power: || 

S maximum number of the successive iterations without 

result improvement 

X input pattern space 

Y output pattern space 

Z number of clones 

a(pl, xj, l) affinity of the l-th AB for the j-th AG 

c parameter adjusting r 

d(pl, xj, l) distance in X between the l-th AB and j-th AG 

m number of bits swapping in hypermutation of a clone 

n total number of features 

p element of AB: vector corresponding to a vector x 

q label of AB: vector corresponding to a vector y 

r cross-reactivity threshold 

v n-element binary vector corresponding to the paratope  

wk weight of activated k-th memory cell  

x n-component input pattern 

y n-component output pattern 
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 AB labels in AISLFS for STLF are not fixed, as in 

AISLFS classifier, but are calculated from labels of 

recognized AGs. 

 The clones are evaluated using the same criteria in both 

algorithms. 

 The model output is calculated differently in both 

algorithms. In AISLFS classifier this is an avidity 

depending on the affinities of activated memory ABs. In 

AISLFS for STLF it is calculated as a weighted average of 

the labels of activated memory ABs.    

A. Time Series Representation 

STLF is a regression problem X  Y. An input vector  

xi = [xi,1 xi,2 … xi,n]
T
 X = ℝn

 represents a vector of loads (L) 

in successive timepoints of the daily period k: Lk = [Lk,1 Lk,2 … 

Lk,n]
T
. An output vector yk = [yk,1 yk,2 … yk,n]

T
  Y = ℝn

 

represents a vector of loads in successive timepoints of the 

forecasted daily period k+: Lk+ = [Lk+,1 Lk+,2 … Lk+,n]
T
, 

where  is a forecast horizon in days. Vectors x and y we call 

x-patterns and y-patterns, respectively, because they map load 

vectors L in specific ways. The components of input pattern xk 

are defined as follows: 

 
k

ktk
tk

D

LL
x




,
, , (1) 

where: k = 1, 2, …, N – the daily period number, t = 1, 2, …, n 

– the time series element number in the period k, Lk,t – the t-th 

load time series element in the period k, kL  – the mean load in 

the period k, 




n

l

klkk LLD

1

2
, )(  – the dispersion of the 

time series elements in the period k. 

The input patterns xk are normalized versions of the load 

vectors Lk. They all have unity length, zero mean and the same 

variance. Note that the load time series which is nonstationary 

in mean and variance is represented by x-patterns having the 

same mean and variance. The trend and additional seasonal 

variations, i.e. the weekly and annual ones, are filtered. The x-

patterns carry information only about the shapes of the daily 

load curves.  

The output pattern yk has components defined as follows: 

 
k
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 ,
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where: k = 1, 2, …, N, t = 1, 2, …, n. 

This transformation is similar to (1) but note that instead of 

coding variables kL  and kD  determined for the day k+, 

we use coding variables kL  and Dk determined for the day k. 

This is because the coding values for the day k+ are not 

known in the moment of forecasting. Using the known coding 

values for the day k enables us to calculate the forecast of 

vector Lk+ when the forecast of pattern yk is generated by the 

model. To do this transformed equation (2) is used: 

 kktktk LDyL  ,,


 , (3) 

where tky ,


 is the forecasted t-th component of the pattern yk.  

By transforming the time series into x- and y-patterns we 

unify the input and output data. Now the relationship between 

input and output variables are simpler. This results in the 

simpler and more accurate forecasting model. Time series data 

representation using patterns is discussed more widely in [26].       

B. Antigens and Antibodies 

In AISLFS each pair of patterns (xk, yk) from the training set 

is represented by individual AG. Components of x-pattern 

correspond to the chain of amino acid residues of the protein 

building AG (i.e. x-pattern corresponds to the primary 

structure of the protein). Some of the x-pattern components 

form the AG epitope such as in nature some amino acid 

residues form an epitope in the tertiary structure of the protein 

(conformational epitope). An epitope is defined as a subset of 

x-pattern components which correspond to the AB paratope. 

One AG can have many epitopes as it can be bound by many 

ABs with different paratopes. The label of AG contains a 

target y-pattern. The AG population correspond to the training 

set   = {(xk, yk) : k  }, where  is the set of numbers of y-

patterns representing the same day type {Monday, …, 

Sunday} as the forecasted y-pattern. We prepare training sets 

for each day type and then we construct the forecasting 

models separately for each day type because the values of 

coding variables kL  and Dk determining the levels and 

dispersion of y-patterns are dependent on the day of the week.  

The immune system representatives are ABs. They 

recognize AGs and construct the forecast of y-pattern for  new 

AGs with empty labels (representing query patterns). AB is 

composed of five elements: (p, q, , r, P). Vectors p and q  

correspond to vectors x and y, respectively. Vectors p and q of 

the k-th AB are initialized by k-th training example: pk = xk,  

qk = yk (in the same way as the k-th AG). A vector p 

correspond to the chain of amino acid residues of the protein 

 

 
 

 
 

Fig. 2. AG and AB structures (n = 24). x- and p-vectors correspond to the 

chains of amino acids taking part in binding. Dark bars of p-vectors form a 

paratope. An epitope of AG consists the same components as a paratope. 

https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Residue_(biochemistry)
https://en.wikipedia.org/wiki/Conformational_epitope
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Residue_(biochemistry)
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building AB. A vector q is saved in the AB label.  is a 

paratope. This is a set containing numbers of selected 

components of the p-vector. r is a cross-reactivity threshold. P 

is an AB power (representativeness) expressing how many 

training AGs it recognizes. Vectors p are fixed but vectors q, 

paratopes , thresholds r and powers P are modified during 

training. Structures of AG and AB in Fig. 2 are shown. 

Elements p,  and r define the recognition region of AB. 

This is a hyperball of radius r centered at  point  ttp ]['p . 

So the hyperball is defined in a subspace of the n-dimensional 

input feature space X. This subspace contains dimensions 

which are saved in the set . We call this subspace the -

subspace. (Figs. 3 and 4 in [25] clarify AB recognition regions 

in -subspaces.)  

C. Antibodies Adaptation and Antigen Label Prediction 

Recognition regions of ABs are adapted during training 

(paratopes  and cross-reactivity thresholds r change) to the 

population of AGs (training sample). These adaptations are 

made using hypermutation in the clonal selection loop 

(Algorithm 1), where each AB generates clones with modified 

paratopes, cross-reactivity thresholds, labels and powers. In 

each iteration of the clonal selection loop the best clone is 

selected. It becomes a parent AB in the next iteration. The best 

clone is that one which recognizes the highest number of 

training AGs. AG is considered to be recognized by a clone 

when its epitope is similar to the clone paratope (this 

similarity is measured using affinity) and also labels of both, 

AG and the clone, are similar. These similarities (in both -

subspace and Y space) between clone and many AGs means 

that the clone is representative and is able to predict labels of 

many AGs lying in its recognition region. Such clones are 

searched in the clonal selection loop and recorded as memory 

cells. 

As a result of training the population of immune memory 

cells is constructed. An AB from the immune memory 

recognizes as many training AGs as possible. In the test phase 

new AG with empty label is recognized by some ABs, i.e. it 

falls into the recognition regions of these ABs. The AG label 

is predicted from the labels of activated ABs, their powers and 

affinities in -subspaces.  

III. ALGORITHM OF AISLFS FOR STLF 

In this section the algorithm of AISLFS for STLF is 

described in detail. The symbols that appear in the following 

description are listed in Table I. The flowchart of the 

algorithm is given in Fig. 3.  

 

 Step 1. The AG population corresponds to the set of training 

samples from : PopAG = {   =   ,     
 =1

 
. 

   

 Step 2. The AB population is composed of N ABs: PopAB = 

{   =   ,   ,   ,   ,      =1
 

. The p- and q-patterns of ABs are 

created by copying training samples: pk = xk and qk = yk. This 

method of initialization prevents putting ABs in empty regions 

without AGs. The AB paratopes k can be initialized in three 

ways:  

 using all features (all components of vector p),  

 using randomly selected features or  

 using features selected as important in previous runs of the 

algorithm for similar forecasting task.  

The similar task is that one, in which to train the immune 

memory the training set is used that contains mostly the same 

AGs as in the current forecasting task. For example in the task 

of load forecast for some Wednesday we can use the initial 

AB population with paratopes k optimized in the forecasting 

task for the last Wednesday.  

The cross-reactivity thresholds and AB powers do not 

 

 
 

Fig. 3. Flowchart of the AISLFS for STLF. 

 

PopAB =                              
  

PopAG =               
   

  

for k = 1 to N do  

 pAB = ABk //parent AB 

//clonal selection loop 

while not stop condition do  

 for l = 1 to Z do 

  Cll = pAB //l-th clone 

   l   hypermutation  l) 

  rl = CR_treshold(similarity(Cll, PopAG)) 

  al = affinity([d(pl, xj,  l)    
 , rl) 

  Ψl = {j  {1,2,...,N} : a(pl, xj,  l)>0} 

  ql = label(al, {yj : j  Ψl}) 
  Pl   |Ψl| 

 end 

 bCl = winner({Pl    
   | l|    

 ) //best clone 

 pAB = bCl 

end 

end       

 

Algorithm 1: Pseudocode of AISLFS clonal selection loop. 
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require initialization. 

 

Step 3.1. In this loop the clones of k-th AB are generated, 

mutated and evaluated. The best clone becomes the parent AB 

in the next iteration. The goal is to find the best paratope of 

the k-th AB. This is an combinatorial optimization problem in 

which the subset of features is searched for which the criterion 

function described in step 3.1.5 is maximized. We employ the 

tournament searching algorithm [27], which is a stochastic 

global search method, to search the paratope space.  In 

simulation study reported in [27] the tournament searching 

outperformed genetic algorithm and simulated annealing as 

well as deterministic algorithms in the feature selection 

problem.  

Tournament searching is built into the clonal selection loop. 

It uses hypermutation to generate new Z candidate solutions 

(clones with different paratopes) from the parent solution 

(parent AB). The best clone (tournament winner selected 

according to (11)) replaces the parent AB in the next iteration, 

even if it is worse than the parent AB. This allows the solution 

to escape from local extrema of the criterion function (this is 

discussed further in Section IV). 

The clonal selection loop is stopped when during last S 

iterations no result improvement is observed.  

 

Step. 3.1.1. The population of clones is generated from the 

parent AB. The number of clones, Z  1,  is dependent on the 

paratope space size, which is 2
n
 – 1. This space contains all 

binary vectors v of size n. Ones in these vectors corresponds 

to elements of -sets. So the k-th AB paratope can be 

represented by vector vk = [vk,1 vk,2 … vk,n], where: 

 


 


otherwise,0

 if,1
,

k

tk

t
v   (4) 

The parameter Z controls the sampling accuracy of the 

neighborhood of the parent AB paratope, i.e. global-local 

search properties of the algorithm. The neighborhood is 

defined here as the set of all vectors v reachable by 

hypermutation of the parent AB paratope. Z can be constant or 

increasing during training, which results in a change in the 

character of searching the AB paratope neighborhood: from 

random and global for small Z towards deterministic and local 

for greater Z. These issues will be more explained in Section 

IV. 

 

Step 3.1.2. The hypermutation changes the paratope of each 

clone. It operates on a vector v corresponding to the clone 

paratope. It swaps m > 0 bits in v randomly selected from a 

uniform distribution. The number of bits swapping m is 

determined randomly using normal distribution: m ~ 

 |),0(| N . If drawn m > n, then we assume the new value of 

m as m –  nm /)1(  n. If drawn m = 0, we assume m = 1. The 

parameter  controls the distribution of a discrete variable m, 

i.e. the range of mutation. For a given value of  the mutation 

probability of m bits depends on n. It can be calculated from 

the cumulative distribution function (cdf) for N(0,). The 

probability of mutation of one bit P(m = 1) = 2[cdf(0) –  

cdf(–1)] + 2[cdf(–n) – cdf(–n–1)] + 2[cdf(–2n) – cdf(–2n–1)] 

... = 2





0
)]1(cdf)(cdf[

i
nini . Generally, a 

probability of mutation of m  [1, n] bits can be calculated 

from: P(m) = 2





0
)](cdf)1(cdf[

i
mnimni . For 

example, when  = 1.4826 and n = 4, we get: P(m = 1) = 0.5 + 

6.2310
–3

 + 6.6910
–8 

+ ... = ~0.51, P(m = 2) = 0.3227 + 

6.9310
–4 

+  1.2610
–9 

+ ... = ~0.32, P(m = 3) = 0.1343 + 

4.9510
–5 

+  1.5210
–11 

+ ... = ~0.13, and P(m = 4) = 0.0360 + 

2.2710
–6 

+ 1.1710
–13 

+ ... = ~0.04. When   0, then P(m = 

1)  1, and P(m > 1)  0 (in this case for each clone among 

Z generated we chose randomly different bit to swap). When  

 , then P(m = 1) = P(m = 2  = … = P(m = n)  1/n.  

After hypermutation the clone paratopes are randomly 

modified to an extent dependent on .   

 

Step 3.1.3. The l-th clone cross-reactivity threshold rl is 

determined after the clone mutation. The idea is that the clone 

recognition region should cover as much AGs as possible with 

x and y vectors similar to the clone p and q vectors, 

respectively. The method of determining the cross-reactivity 

threshold needs the population of AG to be split into two 

classes. Let us assume that l-th clone is derived from the k-th 

parent AB. This AB was initiated by k-th AG having in its 

label pattern yk, which encodes load vector Lk+. The j-th AG 

is assigned to class 1, if it can forecast vector Lk+ with error 

(MAPE) not higher than . The forecast is calculated from the 

pattern yj (included in the j-th AG label) decoded using coding 

variables for k-th pattern y ( kL and Dk). So the class 1 contains 

such AGs from PopAG for which: 

 

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tktk
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LL

n 1 ,

,,1
100
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  (5) 

where: kktjtk LDyL  ,,


, Lk+,t is the t-th component of the  

load vector Lk+ encoded in the label of k-th AB, yj,t is the t-th 

component of y-pattern from the label of j-th AG (which is 

classified), and  is a threshold error (MAPE). 

The AGs which do not meet condition (5) are assigned to 

class 2. Note that similarity between the j-th AG and l-th clone 

is not measured directly between their y and q patterns but 

between load vectors encoded in these patterns. This allows us 

to control the acceptable real forecast error ().  

Let us define the distance measure between vector p of the 

l-th clone and vector x of the j-th AG in l-subspace:  
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xp  (6) 

where e = 1 for the Manhattan metric, and e = 2 for the 

Euclidean metric.  

Note that the distance is calculated by taking into account only 

these components of p and x vectors which are in the paratope 

l.  

The l-th clone cross-reactivity threshold is calculated as 

follows: 
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 )],,(),,([),,()( lAllBllAlll ddcdr  xpxpxp   (7) 

where: B is the index of the nearest AG from class 2 to the l-th 

clone (in l-subspace), A is the index of the farthest AG from 

class 1 to the l-th clone, such that d(pl,xA,l) < d(pl,xB,l), and 

c  [0, 1) is a parameter allowing us to adjust the cross-

reactivity threshold in the range [rlmin = d(pl,xA,l), rlmax = 

d(pl,xB,l)). This is illustrated in Fig. 4.   

The partitioning of the AG population into two classes is 

performed for each AB independently. The result is the class 

distribution table (Fig. 5) showing classes of AGs for each 

AB, where cj,l is the class of j-th AG for the l-th AB. 

Obviously, cj,j = 1. Vector cj = [cj,1 cj,2 … cj,N] expresses the 

class distribution for the j-th AG.  

The cross-reactivity thresholds are determined in different 

-subspaces for different ABs. Fig. 3 in [25] shows examples 

of AB recognition regions in 2D space. 

AGs, which are contained in the recognition region of the l-

th clone, i.e. AGs lying in the hyperball of radius rl centered at 

lttll p  ][' ,p , are deemed to be recognized by this clone. 

Such AGs are similar to the clone not only in the input feature 

space but also in the output load space (note that the clone 

recognition region covers only class 1 AGs). 

The threshold error  affects the partitioning of AGs into 

classes. Smaller values of  result in fewer AGs in class 1 and 

smaller recognition regions of ABs. This introduces a high 

specialization of ABs, which recognize smaller number of 

AGs with a greater degree of similarity. But in such case new 

AGs can be unrecognized by AB population being outside of 

the AB recognition regions. Too large value of   makes that 

AG is recognized by many ABs. This leads to an increase in 

the model bias and translates to greater forecasting errors. 

Thus the parameter  allows us to control the bias-variance 

tradeoff. Its value is adjusted experimentally dependent on the 

data. 

 

Step 3.1.4. The affinity of the l-th clone for the j-th AG is 

defined as follows:  
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where a(pl, xj, l)  [0, 1] and rl(l) is the cross-reactivity 

threshold of the l-th clone in l-subspace. 

Note that the affinity is zero for the AG lying outside of the 

clone recognition region. For AG lying inside this region it is 

a linearly decreasing function of distance (6), from 1 for  

xj = pl, to 0 for AG lying on the border of the recognition 

region (d(pl, xj, l) = rl(l)). 

The label of the l-th clone derived from the k-th AB 

contains the forecast of the pattern yk paired with xk = pl. This 

forecast is calculated as the average value of labels of AGs, 

which are recognized by this clone, weighted by affinities: 
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where l is a set of indices of AGs which lie in the 

recognition region of the l-th clone.    

A clone represents a set of AGs, so its label is created based 

on the labels of AGs from this set. The greatest weight in the 

mean (9) has AG which initiated this clone. The AG weights 

decrease linearly depending on the distance between pl a xj 

measured in l-subspace. 

 

 Step 3.1.5. The number of AGs recognized by the clone, P, 

is a measure of its representativeness. The clones with high 

values of P represent typical patterns in terms of the typical 

shape of the daily curve as well as typical relationship 

between x- and y-patterns. AG encoding atypical patterns or 

atypical relationship between input and output patterns is 

represented by a separate AB, which has only this AG in its 

recognition region. 

The number of AGs in the recognition region of the l-th 

clone, dependent on its paratope l, is the evaluation measure 

of the clone: 

 max|)(|  lllP  (10) 

This measure, called a power, is maximized in the clonal 

selection loop. The algorithm in step 3.1.6 selects the best 

clone from the current population of clones. If several clones 

have the same maximal power Pmax, the winner is one of them 

with the smallest paratope min||. This condition is an 

additional criterion for assessing clones, leading to 

 
 

Fig. 4.  The cross-reactivity threshold range (l = {1, 2}, AGs from class 1 

are marked by crosses, AGs from class 2 are marked by triangles, and the l-

th clone is marked by a circle). 

      

        AB 

AG 1 2 … N 

1 c1,1 c1,2 … c1,N 

2 c2,1 c2,2 … c2,N 

… … … … … 

N cN,1 cN,2 … cN,N 
 

Fig. 5.  Table of AG class distribution.  
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minimization of the feature number. If several clones have the 

same maximal power Pmax and paratope size min||, the 

winner is chosen randomly among them. Thus, the winner 

status is given by the formula: 
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otherwise,    ,0
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where zl = 1 for the winner, |}{|minarg
'

l
l


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}{maxarg'
,...,2,1

l
Zl

P


 , and  is the randomly selected clone index 

from the set .  

  

Step 3.1.6. The clone winning in the i-th iteration of the 

clonal selection loop replaces the parent AB, even if it is 

worse than the parent AB ("worse" means that the winner has 

lower power than the parent AB, or the same power but bigger 

paratope size). This allows the algorithm to escape from the 

traps of local extrema.  

 

Step 3.2. In this step the best parent AB generated in the 

clonal selection loop is selected and saved. This is one of the 

parent AB which covers the most AGs and has the smallest 

paratope. This AB becomes a memory cell. 

 

Step 4. A result of training is a population of memory cells, 

which cover the input space X in different -subspaces. They 

are used for recognition new AGs and to predict AG labels.   

 

After AISLFS training the immune memory is ready for 

prediction of new instances. This process corresponds to the 

secondary immune response when a new AG is presented to 

the trained immune memory. The test AG with empty label,  

representing input pattern x
*
 (query pattern) is recognized by 

some of the memory cells having non-zero affinity for it. Let 

 be the set of indices of these memory ABs. The label of the 

test AG is calculated as a weighted average of the labels of 

activated memory ABs. Two components of weights are 

introduced. The first one expresses the affinity of the memory 

AB for the test AG, and the second one expresses the AB 

power. The test AG label, i.e. the forecasted y-pattern 

corresponding to input pattern x
*
, is calculated as follows:   

 k

k

kkkw qxpy 
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 ),,( *
 (12) 

where  is a set of indices of ABs which recognition regions 

cover the test AG, and    
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Fig. 6 illustrates the test procedure. In this figure the highest 

affinity for the test AG has AB3 (0.50), the lower affinity has 

AB2 (0.25) and the lowest affinity has AB1 (0.03). The AB 

powers are: P1 = 9, P2 = 6, and P3 = 3. The AB weights are: w1 

= 0.082, w2 = 0.459 and w3 = 0.459. Thus, the biggest impact 

on the response have the second and third ABs. 

IV. DISCUSSION 

The proposed AISLFS searches the paratope space. The 

goal is to find for each AB the best subspace of X (-

subspace), in which this AB represents most AGs (has the 

highest power). The AGs represented by AB are its nearest 

neighbors in -subspace and have similar labels to AB initial 

label. The similarity in AB and AG labels means that the load 

vector encoded in AG label can forecast load vector initially 

encoded in AB label with error not higher than the assumed 

threshold error . All AGs represented by AB lie in the AB 

recognition region, i.e. inside the hyperball of radius r 

centered at 
 ttlp ][' ,p . The paratope  is found individually 

for each AB in the searching procedure. The radius r is also 

adjusted individually for each AB, so that the AB recognition 

region covers in -subspace as much AGs similar to AB in 

labels as possible. The final label of AB is calculated as the 

weighted mean of labels of all AGs represented by this AB. 

The searching procedure implemented in the clonal 

selection loop is stochastic to avoid local extremum traps. The 

population of Z clones is generated from the parent AB. The 

paratope of each clone is changed using hypermutation 

operator. The best clone is selected, i.e. that one with the 

highest power. If more than one clone has the same maximal 

power, that one is selected with the smallest paratope. The 

winning clone replaces the parent AB in the next iteration, 

even if it is worse than the parent AB (this enables the 

searching process to escape from local extrema). The 

searching process is illustrated in Fig. 7. The goal of this 

process is to create the memory AB. The best parent AB 

generated in the clonal selection loop  (parent ABs are marked 

with crosses in Fig. 7) becomes one of the memory ABs. 

In the clonal selection loop the solution space is searched 

locally in the neighborhood of the solution represented by the 

parent AB using hypermutation operator. The neighborhood 

has a probabilistic nature, i.e. the reachability of the points 

from that neighborhood is not the same. The transition 

probability to the certain neighboring point is dependent on 

 
 

Fig. 6. AG recognition by ABs in the test procedure for  k = {1, 2}, k = 1, 

2, 3. Thin crosses are training AGs, thick cross is the test AG, circles are 

ABs.    
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the mutation range controlled by the parameter . Reachability 

of the points, which differ from the solution represented by the 

parent AB with increasing number of bits, decreases 

monotonically at a rate dependent on the inverse of .  

Two criteria are used for evaluation of clones: clone power, 

which is maximized and clone paratope size, which is 

minimized. The two-criterion optimization implemented in the 

clonal selection loop is not Pareto optimization, because here 

the criteria are not equivalent. The primary criterion is the 

clone power, and the paratope size is a secondary criterion  

used when there is more than one clone with power Pmax. Both 

criteria lead to the better coverage of the X space by ABs (this 

is discussed in Section IV.C in [25]) and to improvement in 

generalization ability of the model. 

In the proposed AISLFS the final decision on the forecast is 

taken collectively by the activated memory ABs (ensemble of 

ABs). This ensemble of ABs is local: for different AGs 

different ensembles are formed composed of memory ABs 

which cover the recognized AG in different subspaces. This is 

similar to the method of combining component decision 

models called the random subspace method [28], used in the 

random forests. Differences between these two approaches are 

that the subspaces in the proposed model are not random, but 

optimized using some criteria, and the component models 

(memory ABs) are locally competent (in random forest 

approach each decision tree is used as a globally competent 

model). Due to combining responses of the component models 

we improve generalization and stability of the final model. 

The AISLFS has five parameters (hyperparameters): 

 clone population size, Z, 

 the number of iterations without improvement of results as 

a stop criterion for the clonal selection loop, S, 

 the threshold error determining the cross-reactivity 

threshold,   0, 

 the parameter adjusting the cross-reactivity threshold, c  

[0, 1), 

 the width of the normal distribution controlling the 

hypermutation range,  > 0. 

The clone population size, Z, determines the accuracy of 

searching the neighborhood of the current base point (parent 

AB paratope) and, hence, directs the search. The search 

process changes the character from the global and random one 

for small values of Z, to the local and more deterministic one 

for increasing values of Z. When Z = 1 the searching process 

comes down to a random walk: only one candidate point 

(clone) is generated from the base point, and it replaces the 

base point regardless of its evaluation. On the other hand, 

when the population of clones represents all points reachable 

(maximal value of Z), we obtain hill climbing algorithm, 

sensitive to local extrema. The parameter Z is dependent on 

the size of the solution space. It can be constant or increasing 

during searching. In the later case the solution space is 

searched globally in the initial stage, and locally in the final 

stage.  

The larger values of S increase the chances to leave the 

local extreme, but increase the computation time as well. The 

value of S depends on the size of the solution space and the 

clone population size. 

The parameters  and c determine the cross-reactivity 

threshold r, and hence the bias-variance tradeoff of the model.   

For smaller values of these parameters the AB recognition 

regions decrease, which results in reduction in bias and 

increase in variance. ABs with too small recognition regions 

do not cover sufficiently the X space, which results in increase 

in the number of unrecognized AGs. On the other hand, 

increase in the values of  and c provides to better coverage of 

the X space, but the bias increases. The values of these two 

parameters should be selected experimentally for a given 

forecasting task.  

The parameter  controls the hypermutation range. For 

higher values of  the paratopes of clones differ more from the 

paratope of the parent AB. The jumps in the solution space are 

the smallest for   0, and the bigest for   . Thus, the  

value as well as the Z value decides about the exploration-

exploitation tradeoff of the algorithm.    

The output of AISLFS is the forecasted y-pattern y


 

corresponding to query pattern x
*
. But the model can also 

forecast only one component of y-pattern. So instead of 

MIMO model we have MISO model. In such case the model is 

optimized to get the best accuracy for yt. The algorithm 

described above does not change. The only difference is that 

instead of q and y in (9) and (12) we use qt and yt, 

respectively.   

V. SIMULATION STUDY 

In this section training and optimization of AISLFS is 

presented and its performance is studied on four real STLF 

problems. AISLFS results are compared with results achieved 

by two other AIS-based models as well as neural networks, 

ARIMA and exponential smoothing.  

A. Training and Optimization of AISLFS for STLF 

The task is to forecast the hourly load of the Polish power 

system at hour t = 1, 6, 12, 18, 24 for the next day ( = 1). The 

data are from the period 2002-2004 (see Fig. 1; these data can 

be downloaded from the website http://gdudek.el.pcz.pl/varia/ 

stlf-data). The test period covers successive days of January 

2004 (without atypical January 1st) and July 2004. Thus we 

have (30 + 31)5 = 305 forecasting tasks (the tasks are marked 

 
 

Fig. 7.  The solution space searching in the clonal selection loop. 
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by symbols: hour/day/year, e.g. 12/July 1/2004). For each 

forecasting task (test sample) the training samples are selected 

individually from the period from January 1st, 2002 to the day 

preceding the forecasted day. The AISLFS in MISO version is 

trained for each forecasting task.  

To select the best values of hyperparameters we change 

them according to the following steps: 

1.   0,  = 0.7803, 1.1882, 1.9069, 3.9437 and   , at 

c = 1 and  = 2, 

2. c = 0, 0.25, 0.5, 0.75, 1, at  = 2 and the optimal value of  

selected in step 1, 

3.  = 1, 1.25, …, 4, at the optimal values of  and c selected 

in steps 1 and 2, respectively. 

Ranges and densities of parameters were selected based on 

previous experiments. Parameters Z and S were constant: Z = 

round(n/3) and S = 10. The successive values of  considered 

in step 1 correspond to the following probabilities of one bit 

mutation P(m = 1): 1, ~0.8, ~0.6, ~0.4, ~0.2, and 1/n (the 

probabilities of mutations of 2, 3, ..., n bits are determined 

from the normal distribution with standard deviation ; see 

step 3.1.2 in Section III). The Euclidean metric was used as a 

distance measure between vectors p and x (6). The mean 

absolute percentage error (MAPE) was used as the forecasting 

error (MAPE is traditionally used as an error measure in 

STLF). The quality of the model during training was measured 

on validation samples, i.e. five pairs of patterns (xi, yi,t) from 

the training set  for which xi belongs to the set of five nearest 

neighbors of the query pattern x
*
. So the model 

hyperparameters are estimated on the most similar patterns to 

the query pattern.  

The values of parameters  and c varying in ranges 

specified above did not significantly affect the validation 

error: MAPE ranged from 1.26 to 1.30. Also error dispersion 

did not show greater sensitivity to the value of  and c. The 

number of unrecognized AGs decreased with increasing c 

from 2.19 to 1.09%. 

The most favorable values of the error threshold  which 

gave the lowest MAPE (from 1.25 to 1.27), were within the 

range of 1.5 to 3.0. At lower  some AGs remained 

unrecognized. The value of  ≥ 2 provided recognition of 

more than 99% validation AGs. 

It should be noted that changes in the model 

hyperparameters do not cause drastic changes in the forecast 

errors, which is very valuable property. For further 

experiments described in this section it was selected:  = 

1.9069, c = 1 and  = 2.   

Errors for the test samples MAPEtst averaged over 30 

training sessions are given in Table II. The average number of 

features forming AB paratopes was 7, which gives a 

compression ratio 73%. The frequencies of features in 

paratopes of immune memory ABs in Fig. 8 are shown.  

Fig. 9 shows the query pattern x
*
 for the forecasting task 

12/July 1/2004 (Thursday) and paratopes of all activated 

memory ABs. The paratopes contain 7 out of 24 features on 

average. The smallest paratope (AB78) included only two 

features, the largest one (AB67) 14 features. The average 

number of the clonal selection loop iterations in this 

forecasting task was 30. The figure also shows the AB weights 

(13). AB powers, cross-reactivity thresholds, affinities, labels 

and components of vectors p forming the paratopes of 

memory ABs created for this forecasting task in Fig. 10 are 

presented. The ABs in this case correspond to the learning 

samples which represent the daily load curves of the 

successive Wednesdays (x-patterns) and Tuesdays (y-patterns) 

from history. As we can see from this figure the activated ABs 

represent daily load curves from the period immediately 

preceding the forecasted day and from periods shifted in time 

one or two years back. This is because the days from these 

periods have similar load shapes. Daily load curves from 

winter periods showing greater dispersion than curves from 

summer periods are represented by ABs with lower powers 

(see Fig. 10 (a)).  

In Fig. 10 (e) the paratopes of memory ABs are visualized. 

Black  squares in this diagram indicate features selected to 

paratopes. As paratope size is minimized in the secondary 

criterion, there is many white squares corresponding to 

inactive features. Smaller paratope increases the AB power. 

So, the AG is recognized by as many memory ABs as 

possible. Similarly to ensembles of weak learners, increasing 

number of recognition units (ABs) provide to improvement in 

generalization ability of the model and higher precision 

(smaller variance). 

The highest bar in the Figs. 10 (b) and (d) relates to AB50 

which vector p represents atypical day: January 1, 2003. The 

power of this AB is 1. It was assumed during training that if 

the AB contains only one AG in its recognition region, which 

means that this AG is an outlier, the clonal selection loop is 

skipped and the paratope of this AB contains all the p-vector 

components (note only black squares for AB50 in Fig. 10 (e)). 

Fig. 11 illustrates how the forecast is calculated from the 

labels and weights of activated ABs. Each activated AB is 

TABLE II 

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR MISO MODEL 

Hour 
January July Mean 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

1 1.12 1.02 1.11 1.11 1.12 1.06 

6 1.52 1.45 0.92 0.86 1.23 1.06 
12 1.57 1.03 0.93 0.79 1.24 0.84 

18 1.42 1.53 0.74 0.78 1.07 0.95 

24 1.62 1.26 1.13 1.00 1.37 1.22 
Mean 1.45 1.26 0.97 0.91 1.21 1.03 

 

      
 

Fig. 8.  Frequences of features (components of x) in AB paratopes . 
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Fig. 9.  Query pattern x* for the forecasting task 12/July 1/2004 (solid line) and paratopes of all activated ABs (points).  

marked by point  (qk, wk) in this figure. The x-coordinate of 

the centroid of points (qk, wk), k  , is the forecasted value 

for the query pattern x
*
. 

In Table III errors for MIMO version of the AISLFS are 

presented. In this case the output of the forecasting model is 

vector y. As can be seen from this table the errors in MIMO 

case are not worse than in MISO case. 

B. Comparative studies of AISLFS with other models 

In this section AISLFS is examined in real  STLF problems 

on four time series: 

 PL: time series of the hourly load of the Polish power 

system from the period of 2002–2004 (this is the same 

time series as in the previous section). The test sample 

 

 

 
 
Fig. 10.  Immune memory for forecasting task 12/July 1/2004 (black bars indicate activated ABs, black squares in (e) indicate features selected to paratopes).  

 



1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 12 

includes data from 2004 with the exception of 13 atypical 

days (e.g. public holidays),  

 FR: time series of the half-hourly load of the French power 

system from the period of 2007–2009. The test sample 

includes data from 2009 except for 21 atypical days,  

 GB: time series of the half-hourly load of the British power 

system from the period of 2007–2009. The test sample 

includes data from 2009 except for 18 atypical days, 

 VC: time series of the half-hourly load of the power 

system of Victoria, Australia, from the period of 2006–

2008. The test sample includes data from 2008 except for 

12 atypical days.   

On the basis of previous simulations it was assumed:  = 

1.9069 and c = 1. Error threshold  was searched with the step 

of 0.25 in ranges  . The proposed model in MIMO version is 

compared with other two AIS-based STLF models as well as 

with models based on ARIMA, exponential smoothing (ES) 

and neuron network (NN).  

The first AIS-based model (AIS1) was proposed in [16] and 

analyzed in [29]. In this model patterns x and y are 

concatenated and represented by AGs with epitopes u = [x
T
 

y
T
]

T
. AB paratope is constructed analogously to the AG 

epitope: v = [p
T
 q

T
]

T
. AGs are recognized by ABs which play 

a role of clusters: hyperballs of radius r with centers in points 

p. The paratopes v are modified during training (immune 

memory creation in clonal selection loop) to cover the AGs in 

the best way and minimize the forecast error. In the 

forecasting phase an incomplete AG is presented having only 

the x-part of an epitope (query pattern). It is recognized by a 

set of ABs from the immune memory which cover it in X 

subspace. We infer about the missing y-part of the epitope on 

the basis of q-parts of paratopes of the activated ABs.  

The second AIS-based model (AIS2) was proposed in [17] 

and analyzed in [29]. It is composed of two population of 

ABs. Population of ABs of type x (ABx) recognize AGs 

representing x-patterns (AGx), whilst the population of ABs of 

type y (ABy) recognize AGs representing y-patterns (AGy). 

Patterns x are epitopes of AGxs and paratopes of ABxs, and 

patterns y are epitopes of AGys and paratopes of ABys. 

Epitopes and paratopes are fixed. ABx has the cross-reactivity 

threshold r defining the recognition region with center in the 

point x. Similarly, ABy has a recognition region of radius s 

with center in the point y. Radii r and s are adjusted 

individually during training, so that AB covers AGs which 

epitopes are similar to the AB paratope. AB represents a 

cluster of similar AGs in the pattern space X or Y. Sizes of the 

recognition regions of ABs depend on the data distribution in 

the spaces X and Y. After the two populations of the immune 

memory have been created, the empirical conditional 

probabilities P(AByk | ABxj), j, k = 1, 2, …, N, that the i-th AGy 

stimulates the k-th ABy, when the corresponding i-th AGx 

stimulates the j-th ABx, are determined. These probabilities 

are used to determine the forecast pattern y paired with the 

query pattern x
*
. 

In ARIMA and ES the load time series were decomposed 

into n series, i.e. for each t a separate series was created. This 

eliminates the daily seasonality. The ARIMA and ES 

parameters were estimated for each forecasting task (forecast 

of system load at time t of day i) using 12-week time series 

fragments immediately preceding the forecasted day. Atypical 

days in these fragments were replaced with the days from the 

previous weeks. Due to using short time series fragments for 

parameter estimation (much shorter than the annual period) 

and due to time series decomposition into n series we do not 

have to take into account the annual and daily seasonality in 

the models. In such case the number of the parameters is much 

smaller and they are easier to estimate compared to models 

with triple seasonality. For each forecasting task the seasonal 

ARIMA(p, d, q)(P, D, Q)v model was created (where v = 7, 

i.e. one week period) as well as the ES state space model [30]. 

To estimate parameters of ARIMA and ES stepwise 

procedures for traversing the model spaces implemented in the 

forecast package for the R environment for statistical 

computing [31] were used. These automatic procedures return 

the optimal models with the lowest Akaike information 

criterion value.  

The NN model is learned locally [32] using training 

patterns selected from the neighborhood of the query pattern. 

Patterns are defined in the same way as in this work. For each 

forecasting task a separate NN is learned using Levenberg-

Marquardt algorithm with Bayesian regularization to prevent 

overfitting. Local fitting implies small number of neurons. 

Based on the research reported in [32] the network composed 

of only one neuron with bipolar sigmoid activation function 

was chosen as an optimal architecture. 

In Fig. 12 sample fragments of the time series and their 

forecasts using different methods are shown. Errors for one 

day ahead STLF in Table IV are presented. Errors generated 

by the naïve model are also shown in this table. The naïve 

forecasts are created as follows: the forecasted daily curve is 

the same as seven days ago. The best results are marked with 

an asterisk and the second best ones are marked with a double 

TABLE III 

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR MIMO MODEL 

Hour 
January July Mean 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

1 1.24 1.07 1.18 1.04 1.21 1.06 

6 1.35 1.25 0.96 0.94 1.15 1.06 
12 1.35 1.19 0.90 0.73 1.12 0.89 

18 1.44 1.39 0.70 0.88 1.06 1.04 

24 1.57 1.31 1.13 0.91 1.35 1.25 
Mean 1.39 1.24 0.97 0.90 1.18 1.06 

 

 
 
Fig. 11.  The forecast (cross) determined from the centroid of points (qk, wk) 

(dots) representing activated ABs.  
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Fig. 13.  Errors for different forecast horizons.   

 

 

 
 

Fig. 12.  Sample weekly fragments of the time series and their forecasts for one day ahead horizon.   

asterisk (best results were confirmed by Wilcoxon rank sum 

test with 5% significance level). As we can see from this table 

neural model outperforms the other ones. The AISLFS takes 

the second place for PL, FR and GB data. The conventional 

forecasting models: ARIMA and ES work significantly worse 

than other models for all time series. 

Distributions of percentage errors PE in Table V are 

characterized by median (Q2), first quartile (Q1) and third 

quartile (Q3). It can be inferred from this statistics the degree 

of dispersion and skewness in errors (when Q1 and Q3 are not 

symmetrical around Q2). Zero median of PE indicates 

unbiased forecasts. Deviations of median from zero inform 

that the forecasts may have a general tendency to be too high 

or too low. Immune systems seem to generate the least biased 

forecast on average. The highest bias is observed for ARIMA 

and naïve model. Naïve model generates asymmetrically 

distributed errors. For other models PE distribution is more or 

less symmetrical ((Q3–Q2)  (Q2–Q1)).  

In Fig. 13 errors for forecast horizons up to 7 days are 

shown. The rankings of the models for each horizon are 

presented in Fig. 14. The first ranking is based on the average 

difference between model error (APE) and the smallest error 

for the test sample. In this ranking AISLFS occupies the 

second position for each horizon except  = 5. The best model 

for short horizons is NN and for longer horizons is ES. The 

second ranking is based on the average rank in accuracy 

 

TABLE IV 

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR  

THE EXAMINED MODELS 

Model 
PL FR GB VC 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

AISLFS     1.51** 1.49 1.79** 1.81 1.67** 1.73 3.13 2.75 

AIS1 1.50** 1.50 1.93 1.95 1.77 1.84 3.04** 2.75 

AIS2 1.50** 1.51 1.93 1.96 1.78 1.87 3.33 2.93 
ARIMA 1.82 1.71 2.32 2.53 2.02 2.07 3.67 3.42 

ES 1.66 1.57 2.10 2.29 1.85 1.84 3.52 3.35 

NN 1.44* 1.41 1.64* 1.70 1.65* 1.70 2.92* 2.69 
Naïve 3.43 3.42 5.05 5.96 3.52 3.82 4.88 4.55 

 

 

TABLE V 

MEDIAN (Q2), FIRST(Q1) AND THIRD (Q3) QUARTILES OF PE FOR  

THE EXAMINED MODELS 

Model 
PL 

Q1 / Q2 / Q3 

FR 

Q1 / Q2 / Q3 

GB 

Q1 / Q2 / Q3 

VC 

Q1 / Q2 / Q3 

AISLFS     -1.05/0.02/1.12 -1.31/-0.06/1.23 -1.10/0.12/1.34 -1.86/-0.07/1.74 

AIS1 -1.03/0.06/1.17 -1.37/-0.02/1.34 -1.32/0.07/1.40 -1.84/-0.02/1.93 

AIS2 -1.05/0.01/1.12 -1.34/-0.02/1.37 -1.26/0.06/1.36 -2.00/-0.06/1.84 

ARIMA -1.05/0.18/1.39 -1.59/0.12/1.88 -1.40/0.15/1.69 -2.59/-0.28/2.02 

ES -1.05/0.10/1.20 -1.48/0.08/1.63 -1.29/0.14/1.51 -2.40/-0.06/2.07 

NN -0.91/0.11/1.17 -1.14/0.00/1.20 -0.99/0.17/1.36 -1.81/-0.13/1.63 

Naïve -1.76/0.42/2.39 -3.86/0.02/3.40 -2.41/0.24/2.67 -2.68/0.14/3.29 
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Fig. 14.  Rankings of the forecasting models: based on the average difference between model error (APE) and the smallest error for the test sample (top row) and 

based on the average rank in accuracy ranking for each test sample (bottom row).   

 

ranking for each test sample. In this case AISLFS outperforms 

all other models for horizons longer than two and occupy 

second position for the shortest horizons.  

Training times of the algorithms in Table VI are shown. 

These are total times of model learning for forecasting 24 

hourly loads for the next day at fixed values of 

hyperparameters. The simulations were made in Matlab 

R2015a and R 3.2.3 (ARIMA and ES) on the desktop 

computer with Intel Core2 Quad CPU Q9550@2.83 GHz,  4 

GB RAM, Windows 7 64 bit. Classical algorithms, ARIMA 

and ES, are the fastest but in their cases any learning is not 

needed, because the final model is computed using maximum 

likelihood estimation. AIS2 is the fastest among immune-

based models. In this model only one parameter is learned: the 

cross-reactivity threshold. AIS1 and AISLFS having more 

complex structures are learned longer. The longest training 

time is for NN. This is because NN is in MISO version and for 

forecasting 24 hourly loads we need 24 NN models learned 

individually.       

VI. CONCLUSION 

The immune system has many attractive features which can 

be implemented in machine learning algorithms for 

classification, clustering and regression. In the proposed 

forecasting model, which is a regression model, the clonal 

selection mechanism is applied to create specialized ABs 

(immune memory cells with suitably shaped paratopes) for 

recognition AGs representing fragments of load time series. In 

response to the AG representing the time series fragment 

preceding the forecasted fragment the activated ABs construct 

the forecasted fragment. Recognition abilities of ABs depends 

on their paratopes. The paratope corresponding to the selected 

features of the input vector (pattern representing time series 

fragment expressed by AG) is learned in the clonal selection 

loop individually for each ABs. As a result, each AB 

recognizes AGs by individually selected features. This local 

feature selection is a unique mechanism used in the proposed 

AIS-based forecasting model. 

Time series representation by patterns expressed in ABs and 

AGs simplifies the problem of forecasting multiple seasonal 

nonstationary time series. This is due to filtering out the trend, 

annual and weekly cycles and unifying the daily cycles. This 

leads to the simplification of the relationship between input 

and output variables and consequently to the improvement in 

accuracy. The simulation studies have shown high accuracy of 

AISLFS, which is a strong competitor for other popular STLF 

models such as ARIMA, ES and NNs.  

The novelties of the work can be summarized as follows: 

 AISLFS uses an alternative representational abstraction: 

each AB defines recognition region in a different subspace 

(local feature selection), 

 final decision is made collectively by many ABs, which 

are competent only in their own recognition regions 

(ensemble of weak learners), 

 typically AIS are used for classification, clustering and 

optimization problems. This implementation is for 

regression problem, 

 ABs and AGs represent fragments of time series. AISLFS 

in this implementation is used for prediction of time series.   

This work is a continuation of research on AISLFS. First 

application of AISLFS was data classification [25]. It is 

planned in the future to apply AISLFS to unsupervised 

learning, where data clusters are formed in subspaces of the 

feature space based on locally selected features. In this case 

one point can belong to many different clusters represented by 

ABs. 

REFERENCES 

[1] R. Weron, Modeling and Forecasting Electricity Loads and Prices. 
Wiley, 2006. 

[2] J.W. Taylor, “Short-term load forecasting with exponentially weighted 

methods,” IEEE Trans. Power Systems, vol. 27, no. 1, pp. 458-464, 
2012. 

[3] S. Tzafestas, E. Tzafestas, “Computational intelligence techniques for 

short-term electric load forecasting,” Journal of Intelligent and Robotic 
Systems, vol. 31, pp. 7–68, 2001. 

[4] K. Metaxiotis, A. Kagiannas, D. Askounis, J. Psarras, “Artificial 

intelligence in short term electric load forecasting: A state-of-the-art 
survey for the researcher,” Energy Conversion and Management, vol. 

44, pp. 1525–1534, 2003. 

TABLE VI 

TRAINING TIMES OF THE EXAMINED MODELS (IN SECONDS) 

AISLFS AIS1 AIS2 ARIMA ES NN 

2.94 2.63 0.76 0.21 0.20 15.19 

 
 
 



1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 15 

[5] C. Cecati, J. Kolbusz, P. Rozycki, P. Siano and B. M. Wilamowski, "A 

novel RBF training algorithm for short-term electric load forecasting and 
comparative studies," IEEE Transactions on Industrial Electronics, vol. 

62, no. 10, pp. 6519-6529, 2015. 

[6] Ni Ding, C. Benoit, G. Foggia, Y. Besanger and F. Wurtz, "Neural 
network-based model design for short-term load forecast in distribution 

systems," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 72-

81, Jan. 2016. 
[7] D.K. Chaturvedi, A.P. Sinha, O.P. Malik, "Short term load forecast 

using fuzzy logic and wavelet transform integrated generalized neural 

network," International Journal of Electrical Power & Energy Systems, 
vol. 67, pp. 230-237, 2015. 

[8] A. Khosravi, S. Nahavandi, D. Creighton and D. Srinivasan, "Interval 

type-2 fuzzy logic systems for load forecasting: A comparative study," 
IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1274-1282, 

Aug. 2012. 

[9] M. Read, P. Andrews, J. Timmis, “An introduction to artificial immune 
systems,” in The Handbook of Natural Computing, Springer, 2011. 

[10] J. Farmer, N. Packard, and A. Perelson, “The Immune System, 

Adaptation and Machine Learning,” Physica D, vol. 22, pp.  187–204, 
1986. 

[11] H. Bersini and F. Varela, “The immune learning mechanisms: 

Recruitment reinforcement and their applications,” in Computing with 
Biological Metaphors, Chapman and Hall, 1993. 

[12] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself 

discrimination in a computer,” in Proc. IEEE Symposium on Research in 
Security and Privacy, Oakland, CA, 1994, pp. 202-212. 

[13] J.O. Kephart, “A biologically inspired immune system for computers,” 
in Proc. Artificial Life IV: The Fourth International Workshop on the 

Synthesis and Simulation of Living Systems, MIT Press., 1994, pp. 130-

139. 
[14] D. Dasgupta, S. Yu, F. Nino, “Recent advances in artificial immune 

systems: models and applications,” Applied Soft Computing, vol. 11, 

issue 2, pp. 1574-1587, 2011. 
[15] E. Hart, J. Timmis, “Application areas of AIS: the past, the present and 

the future,” Applied Soft Computing, vol. 8, issue 1, pp. 191-201, 2008. 

[16] G. Dudek, “Artificial immune system for short-term electric load 
forecasting,” in Proc. 9th ICAISC, LNAI 5097, 2008, pp. 1007–1017. 

[17] G. Dudek, “Artificial immune clustering algorithm to forecasting 
seasonal time series,” in Proc. 3rd ICCCI, LNAI 6922, 2011, pp. 468-
477. 

[18] Huang Yue, Li Dan and Gao Liqun, “Power system short-term load 

forecasting based on neural network with artificial immune algorithm,” 
in Proc. Control and Decision (CCDC'12), 2012, pp. 844-848. 

[19] C. McEwan and E. Hart, “Representation in the (artificial) immune 

system,” J. Math. Model. Algorithms, vol. 8(2), pp. 125-149, 2009. 
[20] T. Stibor, J. Timmis, and C. Eckert, “On the use of hyperspheres in 

artificial immune systems as antibody recognition regions,” in Proc. 

ICARIS 2006, LNCS 4163, 2006, pp. 215-228. 
[21] I.R. Cohen, U. Hershberg, and S. Solomon, “Antigen receptor 

degeneracy and immunological paradigms,” Molecular Immunology, 

vol. 40, pp. 993-996, 2004. 
[22] K.W. Wucherpfennig, et al., “Polyspecificity of T cell and B cell 

receptor recognition,” Semin. Immunol, vol. 19, pp. 216–224, 2007. 

[23] M. Mendao, J. Timmis, P.S. Andrews, and M. Davies, “The immune 
system in pieces: Computational lessons from degeneracy in the immune 

system,” in Proc. Foundations of Computational Intelligence (FOCI 

2007), 2007, pp. 394-400. 
[24] U. Hershberg, S. Solomon, I.R. Cohen, “What is the basis of the immune 

system’s specificity?” in V. Capasso, (ed.) Mathematical Modelling & 

Computing in Biology and Medicine, pp. 377–384, 2003. 
[25] G. Dudek, “Artificial immune system for classification with local feature 

selection,” IEEE Trans. on Evolutionary Computation, vol. 16, issue 6, 

pp. 847-860, 2012. 
[26] G. Dudek, “Pattern similarity-based methods for short-term load 

forecasting – Part 1: Principles,” Applied Soft Computing, vol. 37, pp. 

277-287, 2015. 
[27] G. Dudek, “Tournament searching method to feature selection problem,” 

in Proc. 10th ICAISC, LNAI 6114. 2010, pp. 437–444. 

[28] T.K. Ho, “The random subspace method for constructing decision 
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 

20, 8, pp. 832-844, 1998. 

[29] G. Dudek, “Pattern similarity-based methods for short-term load 
forecasting – Part 2: Models,” Applied Soft Computing, vol. 36, pp. 422-

441, 2015. 

[30] R.J. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with 

Exponential Smoothing: The State Space Approach, Springer, 2008. 
[31] R.J. Hyndman, Y. Khandakar, “Automatic time series forecasting: The 

forecast package for R,” Journal of Statistical Software, vol. 27, no. 3, 

pp. 1–22, 2008. 
[32] G. Dudek, “Forecasting time series with multiple seasonal cycles using 

neural networks with local learning,” in Proc. 12th ICAISC, LNAI 7894, 

2013, pp. 52-63. 

 

Grzegorz Dudek received his PhD degree 

in electrical engineering from the 

Czestochowa University of Technology, 

Poland, in 2003 and habilitation degree in 

computer science from Lodz University of 

Technology, Poland, in 2013. Currently, 

he is an associate professor at the 

Department of Electrical Engineering, 

Czestochowa University of Technology. He is the author of 

two books concerning machine learning methods for load 

forecasting and evolutionary algorithms for unit commitment 

and over 70 scientific papers. He was awarded with 3-rd place 

in price probabilistic forecasting track of Global Energy 

Forecasting Competition (GEFCOM 2014) sponsored by 

IEEE Power & Energy Society. His research interests include 

pattern recognition, machine learning, artificial intelligence, 

and their application to classification, regression, forecasting 

and optimization problems. 

http://markread.info/pubs/ais.pdf
http://markread.info/pubs/ais.pdf
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-92909-3
https://www.cs.unm.edu/~forrest/publications/virus.pdf
https://www.cs.unm.edu/~forrest/publications/virus.pdf

