
1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 1

 

Abstract—In this work a new forecasting model based on

artificial immune system is proposed. The model is used for

short-term electrical load forecasting as an example of

forecasting time series with multiple seasonal cycles. Artificial

immune system learns to recognize antigens representing two

fragments of the time series: fragment preceding the forecast

(input vector) and forecasted fragment (output vector).

Antibodies as recognition units recognize antigens by selected

features of input vectors and learn output vectors. In the test

procedure new antigen with only input vector is recognized by

some antibodies. Its output vector is reconstructed from activated

antibodies. The unique feature of the proposed artificial immune

system is the embedded property of local feature selection. Each

antibody learns in the clonal selection process its optimal subset

of features (a paratope) to improve its recognition and prediction

abilities. In the simulation studies the proposed model was tested

on real power system data and compared with other artificial

immune system-based forecasting models as well as neural

networks, ARIMA and exponential smoothing. The obtained

results confirm good performance of the proposed model.

Index Terms—artificial immune system, clonal selection, local

feature selection, short-term load forecasting, time series

I. INTRODUCTION

IME series representing different phenomena and

processes from industry, economy, demography,

meteorology, etc., express various patterns. In general, there

are four components to a time series: a trend, seasonal

variations, cyclical variations, and irregular variations. A good

example of time series expressing complex behavior is

electricity demand in a power system. In Fig. 1 hourly load of

the Polish power system is shown. This time series is

nonstationary in mean and variance, it contains nonlinear

trend, irregular component, and three seasonal periods: daily,

weekly and annual. The daily and weekly profiles change

during the year. The daily profile depends on the day of the

week as well. These all features of load time series have to be

captured by a flexible forecasting model.

 The load time series forecasting in short horizons from

minutes to days (short-term load forecasting; STLF) is

essential for power system control and scheduling. The load

forecast are necessary for energy companies to make

This work was supported in part by the Polish Ministry of Science and

Higher Education under Grant N N516 415338.

G. Dudek is with the Department of Electrical Engineering, Czestochowa

University of Technology, 42-200 Czestochowa, Al. Armii Krajowej 17,
Poland (e-mail: dudek@el.pcz.czest.pl).

important decisions related to planning of electricity

production and transmission. As a basic driver of electricity

prices the power system load should be forecasted precisely.

The forecast accuracy translates to financial performance of

the energy market participants such as electricity producers

and suppliers, energy trading companies, transmission and

storage system operators, investment firms and also financial

institutions.

 The complexity of the STLF problem and its importance

caused the development of variety of forecasting models in

recent decades. They can be roughly classified as conventional

and unconventional models. The former include statistical

analysis, regression methods and smoothing techniques such

as autoregressive integrated moving average (ARIMA) [1] and

exponential smoothing (ES) [2]. The latter employ newer

computational methods such as artificial intelligence and

machine learning ones [3], [4]. Some of the most popular of

them are: neural networks, fuzzy inference systems, neuro-

fuzzy systems, support vector machines and ensembles of

models.

 Seasonal ARIMA models can capture stochastic nature of

the load time series and their multiple seasonal cycles.

Exogenous variables can be included into the model. A

limitation of ARIMA is its linear nature. Estimation of

ARIMA parameters is usually considered subjective and

Artificial Immune System with Local Feature

Selection for Short-Term Load Forecasting

Grzegorz Dudek

T

Fig. 1. The hourly electricity demand in Poland in three-year (a) and one-

week (b) intervals.

 2002 2003 2004

10

12

14

16

18

20

22

24

Year

L
,

G
W

(a)

0 24 48 72 96 120 144 168
10

12

14

16

18

20

22

Hour

L
,

G
W

SatWinter

Spring

Summer

Autumn

Mon Tue Wed Thu Fri Sat Sun

(b)

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 2

difficult to apply.

 ES can express heteroscedastic time series with seasonal

variability and nonlinear relationships between their terms but

exogenous variables cannot be included into the model. An

overparameterization and a large number of starting values to

estimate are disadvantages of ES. Recently proposed

exponential smoothing formulations applied for STLF are

presented in [2].

 Neural networks, widely used in STLF, have many

attractive features such as: universal approximation property,

learning ability, and robustness to noise in data. Disadvantages

of neural networks include: overfitting, instability in training

(sensitivity to the initial parameter values), difficulty in

selection of an optimal architecture, weak extrapolation

capacity and many parameters to estimate. Some recent

algorithms to improve training of neural STLF models are

presented and compared in [5]. The way of designing of STLF

neural model to ensure an optimal generalization capacity in

[6] is shown.

 Fuzzy logic allows imprecise, incomplete and ambiguous

information to be introduced into the STLF model. This is

effective approach to deal with uncertainty. In neuro-fuzzy

systems the knowledge for building if-then rule base is gained

directly from data in learning process. But usually a structure

of neuro-fuzzy system is complex and the number of

parameters is large, so learning is difficult and does not

guarantee convergence to the global minimum. Many

successful applications have been reported on using fuzzy

systems as STLF models, e.g. [7], where fuzzy logic is

combined with wavelet transform and neural network or [8],

where interval type-2 fuzzy logic systems are used to directly

model and handle uncertainties.

 Another useful computational intelligence tools for STLF

are artificial immune systems (AIS). AIS are biologically

inspired computation methods having many attractive features

from machine learning and computational intelligence

perspectives. These include [9]: self-organization and self-

optimization, adaptation ability, learning from examples,

distributed and parallel operation, pattern recognition and

memorization, anomaly detection, multilayer structure and

generalization capability.

 The origin of AIS has its roots in the pioneering work of

Farmer, Packard and Perelson [10], where theoretical immune

network models were proposed to describe immune memory.

Early works forming the basis of solid foundation for AIS

focused on the immune network theory [11], and computer

security (network intrusion detection, computer virus

detection) [12], [13]. In the last years a diverse set of immune

inspired algorithms have been developed to solve various

computational problems. The four major concepts from

immune systems underlie AIS algorithms [14]:

 negative selection,

 artificial immune networks,

 clonal selection and

 danger theory and dendritic cells.

Application areas that have been addressed by AIS can be

summarized as [15]:

 learning (clustering, classification, recognition, robotic and

control applications),

 anomaly detection (fault detection, computer and network

security applications) and

 optimization (continuous and combinatorial).

 AIS were used as STLF models [16], [17] (see AIS1 and

AIS2 described in section V) and as learning methods for

STLF models built on neural networks [18].

 In this work the AIS with local feature selection (AISLFS)

as a supervised learning regression algorithm for STLF is

designed. The immune cells, antibodies (ABs), learn the time

series patterns included in antigens (AGs). AGs are recognized

by AB paratopes representing selected features of the input

vector (time series fragment preceding the forecasted

fragment). Each AB with its paratope represents a limited

region of the input space corresponding to the hyperball

defined in some subspace. AB recognition regions are shaped

in a clonal selection procedure. This includes optimization of

paratopes individually for each AB and corresponds to the

local feature selection. Locally irrelevant or redundant features

are omitted. ABs also learn output vectors representing

forecasted fragments of the time series. The goal of AIS

learning is to cover the input space by hyperballs defined in

different subspaces in such a way that prediction capability of

the system is maximized.

The novelty of AISLFS is an alternative representational

abstraction: each AB defines recognition region in a different

subspace. Moreover, a final decision is made collectively by

many ABs, which are competent only in their own recognition

regions (weak learners). New representation way and

collective response of immune cells are consistent with

theoretical perspectives presented by McEwan and Hart [19].

They noted that an epitope is a discontinuous region on the

three-dimensional surface of a molecule (our energetic

residues). It is not a predefined object but it becomes an

epitope by virtue of binding to a receptor in the context of a

particular interaction. This corresponds to an epitope

definition in AISLFS (see Section II-B below). According to

[19] the immune repertoire is not a population of centroids,

prototypes, or support vectors, but an overcomplete dictionary

of basis functions. Each cell receptor defines a different

subspace of the original n-dimensional input space. The

system is composed of many simple learners (immune cells)

with weak representational capabilities. The search space for

the immune repertoire is enriched to the space of classifiers

(or regression models in our case), and the regression function

becomes a weighted vote or averaged prediction amongst an

ensemble of learners. As in boosting, a set of weak learners

can be aggregated into an arbitrarily strong learning algorithm.

An increase in representational power is achieved through the

diversity of single learners (defined in low-dimensional

subspaces) and an increase in stability through their

integration. A motivation for dimensionality reduction, which

is performed in AISLFS in local version, is a curse of

dimensionality. This issue has been discussed by Stibor et al.

[20]. In the context of AIS, where hyperballs define

recognition regions, the problem is that the volume of a

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 3

hyperball quickly approaches zero with increasing

dimensionality of the space and any metric becomes

increasingly meaningless as data points tend to become

equidistant. Thus, low dimensional intuitions about distance

and density are highly inadequate and undermine the very

concepts that traditional AIS abstractions build upon.

In AISLFS AB can bind to many distinct epitopes (poly-

recognition) and, similarly, AG can be bound by many ABs

(poly-clonality). This idea, called degeneracy, derived from

the works of experimental and theoretical immunologists [21],

gains recent interest in both immunology and its

computational abstractions and generates interest in the AIS

community [22], [23]. Researchers embrace this degeneracy as

an important feature of the immune system [24]. In AISLFS

degeneracy allows the system to train immune memory and to

generate collective response of the immune cells.

 This paper is organized as follows. In Section II the idea of

AISLFS for STLF is presented. Time series representation is

described, how antibody and antigens are built is shown and

AB adaptation process and prediction procedure are outlined.

The detailed AISLFS algorithm for STLF is presented in

Section III and discussed in Section IV. In Section V the

proposed forecasting model is tested on real load data. It is

compared with two others AIS-inspired STLF models as well

as with neural networks, ARIMA and exponential smoothing.

Finally, Section VI concludes the paper. The symbols that

appear in the following description of the AISLFS algorithm

are listed in Table I.

II. IDEA OF AISLFS FOR STLF

This work is a continuation of research on AISLFS. In [25]

AISLFS was proposed as a classifier with unique feature: the

local feature selection. For each region of the input vector

space represented by an AB a separate subset of relevant

features is created. This allows the recognition system to

improve its recognition capacity when different features are

important in different regions of the input space.

The local feature selection is inspired by the binding of an

AB to an AG. This binding occurs between amino acid

residues forming an epitope and a paratope. Only selected

residues, so called energetic residues, take part in the binding.

They correspond to the selected features. ABs are the

recognition units with paratopes (corresponding to the subsets

of selected features) formed in the learning process: immune

memory creation process. Each AB has label with target

output value (class symbol or function value). The final ABs

with their paratopes form the immune memory. They

correspond to the set of hyperballs defined in different

subspaces. This hyperballs, called AB recognition regions,

cover the input space in such a way that in each hyperball

there are only training points having the same (in classification

problems) or similar (in regression problems) labels. The

biological inspirations behind AISLFS are further discussed in

[25].

The similarities and differences between the proposed

AISLFS for STLF and AISLFS classifier [25] can be

summarized as follows:

 In both algorithms samples are represented by AGs and

recognition units are represented by ABs. Both AGs and

ABs have labels. In AISLFS classifier labels include class

symbol, while in AISLFS for STLF they include a forecast

fragment of a time series.

 The algorithm structures are similar. They include clonal

selection loop which is performed for each AB. In both

algorithms inside this loop the same searching process for

finding best AB paratopes is implemented (tournament

searching algorithm).

 Hypermutation operators which modify clone paratopes

are similar for both algorithms. But in the implementation

of AISLFS classifier described in [25] only one bit of a

paratope is mutated. In AISLFS for STLF proposed in this

work more bits can be mutated (depending on the

parameter value, by which we can control a mutation

intensity).

 Affinity measure is defined in the same way in both

algorithms but the cross-reactivity threshold, on which it is

based, has different meaning. In AISLFS classifier it

depends on the classes of AB and neighboring AGs. In

AISLFS for STLF it depends on the forecasting error

estimated for each AG and AB.

TABLE I
LIST OF SYMBOLS

Symbol Description

 = {(xi, yi)} training set

 AB paratope: the set of indices of selected features

 set of indices of ABs which recognition regions cover the

AG

 set of indices of AGs in AB recognition region

 threshold error determining r

 parameter controlling the hypermutation range

 forecast horizon in days

Dk dispersion of the time series elements in the period k

Lk,t t-th load time series element in the period k

kL mean load in the period k

N number of training samples

P AB power: ||

S maximum number of the successive iterations without

result improvement

X input pattern space

Y output pattern space

Z number of clones

a(pl, xj, l) affinity of the l-th AB for the j-th AG

c parameter adjusting r

d(pl, xj, l) distance in X between the l-th AB and j-th AG

m number of bits swapping in hypermutation of a clone

n total number of features

p element of AB: vector corresponding to a vector x

q label of AB: vector corresponding to a vector y

r cross-reactivity threshold

v n-element binary vector corresponding to the paratope 

wk weight of activated k-th memory cell

x n-component input pattern

y n-component output pattern

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 4

 AB labels in AISLFS for STLF are not fixed, as in

AISLFS classifier, but are calculated from labels of

recognized AGs.

 The clones are evaluated using the same criteria in both

algorithms.

 The model output is calculated differently in both

algorithms. In AISLFS classifier this is an avidity

depending on the affinities of activated memory ABs. In

AISLFS for STLF it is calculated as a weighted average of

the labels of activated memory ABs.

A. Time Series Representation

STLF is a regression problem X  Y. An input vector

xi = [xi,1 xi,2 … xi,n]
T
 X = ℝn

 represents a vector of loads (L)

in successive timepoints of the daily period k: Lk = [Lk,1 Lk,2 …

Lk,n]
T
. An output vector yk = [yk,1 yk,2 … yk,n]

T
  Y = ℝn

represents a vector of loads in successive timepoints of the

forecasted daily period k+: Lk+ = [Lk+,1 Lk+,2 … Lk+,n]
T
,

where  is a forecast horizon in days. Vectors x and y we call

x-patterns and y-patterns, respectively, because they map load

vectors L in specific ways. The components of input pattern xk

are defined as follows:

k

ktk
tk

D

LL
x




,
, , (1)

where: k = 1, 2, …, N – the daily period number, t = 1, 2, …, n

– the time series element number in the period k, Lk,t – the t-th

load time series element in the period k, kL – the mean load in

the period k, 




n

l

klkk LLD

1

2
,)(– the dispersion of the

time series elements in the period k.

The input patterns xk are normalized versions of the load

vectors Lk. They all have unity length, zero mean and the same

variance. Note that the load time series which is nonstationary

in mean and variance is represented by x-patterns having the

same mean and variance. The trend and additional seasonal

variations, i.e. the weekly and annual ones, are filtered. The x-

patterns carry information only about the shapes of the daily

load curves.

The output pattern yk has components defined as follows:

k

ktk
tk

D

LL
y




 ,
,

 , (2)

where: k = 1, 2, …, N, t = 1, 2, …, n.

This transformation is similar to (1) but note that instead of

coding variables kL and kD determined for the day k+,

we use coding variables kL and Dk determined for the day k.

This is because the coding values for the day k+ are not

known in the moment of forecasting. Using the known coding

values for the day k enables us to calculate the forecast of

vector Lk+ when the forecast of pattern yk is generated by the

model. To do this transformed equation (2) is used:

 kktktk LDyL  ,,


 , (3)

where tky ,


 is the forecasted t-th component of the pattern yk.

By transforming the time series into x- and y-patterns we

unify the input and output data. Now the relationship between

input and output variables are simpler. This results in the

simpler and more accurate forecasting model. Time series data

representation using patterns is discussed more widely in [26].

B. Antigens and Antibodies

In AISLFS each pair of patterns (xk, yk) from the training set

is represented by individual AG. Components of x-pattern

correspond to the chain of amino acid residues of the protein

building AG (i.e. x-pattern corresponds to the primary

structure of the protein). Some of the x-pattern components

form the AG epitope such as in nature some amino acid

residues form an epitope in the tertiary structure of the protein

(conformational epitope). An epitope is defined as a subset of

x-pattern components which correspond to the AB paratope.

One AG can have many epitopes as it can be bound by many

ABs with different paratopes. The label of AG contains a

target y-pattern. The AG population correspond to the training

set  = {(xk, yk) : k  }, where  is the set of numbers of y-

patterns representing the same day type {Monday, …,

Sunday} as the forecasted y-pattern. We prepare training sets

for each day type and then we construct the forecasting

models separately for each day type because the values of

coding variables kL and Dk determining the levels and

dispersion of y-patterns are dependent on the day of the week.

The immune system representatives are ABs. They

recognize AGs and construct the forecast of y-pattern for new

AGs with empty labels (representing query patterns). AB is

composed of five elements: (p, q, , r, P). Vectors p and q

correspond to vectors x and y, respectively. Vectors p and q of

the k-th AB are initialized by k-th training example: pk = xk,

qk = yk (in the same way as the k-th AG). A vector p

correspond to the chain of amino acid residues of the protein

Fig. 2. AG and AB structures (n = 24). x- and p-vectors correspond to the

chains of amino acids taking part in binding. Dark bars of p-vectors form a

paratope. An epitope of AG consists the same components as a paratope.

https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Residue_(biochemistry)
https://en.wikipedia.org/wiki/Conformational_epitope
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Residue_(biochemistry)

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 5

building AB. A vector q is saved in the AB label.  is a

paratope. This is a set containing numbers of selected

components of the p-vector. r is a cross-reactivity threshold. P

is an AB power (representativeness) expressing how many

training AGs it recognizes. Vectors p are fixed but vectors q,

paratopes , thresholds r and powers P are modified during

training. Structures of AG and AB in Fig. 2 are shown.

Elements p,  and r define the recognition region of AB.

This is a hyperball of radius r centered at point  ttp]['p .

So the hyperball is defined in a subspace of the n-dimensional

input feature space X. This subspace contains dimensions

which are saved in the set . We call this subspace the -

subspace. (Figs. 3 and 4 in [25] clarify AB recognition regions

in -subspaces.)

C. Antibodies Adaptation and Antigen Label Prediction

Recognition regions of ABs are adapted during training

(paratopes  and cross-reactivity thresholds r change) to the

population of AGs (training sample). These adaptations are

made using hypermutation in the clonal selection loop

(Algorithm 1), where each AB generates clones with modified

paratopes, cross-reactivity thresholds, labels and powers. In

each iteration of the clonal selection loop the best clone is

selected. It becomes a parent AB in the next iteration. The best

clone is that one which recognizes the highest number of

training AGs. AG is considered to be recognized by a clone

when its epitope is similar to the clone paratope (this

similarity is measured using affinity) and also labels of both,

AG and the clone, are similar. These similarities (in both -

subspace and Y space) between clone and many AGs means

that the clone is representative and is able to predict labels of

many AGs lying in its recognition region. Such clones are

searched in the clonal selection loop and recorded as memory

cells.

As a result of training the population of immune memory

cells is constructed. An AB from the immune memory

recognizes as many training AGs as possible. In the test phase

new AG with empty label is recognized by some ABs, i.e. it

falls into the recognition regions of these ABs. The AG label

is predicted from the labels of activated ABs, their powers and

affinities in -subspaces.

III. ALGORITHM OF AISLFS FOR STLF

In this section the algorithm of AISLFS for STLF is

described in detail. The symbols that appear in the following

description are listed in Table I. The flowchart of the

algorithm is given in Fig. 3.

 Step 1. The AG population corresponds to the set of training

samples from : PopAG = { = ,
 =1

.

 Step 2. The AB population is composed of N ABs: PopAB =

{ = , , , , =1

. The p- and q-patterns of ABs are

created by copying training samples: pk = xk and qk = yk. This

method of initialization prevents putting ABs in empty regions

without AGs. The AB paratopes k can be initialized in three

ways:

 using all features (all components of vector p),

 using randomly selected features or

 using features selected as important in previous runs of the

algorithm for similar forecasting task.

The similar task is that one, in which to train the immune

memory the training set is used that contains mostly the same

AGs as in the current forecasting task. For example in the task

of load forecast for some Wednesday we can use the initial

AB population with paratopes k optimized in the forecasting

task for the last Wednesday.

The cross-reactivity thresholds and AB powers do not

Fig. 3. Flowchart of the AISLFS for STLF.

PopAB =

PopAG =

for k = 1 to N do

 pAB = ABk //parent AB

//clonal selection loop

while not stop condition do

 for l = 1 to Z do

 Cll = pAB //l-th clone

 l hypermutation l)

 rl = CR_treshold(similarity(Cll, PopAG))

 al = affinity([d(pl, xj, l)
 , rl)

 Ψl = {j  {1,2,...,N} : a(pl, xj, l)>0}

 ql = label(al, {yj : j  Ψl})
 Pl |Ψl|

 end

 bCl = winner({Pl
 | l|

) //best clone

 pAB = bCl

end

end

Algorithm 1: Pseudocode of AISLFS clonal selection loop.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 6

require initialization.

Step 3.1. In this loop the clones of k-th AB are generated,

mutated and evaluated. The best clone becomes the parent AB

in the next iteration. The goal is to find the best paratope of

the k-th AB. This is an combinatorial optimization problem in

which the subset of features is searched for which the criterion

function described in step 3.1.5 is maximized. We employ the

tournament searching algorithm [27], which is a stochastic

global search method, to search the paratope space. In

simulation study reported in [27] the tournament searching

outperformed genetic algorithm and simulated annealing as

well as deterministic algorithms in the feature selection

problem.

Tournament searching is built into the clonal selection loop.

It uses hypermutation to generate new Z candidate solutions

(clones with different paratopes) from the parent solution

(parent AB). The best clone (tournament winner selected

according to (11)) replaces the parent AB in the next iteration,

even if it is worse than the parent AB. This allows the solution

to escape from local extrema of the criterion function (this is

discussed further in Section IV).

The clonal selection loop is stopped when during last S

iterations no result improvement is observed.

Step. 3.1.1. The population of clones is generated from the

parent AB. The number of clones, Z  1, is dependent on the

paratope space size, which is 2
n
 – 1. This space contains all

binary vectors v of size n. Ones in these vectors corresponds

to elements of -sets. So the k-th AB paratope can be

represented by vector vk = [vk,1 vk,2 … vk,n], where:



 


otherwise,0

 if,1
,

k

tk

t
v (4)

The parameter Z controls the sampling accuracy of the

neighborhood of the parent AB paratope, i.e. global-local

search properties of the algorithm. The neighborhood is

defined here as the set of all vectors v reachable by

hypermutation of the parent AB paratope. Z can be constant or

increasing during training, which results in a change in the

character of searching the AB paratope neighborhood: from

random and global for small Z towards deterministic and local

for greater Z. These issues will be more explained in Section

IV.

Step 3.1.2. The hypermutation changes the paratope of each

clone. It operates on a vector v corresponding to the clone

paratope. It swaps m > 0 bits in v randomly selected from a

uniform distribution. The number of bits swapping m is

determined randomly using normal distribution: m ~

 |),0(| N . If drawn m > n, then we assume the new value of

m as m –  nm /)1( n. If drawn m = 0, we assume m = 1. The

parameter  controls the distribution of a discrete variable m,

i.e. the range of mutation. For a given value of  the mutation

probability of m bits depends on n. It can be calculated from

the cumulative distribution function (cdf) for N(0,). The

probability of mutation of one bit P(m = 1) = 2[cdf(0) –

cdf(–1)] + 2[cdf(–n) – cdf(–n–1)] + 2[cdf(–2n) – cdf(–2n–1)]

... = 2





0
)]1(cdf)(cdf[

i
nini . Generally, a

probability of mutation of m  [1, n] bits can be calculated

from: P(m) = 2





0
)](cdf)1(cdf[

i
mnimni . For

example, when  = 1.4826 and n = 4, we get: P(m = 1) = 0.5 +

6.2310
–3

 + 6.6910
–8

+ ... = ~0.51, P(m = 2) = 0.3227 +

6.9310
–4

+ 1.2610
–9

+ ... = ~0.32, P(m = 3) = 0.1343 +

4.9510
–5

+ 1.5210
–11

+ ... = ~0.13, and P(m = 4) = 0.0360 +

2.2710
–6

+ 1.1710
–13

+ ... = ~0.04. When   0, then P(m =

1)  1, and P(m > 1)  0 (in this case for each clone among

Z generated we chose randomly different bit to swap). When 

 , then P(m = 1) = P(m = 2 = … = P(m = n)  1/n.

After hypermutation the clone paratopes are randomly

modified to an extent dependent on .

Step 3.1.3. The l-th clone cross-reactivity threshold rl is

determined after the clone mutation. The idea is that the clone

recognition region should cover as much AGs as possible with

x and y vectors similar to the clone p and q vectors,

respectively. The method of determining the cross-reactivity

threshold needs the population of AG to be split into two

classes. Let us assume that l-th clone is derived from the k-th

parent AB. This AB was initiated by k-th AG having in its

label pattern yk, which encodes load vector Lk+. The j-th AG

is assigned to class 1, if it can forecast vector Lk+ with error

(MAPE) not higher than . The forecast is calculated from the

pattern yj (included in the j-th AG label) decoded using coding

variables for k-th pattern y (kL and Dk). So the class 1 contains

such AGs from PopAG for which:

 







 


n

t tk

tktk

L

LL

n 1 ,

,,1
100



 (5)

where: kktjtk LDyL  ,,


, Lk+,t is the t-th component of the

load vector Lk+ encoded in the label of k-th AB, yj,t is the t-th

component of y-pattern from the label of j-th AG (which is

classified), and  is a threshold error (MAPE).

The AGs which do not meet condition (5) are assigned to

class 2. Note that similarity between the j-th AG and l-th clone

is not measured directly between their y and q patterns but

between load vectors encoded in these patterns. This allows us

to control the acceptable real forecast error ().

Let us define the distance measure between vector p of the

l-th clone and vector x of the j-th AG in l-subspace:

e

t

e

tjtlljl

l

xpd

/1

,, ||),,(













 



xp (6)

where e = 1 for the Manhattan metric, and e = 2 for the

Euclidean metric.

Note that the distance is calculated by taking into account only

these components of p and x vectors which are in the paratope

l.

The l-th clone cross-reactivity threshold is calculated as

follows:

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 7

)],,(),,([),,()(lAllBllAlll ddcdr  xpxpxp (7)

where: B is the index of the nearest AG from class 2 to the l-th

clone (in l-subspace), A is the index of the farthest AG from

class 1 to the l-th clone, such that d(pl,xA,l) < d(pl,xB,l), and

c  [0, 1) is a parameter allowing us to adjust the cross-

reactivity threshold in the range [rlmin = d(pl,xA,l), rlmax =

d(pl,xB,l)). This is illustrated in Fig. 4.

The partitioning of the AG population into two classes is

performed for each AB independently. The result is the class

distribution table (Fig. 5) showing classes of AGs for each

AB, where cj,l is the class of j-th AG for the l-th AB.

Obviously, cj,j = 1. Vector cj = [cj,1 cj,2 … cj,N] expresses the

class distribution for the j-th AG.

The cross-reactivity thresholds are determined in different

-subspaces for different ABs. Fig. 3 in [25] shows examples

of AB recognition regions in 2D space.

AGs, which are contained in the recognition region of the l-

th clone, i.e. AGs lying in the hyperball of radius rl centered at

lttll p ][' ,p , are deemed to be recognized by this clone.

Such AGs are similar to the clone not only in the input feature

space but also in the output load space (note that the clone

recognition region covers only class 1 AGs).

The threshold error  affects the partitioning of AGs into

classes. Smaller values of  result in fewer AGs in class 1 and

smaller recognition regions of ABs. This introduces a high

specialization of ABs, which recognize smaller number of

AGs with a greater degree of similarity. But in such case new

AGs can be unrecognized by AB population being outside of

the AB recognition regions. Too large value of  makes that

AG is recognized by many ABs. This leads to an increase in

the model bias and translates to greater forecasting errors.

Thus the parameter  allows us to control the bias-variance

tradeoff. Its value is adjusted experimentally dependent on the

data.

Step 3.1.4. The affinity of the l-th clone for the j-th AG is

defined as follows:

















otherwise,

)(

),,(
1

0)(or)(),,(if,0

),,(

ll

ljl

llllljl

ljl

r

d

rrd

a xp

xp

xp (8)

where a(pl, xj, l)  [0, 1] and rl(l) is the cross-reactivity

threshold of the l-th clone in l-subspace.

Note that the affinity is zero for the AG lying outside of the

clone recognition region. For AG lying inside this region it is

a linearly decreasing function of distance (6), from 1 for

xj = pl, to 0 for AG lying on the border of the recognition

region (d(pl, xj, l) = rl(l)).

The label of the l-th clone derived from the k-th AB

contains the forecast of the pattern yk paired with xk = pl. This

forecast is calculated as the average value of labels of AGs,

which are recognized by this clone, weighted by affinities:















l

l

j

ljl

j

jljl

l
a

a

),,(

),,(

xp

yxp

q (9)

where l is a set of indices of AGs which lie in the

recognition region of the l-th clone.

A clone represents a set of AGs, so its label is created based

on the labels of AGs from this set. The greatest weight in the

mean (9) has AG which initiated this clone. The AG weights

decrease linearly depending on the distance between pl a xj

measured in l-subspace.

 Step 3.1.5. The number of AGs recognized by the clone, P,

is a measure of its representativeness. The clones with high

values of P represent typical patterns in terms of the typical

shape of the daily curve as well as typical relationship

between x- and y-patterns. AG encoding atypical patterns or

atypical relationship between input and output patterns is

represented by a separate AB, which has only this AG in its

recognition region.

The number of AGs in the recognition region of the l-th

clone, dependent on its paratope l, is the evaluation measure

of the clone:

 max|)(|  lllP (10)

This measure, called a power, is maximized in the clonal

selection loop. The algorithm in step 3.1.6 selects the best

clone from the current population of clones. If several clones

have the same maximal power Pmax, the winner is one of them

with the smallest paratope min||. This condition is an

additional criterion for assessing clones, leading to

Fig. 4. The cross-reactivity threshold range (l = {1, 2}, AGs from class 1

are marked by crosses, AGs from class 2 are marked by triangles, and the l-

th clone is marked by a circle).

 AB

AG 1 2 … N

1 c1,1 c1,2 … c1,N

2 c2,1 c2,2 … c2,N

… … … … …

N cN,1 cN,2 … cN,N

Fig. 5. Table of AG class distribution.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 8

minimization of the feature number. If several clones have the

same maximal power Pmax and paratope size min||, the

winner is chosen randomly among them. Thus, the winner

status is given by the formula:



 


otherwise, ,0

, or 1|| and if ,1 ξll
zl (11)

where zl = 1 for the winner, |}{|minarg
'

l
l




,

}{maxarg'
,...,2,1

l
Zl

P


 , and  is the randomly selected clone index

from the set .

Step 3.1.6. The clone winning in the i-th iteration of the

clonal selection loop replaces the parent AB, even if it is

worse than the parent AB ("worse" means that the winner has

lower power than the parent AB, or the same power but bigger

paratope size). This allows the algorithm to escape from the

traps of local extrema.

Step 3.2. In this step the best parent AB generated in the

clonal selection loop is selected and saved. This is one of the

parent AB which covers the most AGs and has the smallest

paratope. This AB becomes a memory cell.

Step 4. A result of training is a population of memory cells,

which cover the input space X in different -subspaces. They

are used for recognition new AGs and to predict AG labels.

After AISLFS training the immune memory is ready for

prediction of new instances. This process corresponds to the

secondary immune response when a new AG is presented to

the trained immune memory. The test AG with empty label,

representing input pattern x
*
 (query pattern) is recognized by

some of the memory cells having non-zero affinity for it. Let

 be the set of indices of these memory ABs. The label of the

test AG is calculated as a weighted average of the labels of

activated memory ABs. Two components of weights are

introduced. The first one expresses the affinity of the memory

AB for the test AG, and the second one expresses the AB

power. The test AG label, i.e. the forecasted y-pattern

corresponding to input pattern x
*
, is calculated as follows:

 k

k

kkkw qxpy 


),,(*
 (12)

where  is a set of indices of ABs which recognition regions

cover the test AG, and









l

lll

kkk
kkk

aP

aP
w

),,(

),,(
),,(

*

*
*

xp

xp
xp (13)

Fig. 6 illustrates the test procedure. In this figure the highest

affinity for the test AG has AB3 (0.50), the lower affinity has

AB2 (0.25) and the lowest affinity has AB1 (0.03). The AB

powers are: P1 = 9, P2 = 6, and P3 = 3. The AB weights are: w1

= 0.082, w2 = 0.459 and w3 = 0.459. Thus, the biggest impact

on the response have the second and third ABs.

IV. DISCUSSION

The proposed AISLFS searches the paratope space. The

goal is to find for each AB the best subspace of X (-

subspace), in which this AB represents most AGs (has the

highest power). The AGs represented by AB are its nearest

neighbors in -subspace and have similar labels to AB initial

label. The similarity in AB and AG labels means that the load

vector encoded in AG label can forecast load vector initially

encoded in AB label with error not higher than the assumed

threshold error . All AGs represented by AB lie in the AB

recognition region, i.e. inside the hyperball of radius r

centered at
 ttlp][' ,p . The paratope  is found individually

for each AB in the searching procedure. The radius r is also

adjusted individually for each AB, so that the AB recognition

region covers in -subspace as much AGs similar to AB in

labels as possible. The final label of AB is calculated as the

weighted mean of labels of all AGs represented by this AB.

The searching procedure implemented in the clonal

selection loop is stochastic to avoid local extremum traps. The

population of Z clones is generated from the parent AB. The

paratope of each clone is changed using hypermutation

operator. The best clone is selected, i.e. that one with the

highest power. If more than one clone has the same maximal

power, that one is selected with the smallest paratope. The

winning clone replaces the parent AB in the next iteration,

even if it is worse than the parent AB (this enables the

searching process to escape from local extrema). The

searching process is illustrated in Fig. 7. The goal of this

process is to create the memory AB. The best parent AB

generated in the clonal selection loop (parent ABs are marked

with crosses in Fig. 7) becomes one of the memory ABs.

In the clonal selection loop the solution space is searched

locally in the neighborhood of the solution represented by the

parent AB using hypermutation operator. The neighborhood

has a probabilistic nature, i.e. the reachability of the points

from that neighborhood is not the same. The transition

probability to the certain neighboring point is dependent on

Fig. 6. AG recognition by ABs in the test procedure for k = {1, 2}, k = 1,

2, 3. Thin crosses are training AGs, thick cross is the test AG, circles are

ABs.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 9

the mutation range controlled by the parameter . Reachability

of the points, which differ from the solution represented by the

parent AB with increasing number of bits, decreases

monotonically at a rate dependent on the inverse of .

Two criteria are used for evaluation of clones: clone power,

which is maximized and clone paratope size, which is

minimized. The two-criterion optimization implemented in the

clonal selection loop is not Pareto optimization, because here

the criteria are not equivalent. The primary criterion is the

clone power, and the paratope size is a secondary criterion

used when there is more than one clone with power Pmax. Both

criteria lead to the better coverage of the X space by ABs (this

is discussed in Section IV.C in [25]) and to improvement in

generalization ability of the model.

In the proposed AISLFS the final decision on the forecast is

taken collectively by the activated memory ABs (ensemble of

ABs). This ensemble of ABs is local: for different AGs

different ensembles are formed composed of memory ABs

which cover the recognized AG in different subspaces. This is

similar to the method of combining component decision

models called the random subspace method [28], used in the

random forests. Differences between these two approaches are

that the subspaces in the proposed model are not random, but

optimized using some criteria, and the component models

(memory ABs) are locally competent (in random forest

approach each decision tree is used as a globally competent

model). Due to combining responses of the component models

we improve generalization and stability of the final model.

The AISLFS has five parameters (hyperparameters):

 clone population size, Z,

 the number of iterations without improvement of results as

a stop criterion for the clonal selection loop, S,

 the threshold error determining the cross-reactivity

threshold,   0,

 the parameter adjusting the cross-reactivity threshold, c 

[0, 1),

 the width of the normal distribution controlling the

hypermutation range,  > 0.

The clone population size, Z, determines the accuracy of

searching the neighborhood of the current base point (parent

AB paratope) and, hence, directs the search. The search

process changes the character from the global and random one

for small values of Z, to the local and more deterministic one

for increasing values of Z. When Z = 1 the searching process

comes down to a random walk: only one candidate point

(clone) is generated from the base point, and it replaces the

base point regardless of its evaluation. On the other hand,

when the population of clones represents all points reachable

(maximal value of Z), we obtain hill climbing algorithm,

sensitive to local extrema. The parameter Z is dependent on

the size of the solution space. It can be constant or increasing

during searching. In the later case the solution space is

searched globally in the initial stage, and locally in the final

stage.

The larger values of S increase the chances to leave the

local extreme, but increase the computation time as well. The

value of S depends on the size of the solution space and the

clone population size.

The parameters  and c determine the cross-reactivity

threshold r, and hence the bias-variance tradeoff of the model.

For smaller values of these parameters the AB recognition

regions decrease, which results in reduction in bias and

increase in variance. ABs with too small recognition regions

do not cover sufficiently the X space, which results in increase

in the number of unrecognized AGs. On the other hand,

increase in the values of  and c provides to better coverage of

the X space, but the bias increases. The values of these two

parameters should be selected experimentally for a given

forecasting task.

The parameter  controls the hypermutation range. For

higher values of  the paratopes of clones differ more from the

paratope of the parent AB. The jumps in the solution space are

the smallest for   0, and the bigest for   . Thus, the 

value as well as the Z value decides about the exploration-

exploitation tradeoff of the algorithm.

The output of AISLFS is the forecasted y-pattern y


corresponding to query pattern x
*
. But the model can also

forecast only one component of y-pattern. So instead of

MIMO model we have MISO model. In such case the model is

optimized to get the best accuracy for yt. The algorithm

described above does not change. The only difference is that

instead of q and y in (9) and (12) we use qt and yt,

respectively.

V. SIMULATION STUDY

In this section training and optimization of AISLFS is

presented and its performance is studied on four real STLF

problems. AISLFS results are compared with results achieved

by two other AIS-based models as well as neural networks,

ARIMA and exponential smoothing.

A. Training and Optimization of AISLFS for STLF

The task is to forecast the hourly load of the Polish power

system at hour t = 1, 6, 12, 18, 24 for the next day ( = 1). The

data are from the period 2002-2004 (see Fig. 1; these data can

be downloaded from the website http://gdudek.el.pcz.pl/varia/

stlf-data). The test period covers successive days of January

2004 (without atypical January 1st) and July 2004. Thus we

have (30 + 31)5 = 305 forecasting tasks (the tasks are marked

Fig. 7. The solution space searching in the clonal selection loop.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 10

by symbols: hour/day/year, e.g. 12/July 1/2004). For each

forecasting task (test sample) the training samples are selected

individually from the period from January 1st, 2002 to the day

preceding the forecasted day. The AISLFS in MISO version is

trained for each forecasting task.

To select the best values of hyperparameters we change

them according to the following steps:

1.   0,  = 0.7803, 1.1882, 1.9069, 3.9437 and   , at

c = 1 and  = 2,

2. c = 0, 0.25, 0.5, 0.75, 1, at  = 2 and the optimal value of 

selected in step 1,

3.  = 1, 1.25, …, 4, at the optimal values of  and c selected

in steps 1 and 2, respectively.

Ranges and densities of parameters were selected based on

previous experiments. Parameters Z and S were constant: Z =

round(n/3) and S = 10. The successive values of  considered

in step 1 correspond to the following probabilities of one bit

mutation P(m = 1): 1, ~0.8, ~0.6, ~0.4, ~0.2, and 1/n (the

probabilities of mutations of 2, 3, ..., n bits are determined

from the normal distribution with standard deviation ; see

step 3.1.2 in Section III). The Euclidean metric was used as a

distance measure between vectors p and x (6). The mean

absolute percentage error (MAPE) was used as the forecasting

error (MAPE is traditionally used as an error measure in

STLF). The quality of the model during training was measured

on validation samples, i.e. five pairs of patterns (xi, yi,t) from

the training set  for which xi belongs to the set of five nearest

neighbors of the query pattern x
*
. So the model

hyperparameters are estimated on the most similar patterns to

the query pattern.

The values of parameters  and c varying in ranges

specified above did not significantly affect the validation

error: MAPE ranged from 1.26 to 1.30. Also error dispersion

did not show greater sensitivity to the value of  and c. The

number of unrecognized AGs decreased with increasing c

from 2.19 to 1.09%.

The most favorable values of the error threshold  which

gave the lowest MAPE (from 1.25 to 1.27), were within the

range of 1.5 to 3.0. At lower  some AGs remained

unrecognized. The value of  ≥ 2 provided recognition of

more than 99% validation AGs.

It should be noted that changes in the model

hyperparameters do not cause drastic changes in the forecast

errors, which is very valuable property. For further

experiments described in this section it was selected:  =

1.9069, c = 1 and  = 2.

Errors for the test samples MAPEtst averaged over 30

training sessions are given in Table II. The average number of

features forming AB paratopes was 7, which gives a

compression ratio 73%. The frequencies of features in

paratopes of immune memory ABs in Fig. 8 are shown.

Fig. 9 shows the query pattern x
*
 for the forecasting task

12/July 1/2004 (Thursday) and paratopes of all activated

memory ABs. The paratopes contain 7 out of 24 features on

average. The smallest paratope (AB78) included only two

features, the largest one (AB67) 14 features. The average

number of the clonal selection loop iterations in this

forecasting task was 30. The figure also shows the AB weights

(13). AB powers, cross-reactivity thresholds, affinities, labels

and components of vectors p forming the paratopes of

memory ABs created for this forecasting task in Fig. 10 are

presented. The ABs in this case correspond to the learning

samples which represent the daily load curves of the

successive Wednesdays (x-patterns) and Tuesdays (y-patterns)

from history. As we can see from this figure the activated ABs

represent daily load curves from the period immediately

preceding the forecasted day and from periods shifted in time

one or two years back. This is because the days from these

periods have similar load shapes. Daily load curves from

winter periods showing greater dispersion than curves from

summer periods are represented by ABs with lower powers

(see Fig. 10 (a)).

In Fig. 10 (e) the paratopes of memory ABs are visualized.

Black squares in this diagram indicate features selected to

paratopes. As paratope size is minimized in the secondary

criterion, there is many white squares corresponding to

inactive features. Smaller paratope increases the AB power.

So, the AG is recognized by as many memory ABs as

possible. Similarly to ensembles of weak learners, increasing

number of recognition units (ABs) provide to improvement in

generalization ability of the model and higher precision

(smaller variance).

The highest bar in the Figs. 10 (b) and (d) relates to AB50

which vector p represents atypical day: January 1, 2003. The

power of this AB is 1. It was assumed during training that if

the AB contains only one AG in its recognition region, which

means that this AG is an outlier, the clonal selection loop is

skipped and the paratope of this AB contains all the p-vector

components (note only black squares for AB50 in Fig. 10 (e)).

Fig. 11 illustrates how the forecast is calculated from the

labels and weights of activated ABs. Each activated AB is

TABLE II

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR MISO MODEL

Hour
January July Mean

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst

1 1.12 1.02 1.11 1.11 1.12 1.06

6 1.52 1.45 0.92 0.86 1.23 1.06
12 1.57 1.03 0.93 0.79 1.24 0.84

18 1.42 1.53 0.74 0.78 1.07 0.95

24 1.62 1.26 1.13 1.00 1.37 1.22
Mean 1.45 1.26 0.97 0.91 1.21 1.03

Fig. 8. Frequences of features (components of x) in AB paratopes .

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

Feature number

F
re

q
u
e
n
c
y

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 11

Fig. 9. Query pattern x* for the forecasting task 12/July 1/2004 (solid line) and paratopes of all activated ABs (points).

marked by point (qk, wk) in this figure. The x-coordinate of

the centroid of points (qk, wk), k  , is the forecasted value

for the query pattern x
*
.

In Table III errors for MIMO version of the AISLFS are

presented. In this case the output of the forecasting model is

vector y. As can be seen from this table the errors in MIMO

case are not worse than in MISO case.

B. Comparative studies of AISLFS with other models

In this section AISLFS is examined in real STLF problems

on four time series:

 PL: time series of the hourly load of the Polish power

system from the period of 2002–2004 (this is the same

time series as in the previous section). The test sample

Fig. 10. Immune memory for forecasting task 12/July 1/2004 (black bars indicate activated ABs, black squares in (e) indicate features selected to paratopes).

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 12

includes data from 2004 with the exception of 13 atypical

days (e.g. public holidays),

 FR: time series of the half-hourly load of the French power

system from the period of 2007–2009. The test sample

includes data from 2009 except for 21 atypical days,

 GB: time series of the half-hourly load of the British power

system from the period of 2007–2009. The test sample

includes data from 2009 except for 18 atypical days,

 VC: time series of the half-hourly load of the power

system of Victoria, Australia, from the period of 2006–

2008. The test sample includes data from 2008 except for

12 atypical days.

On the basis of previous simulations it was assumed:  =

1.9069 and c = 1. Error threshold  was searched with the step

of 0.25 in ranges . The proposed model in MIMO version is

compared with other two AIS-based STLF models as well as

with models based on ARIMA, exponential smoothing (ES)

and neuron network (NN).

The first AIS-based model (AIS1) was proposed in [16] and

analyzed in [29]. In this model patterns x and y are

concatenated and represented by AGs with epitopes u = [x
T

y
T
]

T
. AB paratope is constructed analogously to the AG

epitope: v = [p
T
 q

T
]

T
. AGs are recognized by ABs which play

a role of clusters: hyperballs of radius r with centers in points

p. The paratopes v are modified during training (immune

memory creation in clonal selection loop) to cover the AGs in

the best way and minimize the forecast error. In the

forecasting phase an incomplete AG is presented having only

the x-part of an epitope (query pattern). It is recognized by a

set of ABs from the immune memory which cover it in X

subspace. We infer about the missing y-part of the epitope on

the basis of q-parts of paratopes of the activated ABs.

The second AIS-based model (AIS2) was proposed in [17]

and analyzed in [29]. It is composed of two population of

ABs. Population of ABs of type x (ABx) recognize AGs

representing x-patterns (AGx), whilst the population of ABs of

type y (ABy) recognize AGs representing y-patterns (AGy).

Patterns x are epitopes of AGxs and paratopes of ABxs, and

patterns y are epitopes of AGys and paratopes of ABys.

Epitopes and paratopes are fixed. ABx has the cross-reactivity

threshold r defining the recognition region with center in the

point x. Similarly, ABy has a recognition region of radius s

with center in the point y. Radii r and s are adjusted

individually during training, so that AB covers AGs which

epitopes are similar to the AB paratope. AB represents a

cluster of similar AGs in the pattern space X or Y. Sizes of the

recognition regions of ABs depend on the data distribution in

the spaces X and Y. After the two populations of the immune

memory have been created, the empirical conditional

probabilities P(AByk | ABxj), j, k = 1, 2, …, N, that the i-th AGy

stimulates the k-th ABy, when the corresponding i-th AGx

stimulates the j-th ABx, are determined. These probabilities

are used to determine the forecast pattern y paired with the

query pattern x
*
.

In ARIMA and ES the load time series were decomposed

into n series, i.e. for each t a separate series was created. This

eliminates the daily seasonality. The ARIMA and ES

parameters were estimated for each forecasting task (forecast

of system load at time t of day i) using 12-week time series

fragments immediately preceding the forecasted day. Atypical

days in these fragments were replaced with the days from the

previous weeks. Due to using short time series fragments for

parameter estimation (much shorter than the annual period)

and due to time series decomposition into n series we do not

have to take into account the annual and daily seasonality in

the models. In such case the number of the parameters is much

smaller and they are easier to estimate compared to models

with triple seasonality. For each forecasting task the seasonal

ARIMA(p, d, q)(P, D, Q)v model was created (where v = 7,

i.e. one week period) as well as the ES state space model [30].

To estimate parameters of ARIMA and ES stepwise

procedures for traversing the model spaces implemented in the

forecast package for the R environment for statistical

computing [31] were used. These automatic procedures return

the optimal models with the lowest Akaike information

criterion value.

The NN model is learned locally [32] using training

patterns selected from the neighborhood of the query pattern.

Patterns are defined in the same way as in this work. For each

forecasting task a separate NN is learned using Levenberg-

Marquardt algorithm with Bayesian regularization to prevent

overfitting. Local fitting implies small number of neurons.

Based on the research reported in [32] the network composed

of only one neuron with bipolar sigmoid activation function

was chosen as an optimal architecture.

In Fig. 12 sample fragments of the time series and their

forecasts using different methods are shown. Errors for one

day ahead STLF in Table IV are presented. Errors generated

by the naïve model are also shown in this table. The naïve

forecasts are created as follows: the forecasted daily curve is

the same as seven days ago. The best results are marked with

an asterisk and the second best ones are marked with a double

TABLE III

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR MIMO MODEL

Hour
January July Mean

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst

1 1.24 1.07 1.18 1.04 1.21 1.06

6 1.35 1.25 0.96 0.94 1.15 1.06
12 1.35 1.19 0.90 0.73 1.12 0.89

18 1.44 1.39 0.70 0.88 1.06 1.04

24 1.57 1.31 1.13 0.91 1.35 1.25
Mean 1.39 1.24 0.97 0.90 1.18 1.06

Fig. 11. The forecast (cross) determined from the centroid of points (qk, wk)

(dots) representing activated ABs.

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
0

0.05

0.1

q
k
,y

w
k

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 13

Fig. 13. Errors for different forecast horizons.

Fig. 12. Sample weekly fragments of the time series and their forecasts for one day ahead horizon.

asterisk (best results were confirmed by Wilcoxon rank sum

test with 5% significance level). As we can see from this table

neural model outperforms the other ones. The AISLFS takes

the second place for PL, FR and GB data. The conventional

forecasting models: ARIMA and ES work significantly worse

than other models for all time series.

Distributions of percentage errors PE in Table V are

characterized by median (Q2), first quartile (Q1) and third

quartile (Q3). It can be inferred from this statistics the degree

of dispersion and skewness in errors (when Q1 and Q3 are not

symmetrical around Q2). Zero median of PE indicates

unbiased forecasts. Deviations of median from zero inform

that the forecasts may have a general tendency to be too high

or too low. Immune systems seem to generate the least biased

forecast on average. The highest bias is observed for ARIMA

and naïve model. Naïve model generates asymmetrically

distributed errors. For other models PE distribution is more or

less symmetrical ((Q3–Q2)  (Q2–Q1)).

In Fig. 13 errors for forecast horizons up to 7 days are

shown. The rankings of the models for each horizon are

presented in Fig. 14. The first ranking is based on the average

difference between model error (APE) and the smallest error

for the test sample. In this ranking AISLFS occupies the

second position for each horizon except  = 5. The best model

for short horizons is NN and for longer horizons is ES. The

second ranking is based on the average rank in accuracy

TABLE IV

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR

THE EXAMINED MODELS

Model
PL FR GB VC

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst

AISLFS 1.51** 1.49 1.79** 1.81 1.67** 1.73 3.13 2.75

AIS1 1.50** 1.50 1.93 1.95 1.77 1.84 3.04** 2.75

AIS2 1.50** 1.51 1.93 1.96 1.78 1.87 3.33 2.93
ARIMA 1.82 1.71 2.32 2.53 2.02 2.07 3.67 3.42

ES 1.66 1.57 2.10 2.29 1.85 1.84 3.52 3.35

NN 1.44* 1.41 1.64* 1.70 1.65* 1.70 2.92* 2.69
Naïve 3.43 3.42 5.05 5.96 3.52 3.82 4.88 4.55

TABLE V

MEDIAN (Q2), FIRST(Q1) AND THIRD (Q3) QUARTILES OF PE FOR

THE EXAMINED MODELS

Model
PL

Q1 / Q2 / Q3

FR

Q1 / Q2 / Q3

GB

Q1 / Q2 / Q3

VC

Q1 / Q2 / Q3

AISLFS -1.05/0.02/1.12 -1.31/-0.06/1.23 -1.10/0.12/1.34 -1.86/-0.07/1.74

AIS1 -1.03/0.06/1.17 -1.37/-0.02/1.34 -1.32/0.07/1.40 -1.84/-0.02/1.93

AIS2 -1.05/0.01/1.12 -1.34/-0.02/1.37 -1.26/0.06/1.36 -2.00/-0.06/1.84

ARIMA -1.05/0.18/1.39 -1.59/0.12/1.88 -1.40/0.15/1.69 -2.59/-0.28/2.02

ES -1.05/0.10/1.20 -1.48/0.08/1.63 -1.29/0.14/1.51 -2.40/-0.06/2.07

NN -0.91/0.11/1.17 -1.14/0.00/1.20 -0.99/0.17/1.36 -1.81/-0.13/1.63

Naïve -1.76/0.42/2.39 -3.86/0.02/3.40 -2.41/0.24/2.67 -2.68/0.14/3.29

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 14

Fig. 14. Rankings of the forecasting models: based on the average difference between model error (APE) and the smallest error for the test sample (top row) and

based on the average rank in accuracy ranking for each test sample (bottom row).

ranking for each test sample. In this case AISLFS outperforms

all other models for horizons longer than two and occupy

second position for the shortest horizons.

Training times of the algorithms in Table VI are shown.

These are total times of model learning for forecasting 24

hourly loads for the next day at fixed values of

hyperparameters. The simulations were made in Matlab

R2015a and R 3.2.3 (ARIMA and ES) on the desktop

computer with Intel Core2 Quad CPU Q9550@2.83 GHz, 4

GB RAM, Windows 7 64 bit. Classical algorithms, ARIMA

and ES, are the fastest but in their cases any learning is not

needed, because the final model is computed using maximum

likelihood estimation. AIS2 is the fastest among immune-

based models. In this model only one parameter is learned: the

cross-reactivity threshold. AIS1 and AISLFS having more

complex structures are learned longer. The longest training

time is for NN. This is because NN is in MISO version and for

forecasting 24 hourly loads we need 24 NN models learned

individually.

VI. CONCLUSION

The immune system has many attractive features which can

be implemented in machine learning algorithms for

classification, clustering and regression. In the proposed

forecasting model, which is a regression model, the clonal

selection mechanism is applied to create specialized ABs

(immune memory cells with suitably shaped paratopes) for

recognition AGs representing fragments of load time series. In

response to the AG representing the time series fragment

preceding the forecasted fragment the activated ABs construct

the forecasted fragment. Recognition abilities of ABs depends

on their paratopes. The paratope corresponding to the selected

features of the input vector (pattern representing time series

fragment expressed by AG) is learned in the clonal selection

loop individually for each ABs. As a result, each AB

recognizes AGs by individually selected features. This local

feature selection is a unique mechanism used in the proposed

AIS-based forecasting model.

Time series representation by patterns expressed in ABs and

AGs simplifies the problem of forecasting multiple seasonal

nonstationary time series. This is due to filtering out the trend,

annual and weekly cycles and unifying the daily cycles. This

leads to the simplification of the relationship between input

and output variables and consequently to the improvement in

accuracy. The simulation studies have shown high accuracy of

AISLFS, which is a strong competitor for other popular STLF

models such as ARIMA, ES and NNs.

The novelties of the work can be summarized as follows:

 AISLFS uses an alternative representational abstraction:

each AB defines recognition region in a different subspace

(local feature selection),

 final decision is made collectively by many ABs, which

are competent only in their own recognition regions

(ensemble of weak learners),

 typically AIS are used for classification, clustering and

optimization problems. This implementation is for

regression problem,

 ABs and AGs represent fragments of time series. AISLFS

in this implementation is used for prediction of time series.

This work is a continuation of research on AISLFS. First

application of AISLFS was data classification [25]. It is

planned in the future to apply AISLFS to unsupervised

learning, where data clusters are formed in subspaces of the

feature space based on locally selected features. In this case

one point can belong to many different clusters represented by

ABs.

REFERENCES

[1] R. Weron, Modeling and Forecasting Electricity Loads and Prices.
Wiley, 2006.

[2] J.W. Taylor, “Short-term load forecasting with exponentially weighted

methods,” IEEE Trans. Power Systems, vol. 27, no. 1, pp. 458-464,
2012.

[3] S. Tzafestas, E. Tzafestas, “Computational intelligence techniques for

short-term electric load forecasting,” Journal of Intelligent and Robotic
Systems, vol. 31, pp. 7–68, 2001.

[4] K. Metaxiotis, A. Kagiannas, D. Askounis, J. Psarras, “Artificial

intelligence in short term electric load forecasting: A state-of-the-art
survey for the researcher,” Energy Conversion and Management, vol.

44, pp. 1525–1534, 2003.

TABLE VI

TRAINING TIMES OF THE EXAMINED MODELS (IN SECONDS)

AISLFS AIS1 AIS2 ARIMA ES NN

2.94 2.63 0.76 0.21 0.20 15.19

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2016.2586049, IEEE
Transactions on Evolutionary Computation

 15

[5] C. Cecati, J. Kolbusz, P. Rozycki, P. Siano and B. M. Wilamowski, "A

novel RBF training algorithm for short-term electric load forecasting and
comparative studies," IEEE Transactions on Industrial Electronics, vol.

62, no. 10, pp. 6519-6529, 2015.

[6] Ni Ding, C. Benoit, G. Foggia, Y. Besanger and F. Wurtz, "Neural
network-based model design for short-term load forecast in distribution

systems," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 72-

81, Jan. 2016.
[7] D.K. Chaturvedi, A.P. Sinha, O.P. Malik, "Short term load forecast

using fuzzy logic and wavelet transform integrated generalized neural

network," International Journal of Electrical Power & Energy Systems,
vol. 67, pp. 230-237, 2015.

[8] A. Khosravi, S. Nahavandi, D. Creighton and D. Srinivasan, "Interval

type-2 fuzzy logic systems for load forecasting: A comparative study,"
IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1274-1282,

Aug. 2012.

[9] M. Read, P. Andrews, J. Timmis, “An introduction to artificial immune
systems,” in The Handbook of Natural Computing, Springer, 2011.

[10] J. Farmer, N. Packard, and A. Perelson, “The Immune System,

Adaptation and Machine Learning,” Physica D, vol. 22, pp. 187–204,
1986.

[11] H. Bersini and F. Varela, “The immune learning mechanisms:

Recruitment reinforcement and their applications,” in Computing with
Biological Metaphors, Chapman and Hall, 1993.

[12] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself

discrimination in a computer,” in Proc. IEEE Symposium on Research in
Security and Privacy, Oakland, CA, 1994, pp. 202-212.

[13] J.O. Kephart, “A biologically inspired immune system for computers,”
in Proc. Artificial Life IV: The Fourth International Workshop on the

Synthesis and Simulation of Living Systems, MIT Press., 1994, pp. 130-

139.
[14] D. Dasgupta, S. Yu, F. Nino, “Recent advances in artificial immune

systems: models and applications,” Applied Soft Computing, vol. 11,

issue 2, pp. 1574-1587, 2011.
[15] E. Hart, J. Timmis, “Application areas of AIS: the past, the present and

the future,” Applied Soft Computing, vol. 8, issue 1, pp. 191-201, 2008.

[16] G. Dudek, “Artificial immune system for short-term electric load
forecasting,” in Proc. 9th ICAISC, LNAI 5097, 2008, pp. 1007–1017.

[17] G. Dudek, “Artificial immune clustering algorithm to forecasting
seasonal time series,” in Proc. 3rd ICCCI, LNAI 6922, 2011, pp. 468-
477.

[18] Huang Yue, Li Dan and Gao Liqun, “Power system short-term load

forecasting based on neural network with artificial immune algorithm,”
in Proc. Control and Decision (CCDC'12), 2012, pp. 844-848.

[19] C. McEwan and E. Hart, “Representation in the (artificial) immune

system,” J. Math. Model. Algorithms, vol. 8(2), pp. 125-149, 2009.
[20] T. Stibor, J. Timmis, and C. Eckert, “On the use of hyperspheres in

artificial immune systems as antibody recognition regions,” in Proc.

ICARIS 2006, LNCS 4163, 2006, pp. 215-228.
[21] I.R. Cohen, U. Hershberg, and S. Solomon, “Antigen receptor

degeneracy and immunological paradigms,” Molecular Immunology,

vol. 40, pp. 993-996, 2004.
[22] K.W. Wucherpfennig, et al., “Polyspecificity of T cell and B cell

receptor recognition,” Semin. Immunol, vol. 19, pp. 216–224, 2007.

[23] M. Mendao, J. Timmis, P.S. Andrews, and M. Davies, “The immune
system in pieces: Computational lessons from degeneracy in the immune

system,” in Proc. Foundations of Computational Intelligence (FOCI

2007), 2007, pp. 394-400.
[24] U. Hershberg, S. Solomon, I.R. Cohen, “What is the basis of the immune

system’s specificity?” in V. Capasso, (ed.) Mathematical Modelling &

Computing in Biology and Medicine, pp. 377–384, 2003.
[25] G. Dudek, “Artificial immune system for classification with local feature

selection,” IEEE Trans. on Evolutionary Computation, vol. 16, issue 6,

pp. 847-860, 2012.
[26] G. Dudek, “Pattern similarity-based methods for short-term load

forecasting – Part 1: Principles,” Applied Soft Computing, vol. 37, pp.

277-287, 2015.
[27] G. Dudek, “Tournament searching method to feature selection problem,”

in Proc. 10th ICAISC, LNAI 6114. 2010, pp. 437–444.

[28] T.K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.

20, 8, pp. 832-844, 1998.

[29] G. Dudek, “Pattern similarity-based methods for short-term load
forecasting – Part 2: Models,” Applied Soft Computing, vol. 36, pp. 422-

441, 2015.

[30] R.J. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with

Exponential Smoothing: The State Space Approach, Springer, 2008.
[31] R.J. Hyndman, Y. Khandakar, “Automatic time series forecasting: The

forecast package for R,” Journal of Statistical Software, vol. 27, no. 3,

pp. 1–22, 2008.
[32] G. Dudek, “Forecasting time series with multiple seasonal cycles using

neural networks with local learning,” in Proc. 12th ICAISC, LNAI 7894,

2013, pp. 52-63.

Grzegorz Dudek received his PhD degree

in electrical engineering from the

Czestochowa University of Technology,

Poland, in 2003 and habilitation degree in

computer science from Lodz University of

Technology, Poland, in 2013. Currently,

he is an associate professor at the

Department of Electrical Engineering,

Czestochowa University of Technology. He is the author of

two books concerning machine learning methods for load

forecasting and evolutionary algorithms for unit commitment

and over 70 scientific papers. He was awarded with 3-rd place

in price probabilistic forecasting track of Global Energy

Forecasting Competition (GEFCOM 2014) sponsored by

IEEE Power & Energy Society. His research interests include

pattern recognition, machine learning, artificial intelligence,

and their application to classification, regression, forecasting

and optimization problems.

http://markread.info/pubs/ais.pdf
http://markread.info/pubs/ais.pdf
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-92909-3
https://www.cs.unm.edu/~forrest/publications/virus.pdf
https://www.cs.unm.edu/~forrest/publications/virus.pdf

