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a b s t r a c t

Pattern similarity-based frameworks are widely used for classification and regression problems.
Repeated, similar-shaped cycles observed in seasonal time series encourage the use of such frameworks
for forecasting. In this paper, we use pattern similarity-based models for mid-term load forecasting.
An integral part of these models is the use of patterns of time series sequences for time series
representation. Pattern representation ensures input and output data unification through trend filtering
and variance equalization. This simplifies the forecasting problem and allows us to use models based on
pattern similarity. We consider four such models: nearest-neighbor model, fuzzy neighborhood model,
kernel regression model, and general regression neural network. Three variants of the approach were
proposed. A basic one and two hybrid solutions combining similarity-based and statistical methods
(ARIMA and exponential smoothing).

In the experimental part of the work, the proposed models were used to forecast the monthly
electricity demand in 35 European countries. The results show the high performance of the proposed
models, which outperform both the comparative classical statistical models and machine learning
models in terms of accuracy, simplicity, and ease of optimization. Among the proposed variants, a
hybrid approach combining similarity-based methods with exponential smoothing turned out to be
the most accurate. The study highlights the many advantages of the proposed pattern similarity-
based models such as clear operation principles, a small number of parameters to adjust, no training
procedure, fast optimization procedure, good generalization ability, ability to work on the newest data
without retraining, and delivery of multi-step forecasts.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Mid-term electrical load forecasting (MTLF) is an essential tool
for power system operation and planning. It concerns forecast-

ing the monthly electricity demand and the daily peak loads
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or the succeeding months. The forecast horizon is usually from
week to a year. Mid-term load forecasts are necessary for
aintenance scheduling, fuel reserve planning, hydro-thermal
oordination, electrical energy import/export planning and se-
urity assessment. In deregulated power systems, MTLF is the
asis for negotiation of forward contracts. Accurate forecasting
ranslates into better financial performance for energy companies
nd other energy market participants.
This work focuses on monthly electricity demand forecast-

ng. The time series of monthly electricity demand usually ex-
ibits a trend and an annual seasonality. The trend is dependent
n the dynamics of economic development in a country. The
easonal cycles are dependent on the climate, weather factors
nd the variability of seasons. Factors which can disrupt the
ime series include political decisions, unpredictable economic
vents, structural breaks [1] and transitory effects from external
ariables [2].

.1. Related work

Methods of MTLF can be roughly classified as either condi-
ional modeling or autonomous modeling approaches [3]. The
onditional modeling approach focuses on economic analysis as
ell as long-term planning and forecasting of energy policy.
ocio-economic conditions that affect energy demand in a given
egion, and population migrations are taken also into account.
conomic growth is described by economic indicators, which are
ntroduced as additional inputs to the forecasting model. These
ndicators include [3,4] gross national product, the consumer
rice index, exchange rates and average wages. In addition, vari-
bles describing the power system and network infrastructure,
uch as the number and length of transmission lines and the
umber of high voltage stations, are introduced as inputs. Eco-
omic variables have the greatest impact on the trend, while
eather variables, due to their seasonal nature, have an impact
n the periodic behavior of the monthly electricity demand [5].
xamples of the conditional modeling approach can be found
n [6,7] and [8]. In [6] a knowledge-based expert system for a fast
eveloping utility is proposed. It identifies forecasting algorithms
nd the key variables, both electrical and nonelectrical, that af-
ect demand forecasts. A set of decision rules relating to these
ariables is then obtained and stored in the knowledge base.
hen, the model that reflects most-accurately the typical system
ehavior is selected to produce the load forecast. Multiple linear
egression and ARIMA models for monthly peak load forecasing
re proposed in [7]. The inputs of the models are historical series
f electric peak load, weather variables and economic variables
uch as the consumer price index, and industrial index. In [8],
heuristic model was proposed which approximates the rela-

ionship between the actual load and four sets of historical data:
opulation, gross national product, consumer price index and
emperature. Additionally, the impact of the reserve margin and
oad diversity factor are taken into consideration before obtaining
he final forecast.

In the autonomous modeling approach, the input variables
nclude only historical loads and weather factors. This approach
s more appropriate for stable economies, without rapid changes
ffecting electricity demand. The selection of weather variables,
uch as [3] atmospheric temperature, humidity, insolation time,
ind speed, etc. depends on the local climate and weather con-
itions [9]. The autonomous models described in [10] use ARIMA
nd neural networks (NNs) to forecast monthly peak loads. Input
ariables include load profiles, weather factors (temperature and
umidity) and time index. The model described in [9] uses his-
orical demand and atmospheric temperatures as input variables.
ariables expressing the seasons are also introduced. In many
2

cases, autonomous models are simplified using only historical
load data as input. Such an approach was used in [5], where the
trend of a series of monthly loads was forecasted only on the basis
of loads from the previous twelve months. The seasonal compo-
nent was modeled by Fourier series. In [11], a fuzzy NN model
based only on weather variables (atmospheric pressure, temper-
ature, wind speed, etc.), without taking into account historical
loads as input variables, was used.

Another categorization of MTLF methods is based on forecast-
ing models which can be classical statistical/econometrics models
or artificial intelligence/machine learning (AI/ML) models [12].
Typical examples of the former are ARIMA, linear regression
(LR) and exponential smoothing (ETS). The implementation of
seasonal cycles in the LR models requires additional operations,
such as decomposition of the series into individual month se-
ries. In [13], a LR model extended with periodic components
implemented by the sine functions of different frequencies was
proposed for a nonstationary time series with an irregular peri-
odic trend. Another example of using LR for forecasting power
system loads can be found in [14]. This model uses strong daily
and yearly correlations to forecast daily load profiles over a
period of several weeks to several years. The forecast results are
corrected by annual load increases. In [7], the performance of the
LR and ARIMA models was compared for the task of forecasting
monthly peak loads up to 12 months ahead. The models use
the same set of input variables including historical peak load
data, weather and economic data. The end result was that ARIMA
proved to be about twice as accurate as LR.

The limited adaptability of classical MTLF methods and prob-
lems with modeling nonlinear relationships have led to increased
interest in AI and ML methods [5]. The most explored ML models
in MTLF are NNs. This is due to such attractive features as non-
linear modeling, learning capabilities, universal approximation
property and massive parallelism. In [15], two separate NNs are
used to forecast the trend of a monthly load time series and
seasonal fluctuations. In [16], a NN predicts the future monthly
loads on the basis of historical loads and weather variables. To
improve learning capability, the NN is trained using a gravita-
tional search algorithm and cuckoo optimization algorithm. An
example of using a Kohonen NN for MTLF can be found in [4].
The authors built 12 forecasting networks, one for each month
of the year. The input vectors contained historical loads and
microeconomic indicators. The NNs proposed in [9] are supported
by fuzzy logic and seasonal variables are defined in the form
of trapezoidal indicators of the season. The authors train a set
of NNs using regularization techniques to prevent overfitting,
and aggregate their responses, which results in more accurate
forecasts. Other examples of ML models for MTLF are: [11] where
a weighted evolving fuzzy NN for monthly electricity demand
forecasting was used, [17] where NNs, LR and AdaBoost were used
for energy forecasting, [18] where a support vector machine was
used, and [19] where a long short-term memory network model
was used.

Many of the MTLF methods mentioned above need decompo-
sition of the load time series to deal with the trend and seasonal
variations. A typical approach is to decompose the time series
into trend, seasonal, and stochastic components. The compo-
nents expressing less complexity than the original time series
can be modeled independently using simpler models. One of
the most popular tools for decomposition is STL (seasonal and
trend decomposition using Loess) filtering procedure based on a
locally weighted polynomial smoother [20]. In [21], STL decom-
position was used on the monthly data of total electric energy
consumption in various developed and developing countries. The
times series were forecasted using ARIMA or ETS, and, addi-
tionally, a bootstrap aggregating method was used to improve
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ccuracy. Another method of decomposition is a wavelet trans-
orm which splits up the load time series into subseries in the
avelet domain. A low frequency component called an approx-

mation expresses the trend, while high-frequency components
alled details express cyclical variations [22]. As an alternative
o wavelet decomposition, a Fourier transform, which decom-
oses the time function into its constituent frequencies, can be
sed. For example, in [5] the load time series was split into
wo components: one describing the trend and the other the
luctuations. Then, the fluctuation series was expressed by several
ourier series of different frequencies. Yet another method of
oad time series decomposition is empirical mode decomposition,
hich breaks down the time series into so-called intrinsic mode

unctions. This method of decomposition was used in [23], where
o model each of the extracted intrinsic mode functions a deep
elief network was used.

.2. Summary of contribution

The goals of this work are to present a general framework
f pattern similarity-based forecasting and to compare various
attern similarity-based forecasting methods (PSFMs) used for
TLF. This work generalizes and summarizes our previous works
n PSFMs applied to MTLF [24–26], as well as to short-term load
orecasting (STLF) [27,28].

PSFMs, as an alternative to the classical and state-of-the-art
L methods, have many attractive features, useful for forecasting
roblems. A similarity-based learning framework, as a generaliza-
ion of the minimal distance methods [29], is extremely practical.
his is the basis of many ML and pattern recognition methods
sed for classification, clustering and regression. The repeated,
imilar-shaped cycles observed in seasonal time series have en-
ouraged us to apply these methods to forecasting. To do so, first
e define the patterns expressing the preprocessed repetitive
equences in a time series. Pattern representation ensures input
nd output data unification through trend filtering and variance
qualization. Consequently, no decomposition of the time series
s needed. Due to pattern representation the relationship between
nput and output data is simplified and the forecasting problem
an be solved using simple models. We consider four such mod-
ls: nearest neighbor model, fuzzy neighborhood model, kernel
egression model and general regression NN. All these models
se a similarity-based learning framework where a regression
unction is constructed from aggregation output patterns with
eights dependent on the similarity between input patterns. The
perating principle is very transparent, which is the big advan-
age these models have over other forecasting models, which are
ften black boxes. This advantage is especially valuable in prac-
ical applications and real-world scenarios as it does not require
ny specific knowledge of ML and AI from practitioners. Other
dvantages of similarity-based methods are the small number of
arameters to adjust and their robustness to missing and noisy
ata. Unlike state-of-the-art ML methods, such as NNs and deep
earning, they do not suffer from excessive tuning and training
urdens.
The contribution of this study includes the following two

oints:

1. A general framework of pattern similarity-based MTLF is
given. The framework includes different time series repre-
sentations and regression models. It can be applied with-
out modification to a wide range of target domains, in-
cluding STLF and MTLF, as was confirmed in this study.
This framework deals with difficult, challenging forecasting
problems with time series expressing multiple seasonal
periods, trends and significant random fluctuations. It cap-
tures long-term as well as short-term dependencies in the
data.
3

2. This work empirically demonstrates that PSFMs are very ef-
fective at solving MTLF problems and outperform in terms
of accuracy, simplicity and ease of optimization both well-
established statistical models and ML models. Unlike their
competitors, PSFMs are simple and their operating princi-
ple is transparent, which translates into greater confidence
in their forecasts. They have one or two hyperparameters
but no parameters, which means the optimization proce-
dure is very simple. PSFM generalization can be controlled
easily by a bandwidth hyperparameter. PSFMs do not need
retraining when new data arrives as new data points can be
immediately added to the training set and are available for
the model to produce a forecast. PSFMs producing a vector
output are able to perform multi-step forecasting without a
recursive approach. Additionally, the sizes of the input and
output patterns do not affect the number of parameters or
the complexity of the training process as is the case for
other ML models.

This paper is organized as follows. Section 2 describes monthly
electricity demand time series and their representation using
patterns. The idea and framework of pattern similarity-based
forecasting are presented in Section 3. Four PSFMs are presented
in Section 4. Section 5 describes an experimental framework used
to evaluate the performance of PSFMs and comparative models.
Finally, in Section 6, we conclude the work.

Abbreviations

AI – artificial intelligence
ANFIS – adaptive neuro-fuzzy inference system
ARIMA – autoregressive integrated moving average model
ETS – exponential smoothing
k-NN, k-NNw – k-nearest neighbor model and its weighted
version
LR – linear regression
LSTM – long short-term memory
ML – machine learning
MLP – multilayer perceptron
MTLF – mid-term load forecasting
N-WE – Nadaraya–Watson estimator
NN – neural network
PSFM – pattern similarity-based forecasting model
STL – seasonal and trend decomposition using Loess
STLF – short-term load forecasting

2. Time series and their representation

A monthly electricity demand time series exhibits a trend,
annual cycles and a random component. Fig. 1 shows an example
of such a time series. As you can see, in this figure, we can observe
a nonlinear trend, which jumps at the end of the fifth cycle,
and a changing annual pattern over the years. Additionally, the
dispersion of the annual cycles changes significantly over time
(from σ = 2610 to 5588 MWh).

One of the main issues in building forecasting models is how
to represent the time series to obtain the highest performance
from the model. Input and output variables should be defined on
the basis of the original time series. These definitions significantly
affect the results. In this work, we use input and output variables
as patterns of fragments of the monthly load time series. By a
pattern we mean a vector with components that are calculated
using some function of actual time series elements. For multiple
seasonal time series, this function can filter out any trend and
seasonal fluctuations and so simplify the data and relationships
between them [27]. As a result, the forecasting model working
on patterns can be less complex.



G. Dudek and P. Pełka Applied Soft Computing Journal 104 (2021) 107223

√
t
d
o
b
v

Fig. 1. Monthly electricity demand time series for Germany (a) and its dispersion in successive years (b).
ˆ
b
w
a

An input pattern xi = [xi,1xi,2 . . . xi,n]T of length n is a vector
of predictors representing a sequence Xi = {Ei−−n+1, Ei−−n+2, . . . ,

Ei} of n successive time series elements E (monthly electricity
demands) preceding the forecasted period. The function, which
transforms time series elements into patterns, is dependent on
the time series properties such as seasonalities, variance and
trend. Some definitions of the function mapping the original time
series into patterns x are:

xi,t = Ei−n+t (1)

xi,t = Ei−n+t − E i (2)

xi,t =
Ei−n+t

E i
(3)

xi,t =
Ei−n+t − E i

Di
(4)

where t = 1, 2, . . . , n, E i is a mean of sequence Xi, and Di =∑n
j=1(Ei−n+j − E i)2 is a measure of its dispersion.

Definition (1) just copies sequence Xi into x-pattern without
ransformation. The pattern components defined using (2) are the
ifferences in demand of a given month and the average demand
f sequence Xi. A quotient of these two quantities is expressed
y (3). The x-pattern defined by (4) is a normalized version of a
ector composed of elements of Xi, i.e. [Ei−−n+1Ei−−n+2 . . . Ei]T . So,

the original time series sequences, which have a different mean
and dispersion (see Fig. 1(b)), are unified, and after normalization
they are represented by x-patterns which all have zero mean, the
same variance and same unity length.

Fig. 2 shows one-year sequences Xi and their x-patterns de-
fined using (2)–(4). Note that all x-pattern definitions boil down
the mean of all patterns to the same value (0 or 1) and, addition-
ally, definition (4) boils down the variance of all patterns to the
same value. So, the trend is filtered out and patterns differ only
in shape.

Output pattern yi = [yi,1yi,2 . . . yi,m]
T represents a forecasted

sequence of length m: Yi = {Ei+τ , Ei+τ+1, . . . , Ei+τ+m−1}, where τ

is a forecast horizon in months. The output patterns are defined
in a similar way to the input patterns:

yi,t = Ei+τ+t−1 (5)

yi,t = Ei+τ+t−1 − E
∗

i (6)

yi,t =
Ei+τ+t−1

∗ (7)

E i

4

Fig. 2. Three annual periods and their x-patterns (time series for Germany).

yi,t =
Ei+τ+t−1 − E

∗

i

D∗

i
(8)

where t = 1, 2, . . . ,m, and E
∗

i and D∗

i are coding variables.
The coding variables, E

∗

i and D∗

i , are the mean and dispersion
of the forecasted sequence Yi, respectively. They are both known
from the historical time series, so the training y-patterns can
be prepared using them. For a new query x-pattern, the model
produces the forecasted y-pattern, ŷ. This pattern corresponds
to the forecasted period Yq = {Eq+τ , Eq+τ+1, . . . , Eq+τ+m−1},
where q is an index of the last element of sequence Xq =

{Eq−−n+1, Eq−−n+2, . . . , Eq} which is represented by query pattern
x. The forecast of the monthly electricity demand in forecasted
period Yq is calculated from ŷ using transformed Eqs. (5)–(8) (this
is known as decoding). For example, when y-patterns are defined
using (8), the decoding equation takes the form:

Eq+τ+t−1 = ŷtD∗

q + E
∗

q, t = 1, 2, . . . ,m (9)

where E
∗

q and D∗
q are the mean and dispersion of sequence Yq.

Unfortunately, the coding variables in (9) are not known,
ecause they are the mean and dispersion of future sequence Yq,
hich has been just forecasted. In this case, the coding variables
re predicted from their historical values, i.e. in (9), E

∗

q = Ê
∗

q
and D∗

= D̂∗
q . In the experimental part of the work, the coding

variables are predicted using ARIMA (variant V2) and ETS (variant
V3).
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To avoid forecasting the coding variables we use another ap-
roach (denoted as V1). In this approach, instead of using the
ean and dispersion of forecasted sequence Yi as coding vari-
bles, we introduce into (6)–(8) the mean and dispersion of
equence Xi, i.e. E

∗

i = E i and D∗

i = Di. Although this approach
does not guarantee that all y-patterns have the same mean value,
it unifies output data by taking into account the current process
variability, expressed by mean E i and dispersion Di. When the
odel returns forecasted y-pattern, the forecast of the monthly
emands are calculated from (9) using known coding variables
or sequence Xq, i.e. E

∗

q = Eq and D∗
q = Dq.

The pairs of corresponding x- and y-patterns form a training
et: Φ = {(xi, yi)}Ni=1, xi ∈ Rn, yi ∈ Rm. Note that the successive
airs represent time series sequences covered by two sliding win-
ows: an input window of the lengths n and an output window of
he lengths m. The gap between these two windows is τ − 1. The
odel learns the mapping x-patterns → y-patterns. It generates
forecast of a y-pattern, ŷ, for a query pattern x. The forecasts of
he monthly electricity demand in period Y are calculated from
he forecasted y-pattern using transformed Eqs. (5)–(8).

Note that when using a pattern approach, the forecasting
odel works on patterns expressing shapes of the time series
equences. In the first step of this approach, the trend, dispersion
nd additional seasonal variations are filtered out, depending on
he definitions of the patterns. Then, the model forecasts the uni-
ied data, i.e. y-patterns on the basis of x-patterns. Finally, in the
ecoding step, the current trend and dispersion are introduced
nto the forecasted y-pattern to obtain the forecasted monthly
emand.

. Framework of the pattern similarity-based forecasting

Similarity-based methods are very popular in the field of ML
nd pattern recognition [29,30]. They estimate the class label or
he function value for the query sample based on similarities
etween this sample and a set of training samples by using
ome similarity function defined for any pair of samples. The
roposed forecasting methods can be classified as memory-based
pproximation methods which use analogies between prepro-
essed sequences of the time series (patterns). It is assumed that
he future behavior of a time series can be deduced from its
ehavior in similar conditions in the past. This assumption can be
xpressed in the pattern representation context as follows [27]:

ssumption 1. If query pattern x is similar to pattern xi from
he history, then forecasted pattern y will be similar to pattern yi
paired with xi).

This assumption allows us to predict the y-pattern on the
asis of known patterns x, xi and yi. Usually we select many
imilar patterns xi and aggregate patterns yi paired with them
o determine forecasted y-pattern.

The above assumption underlying PSFMs should be verified for
given time series. To do so, we analyze the relationship between
he similarities of x-patterns and the similarities of y-patterns
aired with them. We define two random variables: the similarity
etween xi and xj, s(xi, xj), and the similarity between yi and yj,
(yi, yj), where i, j = 1, 2, . . . ,N, i ̸= j. Instead of a similarity
easure we can use a distance measure between patterns as

andom variables. All the pairs of these random variables make
p the sample. To show the stochastic interdependence of the
andom variables, the null hypothesis is formulated: Observed
ifferences in numbers of occurrence of the sample elements in
he specified categories of the random variables are caused by the
andom nature of the sample. This hypothesis is verified using the

hi-squared test based on a contingency table showing the joint t

5

mpirical distribution of the random variables [27]. A high value
f χ2 statistic, above the critical value, rejects the null hypothesis
n favor of an alternative hypothesis, which justifies the use of
SFMs.
In this study, the similarity between patterns, which are real-

alued vectors, is measured using Euclidean distance. Other mea-
ures are also possible such as Pearson’s correlation coefficient,
animoto coefficient, other Minkowski distances or dot product
or normalized vectors.

The concept of pattern similarity-based forecasting is depicted
n Fig. 3 and can be summarized in the following steps [27]:

1. Mapping the original time series sequences into x- and
y-patterns.

2. Weighting training x-patterns depending on their similar-
ity to query pattern x.

3. Weighted aggregation of training y-patterns to determine
forecasted pattern ŷ.

4. Decoding pattern ŷ to obtain forecasted time series se-
quence Y .

During aggregation of the y-patterns (step 3) we use weights
hich are dependent on the similarity between query pattern
and training x-patterns. In this case, the regression model
apping x-patterns into y-patterns takes the form:

(x) =

N∑
i=1

w(x, xi)yi (10)

here w(., .) is a weighting function,
∑N

i=1 w(x, xi) = 1.
Note that m(.) is a vector-valued function returning the whole

-pattern. It is a nonlinear function if w(., .) maps x nonlinearly.
ifferent definitions of w(., .) are given in Section 4 for specified
SFMs.
Algorithm 1 summarizes pattern similarity-based MTLF. As

nput, the algorithm requires the PSFM which is used in step 3 to
eight the input patterns using specific Weighting_function. This

unction returns vector w = [w1w2...wN ]
T including weights for

he successive training x-patterns. The algorithm variant, V1, V2
r V3, determines the method of y-pattern encoding (step 1) and
ecoding (steps 4–7). In V1, the coding variables for y-patterns
re the same as for their corresponding x-patterns (step 4). In V2,
he coding variables are predicted for the forecasted period using
RIMA (step 5), and in V3 they are predicted using ETS (step 6).
flowchart of the forecasting procedure in variant V1 is depicted

n Fig. 4(a), and in Fig. 4(b) for variants V2 and V3.

. Pattern similarity-based forecasting models

.1. Nearest neighbor models

The simplest PSFM is a k-nearest neighbor regression model.
t estimates m(.) as the average of the y-patterns in a varying
eighborhood of query pattern x. The neighborhood is defined as
set of k nearest neighbors of x in the training set. The regression
unction is as follows:

(x) =

∑
i∈Ωk(x)

w(x, xi)yi (11)

here Ωk(x) is a set of indices of k nearest neighbors of x in Φ

nd w(x, xi) = 1/k for each x and xi.
Note that in this model the weights of yi are all equal to

/k. Function (11) is a step function. The number of nearest
eighbors k controls the smoothness of the estimator. For k = 1

he regression function is exactly fitted to the training points.



G. Dudek and P. Pełka Applied Soft Computing Journal 104 (2021) 107223
Fig. 3. The concept of pattern similarity-based forecasting.
Fig. 4. Flowcharts of the proposed MTLF procedures in variant V1 (a) and V2/V3
(b).
6

Algorithm 1 Pattern Similarity-based MTLF

Input:

Monthly electricity demand time series {Ei}
Algorithm variant (V1, V2 or V3)
Pattern similarity forecasting method PSFM with parameters Θ

Forecasting horizon τ , forecasted sequence length m, input
pattern length n

Output:

Ê = [Eq+τEq+τ+1 . . . Eq+τ+m−1]
T (forecasted sequence Yq)

Procedure:

1: Define patterns x and y depending on variant V1, V2 or V3
2: Create training set Φ = {(xi, yi)}Ni=1
3: PSFM:

w = Weighting_function(query x, Φ , Θ)

ŷ =

N∑
i=1

wiyi

4: if V1 then
E

∗

q = Eq, D∗
q = Dq

5: elseif V2 then
E

∗

q=ARIMA({E i}), D∗
q=ARIMA({Di})

6: elseif V3 then
E

∗

q=ETS({E i}), D∗
q=ETS({Di})

endif
7: Ê = ŷD∗

q + E
∗

q

Increasing k causes an increase in bias and a decrease in variance
of the estimator. To get rid of jumps in the regression function
and make it smoother, we can introduce a weighting function
that gives greater weights for closer neighbors and lower weights
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Fig. 5. The weighting function for k-NN.

for distant ones. Weighting functions are dependent on the dis-
tance between a query pattern and its nearest neighbors. They
monotonically decrease, reach a maximum value at zero, and
a minimum value (nonnegative) for the kth nearest neighbor.
ome weighting function propositions can be found in [31]. In
his work, we use a weighting function in the form [28]:

(x, xi) =
v(x, xi)∑

j∈Ωk(x) v(x, xj)
(12)

(x, xi) = ρ

(
1 − d(x, xi)/d(x, xk)
1 + γ d(x, xi)/d(x, xk)

− 1
)

+ 1 (13)

here xk is the kth nearest neighbor of x in Φ , d(x, xi) is the
uclidean distance between x and its ith nearest neighbor in
, ρ ∈ [0, 1] is a parameter determining the differentiation of
eights, and γ ≥ −1 is a parameter determining the convexity
f the weighting function.
Function (13) is shown in Fig. 5. The interval of weights v is

1− ρ, 1]. So, for ρ = 1 the weights are the most diverse and for
= 0 they are all equal. In the latter case, we get w(x, xi) = 1/k.
or γ = 0 the weighting function is linear. For γ > 0 we get

a convex function and for γ < 0 we get a concave function.
The three parameters, k, ρ and γ , allow us to control the model’s
features flexibly.

4.2. Fuzzy neighborhood model

In the k-NN model, the regression surface is built using k train-
ing patterns. The fuzzy neighborhood model (FNM) takes into
account all training patterns when constructing the regression
surface [24]. In this case, not only k x-patterns belong to the query
pattern neighborhood but all training patterns belong to it, with
a different degree of membership. The degree of membership of
the less distant training pattern xi is higher (equal to the maximal
value of 1 for xi = query x-pattern) than the degree of member-
ship of the more distant pattern. The degree of membership is
defined by a membership function which should monotonically
decrease with distance d(x, xi). In this study we apply a popular
Gaussian membership function in the form:

µ(x, xi) = exp
(

−

(
d(x, xi)

σ

)α)
(14)

where σ and α are parameters determining the membership
function shape (see Fig. 6).

Based on the membership function, the weighting function in
FNM takes the form:

w(x, xi) =
µ(x, xi)∑N
j=1 µ(x, xj)

(15)

Other membership functions than Gaussian-type are also pos-
ible, e.g Cauchy-type function with a fatter tail, which gives
reater weights for more distant patterns. The model parameters,
and α, shape the membership function as shown in Fig. 6, and
7

Fig. 6. The membership function for FNM.

thus control the properties of the estimator. The model tends
to increase bias and decrease variance for wider membership
functions.

4.3. Kernel regression model

The kernel regression model belongs to the same category of
non-parametric methods as k-NN and FNM. It models a nonlinear
relationship between a pair of random variables x and y. The
adaraya–Watson estimator (N-WE) is the most popular repre-
entative of this group. The N-WE estimates regression function
(.) as a locally weighted average, using in (10) a kernel Kh as a
eighting function [32]:

(x, xi) =
Kh(x − xi)∑N
j=1 Kh(x − xj)

(16)

A kernel function is centered at data point xi and gives the
ighest value when the distance between this point and query
oint x is zero. The kernel function falls with distance, at a speed
ependent on smoothing parameter (or bandwidth) h.
When the input variable is multidimensional, the kernel has a

roduct form. In such a case, for a normal kernel, which is often
sed in practice, the weighting function is defined as [25,28]:

(x, xi) =

exp
(
−

∑n
t=1

(xt−xi,t )2

2h2t

)
∑N

j=1 exp
(
−

∑n
t=1

(xt−xj,t )2

2h2t

) (17)

here ht is a bandwidth for the tth dimension.
In N-WE, bandwidth has a prominent effect on the estimator

shape, whereas the kernel is clearly less important. Note that in
(17) we define the bandwidths individually for each dimension.
This gives a more flexible estimator which allows us to control
the influence of each input on the resulting fitted surface. The
bandwidths decide about the bias–variance tradeoff of the esti-
mator. For too low values the estimator is undersmoothed, while
for too large values it is oversmoothed.

4.4. General regression neural network model

A General Regression Neural Network (GRNN) was proposed
in [33] as a variant of a radial basis function NN. It is a memory-
based network where each neuron corresponds to one training
x-pattern. GRNN provides smooth approximation of the target
function even with sparse data in a multidimensional space. Due
to one pass learning it learns very fast when compared to other
NNs. Other advantages of GRNN are easy tuning, a highly parallel
structure and smooth approximation of a target function even
with sparse data in a multidimensional space.

As shown in Fig. 7, GRNN is composed of four layers: in-
put, pattern (radial basis layer), summation and output layer.
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Fig. 7. General regression neural network.

he pattern layer transforms inputs nonlinearly using Gaussian
ctivation functions in the form:

(x, xi) = exp
(

−
∥(x − xi)∥2

σ 2
i

)
(18)

here ∥.∥ is a Euclidean norm and σi is a bandwidth for the ith
pattern.

The Gaussian functions are centered at different training pat-
terns xi. The neuron output expresses similarity between the
query pattern and the ith training pattern. This output is treated
as the weight of the ith y-pattern. So the pattern layer maps the
n-dimensional input space into an N-dimensional space of sim-
ilarity. The weighting function implemented in GRNN is defined
as [26]:

w(x, xi) =
G(x, xi)∑N
j=1 G(x, xj)

(19)

The performance of GRNN is related to bandwidths σi which
overn the smoothness of the regression function (10). Note that
n the GRNN model each neuron has its own bandwidth σi. This
gives us the flexibility to control the weight of the ith y-pattern
individually. As in the case of the other PSFMs presented above,
selection of the optimal values of the bandwidths is a key issue
in GRNN.

5. Simulation studies

In this section, we compare PSFMs on a mid-term load fore-
casting problem using real-world data: monthly electricity de-
mand time series for 35 European countries. The data are taken
from the publicly available ENTSO-E repository (www.entsoe.
eu/data/power-stats/). The longest time series cover the time
period from 1991 to 2014 (11 countries out of 35). Others are
shorter: 17 years (6 countries), 12 years (4 countries), 8 years (2
countries), and 5 years (12 countries). The goal is to predict the
demand for each of the twelve months in 2014 using historical
data. The 35 time series are shown in Fig. 8. As can be seen from
this figure, the time series have different levels, trends, variations
and yearly shapes.

5.1. Verification of the PSFM assumption

In Section 3, the assumption underlying PSFMs was stated.
To confirm this assumption the null hypothesis was formulated.
It is verified for each country using the chi-squared test based
on a contingency table showing the joint empirical distribution
8

of the random variables, which are Euclidean distances between
patterns: d(xi, xj) and d(yi, yj). In this analysis, we use patterns
defined by (4) and (8), where n,m = 12, E

∗

i = E i, and D∗

i = Di.
In the contingency tables, the random variables are divided

into five categories containing roughly the same number of ob-
servations. Fig. 9 shows the chi-squared statistics for the analyzed
countries. Critical value χ2 is shown by a dashed line. It is equal
to 26.30 for the case of five categories adopted for each random
variable and significance level α = 0.05. As you can see from
this figure, all χ2 values are higher than or very close to the
critical value. This allows us to reject the null hypothesis and
justifies the use of PSFMs. The strongest relationships between
the random variables are observed for Italy, Germany, Belgium
and Luxembourg.

5.2. Comparative models

As comparative models, we use classical statistical forecasting
models such as ARIMA and ETS, as well as neural and neuro-fuzzy
models:

RIMA – ARIMA(p, d, q)(P,D,Q )12 model implemented in func-
tion auto.arima in R environment (package forecast).
This function implements automatic ARIMA modeling
which combines unit root tests, minimization of the
Akaike information criterion (AICc) and maximum likeli-
hood estimation to obtain the optimal ARIMA model [34].

ETS – exponential smoothing state space model [35] is imple-
mented in function ets (R package forecast). This im-
plementation includes many types of ETS models depend-
ing on how the seasonal, trend and error components
are taken into account. They can be expressed additively
or multiplicatively, and the trend can be damped or not.
As in the case of auto.arima, ets returns the optimal
model using AICc [34].

MLP – multilayer perceptron is described in [36]. This model
is designed for MTLF. It learns from patterns defined by
(4) and (8). It predicts one component of the y-pattern
on the basis of x-patterns. For all m components, m MLPs
are trained. When all m components of the y-pattern have
been predicted by the set of MLPs, the demand forecasts
are calculated using (9). The network has one hidden layer
with sigmoidal neurons and learns using the Levenberg–
Marquardt method with Bayesian regularization to pre-
vent overfitting. The two MLP hyperparameters, which
need to be tuned, are the number of hidden nodes and
the length of the input patterns n. We use Matlab R2018a
implementation of MLP (function feedforwardnet from
Neural Network Toolbox).

ANFIS – adaptive neuro-fuzzy inference system is proposed for
MTLF in [37]. It works on patterns (4) and (8). This is
an n-input, single-output model for predicting one y-
pattern component. So, for all components, m models
are built and trained. ANFIS architecture is functionally
equivalent to a Sugeno type fuzzy rule base. Initial mem-
bership function parameters in the premise parts of rules
are determined using fuzzy c-means clustering. The hy-
brid learning method applied for ANFIS training uses a
combination of the least-squares for consequent parame-
ters and a backpropagation gradient descent method for
premise parameters. The ANFIS hyperparameters which
were selected are the number of rules and the length
of input patterns n. The Matlab R2018a implementation
of ANFIS was used (function anfis from Fuzzy Logic

Toolbox).

http://www.entsoe.eu/data/power-stats/
http://www.entsoe.eu/data/power-stats/
http://www.entsoe.eu/data/power-stats/
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Fig. 9. Chi-squared statistics for verification of PSFM assumption.

LSTM – long short-term memory (LSTM) network, where the
responses are training sequences with values shifted by
one time step (a sequence-to-sequence regression LSTM
network) [38]. For multiple time steps, after one step
was predicted the network state was updated. Previous
prediction was used as input to the network producing
the prediction for the next time step. LSTM was opti-
mized using Adam (adaptive moment estimation) opti-
mizer. The number of hidden nodes was the only hyper-
parameter to be tuned. Other hyperparameters remain at
their default values. The experiments were carried out
using Matlab R2018a implementation of LSTM (function
trainNetwork from Neural Network Toolbox).

.3. Parameter settings and model variants

Taking into account our earlier experiences with PSFMs re-
orted in [24,27,28,36,36,37] and [25] we use pattern definitions
4) and (8). In most cases these pattern definitions produce the
reatest accuracy from the models.
One of the main hyperparameters for all proposed PSFMs, as

ell as for MLP and ANFIS, was the length of the x-patterns. Al-
hough the natural choice for this hyperparameter is the seasonal
ycle length, i.e. 12, we tested the models for a range for n from 3
to 24, before selecting the optimal value of n for each model and
each time series.

The k-NN model was used in two variants. The first one assigns
the same weights to all k neighbors: w(x, xi) = 1/k. The second
ses the weighting function defined by (12) and (13), where ρ =

and γ = 0 (linear weighting function). This variant is denoted
s k-NNw. A key hyperparameter in both these variants, besides
9

he x-pattern length, is the number of nearest neighbors k. This
as selected from a range from 1 to 50.
In FNM, we set α = 2 and control the membership function

14) width with σ . This hyperparameter was calculated from:

= a · dmed (20)

here dmed was the median of pairwise distances between x-
atterns in the training set. It was searched for a = 0.02,
.04, . . . , 1.
Determining σ on the basis of dmed calibrates this parameter

o data.
The bandwidth parameters in N-WE were searched around the

tarting values, which were determined using the Scott rule [39]
roposed for the normal product density estimators:

S
t = stN−

1
n+4 , t = 1, 2, . . . , n (21)

here st is the standard deviation of the tth component of x
stimated from the training sample.
The searched bandwidths are generated according to:

t = b · hS
t , t = 1, 2, . . . , n (22)

here b = 0.15, 0.2, . . . , 2.
Note that the multidimensional optimization problem of

earching bandwidths h1, h2, . . . , hn was replaced by the simple
ne-dimensional problem of searching b.
For GRNN, we assume in this study the same bandwidths for

ll neurons. Bandwidth σ was searched according to (20). For
MLP, the number of hidden neurons was selected from a range
of 1 to 10. The number of rules in the ANFIS model was selected
from a range of 2 to 13. The number of hidden nodes in the
LSTM model was selected from the set {1, 2, . . . , 10, 15, . . . , 50,
60, . . . , 200}. For ARIMA and ETS models, we use default param-
eter settings implemented in functions auto.arima and ets,
respectively.

For each model, the optimal values of its hyperparameters
were selected for each of 35 time series in a grid search procedure
using cross-validation.

Taking into account the y-pattern encoding variants described
in Section 2, three variants of each PSFM are considered:

V1. The basic variant where the coding variables for y-patterns
are the mean and dispersion of sequence Xi, i.e. E

∗

i = E i,
D∗

i = Di. This variant enables us to calculate the forecast of
the monthly loads from (9) without additional forecasting
for coding variables.
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able 1
esults comparison among proposed and comparative models.
Model Median APE MAPE IQR RMSE

k-NN 3.11 5.19 4.13 385.68
k-NNw 2.89 4.99 4.06 368.79
FNM 2.88 4.88 4.43 354.33
N-WE 2.84 5.00 4.14 352.01
GRNN 2.87 5.01 4.30 350.61
k-NN+ARIMA 2.88 4.71 4.21 352.42
k-NNw+ARIMA 2.89 4.65 4.02 346.58
FNM+ARIMA 2.87 4.61 3.83 341.41
N-WE+ARIMA 2.85 4.59 3.74 340.26
GRNN+ARIMA 2.81 4.60 3.77 345.46
k-NN+ETS 2.72 4.58 3.55 333.27
k-NNw+ETS 2.71 4.47 3.43 327.94
FNM+ETS 2.64 4.40 3.34 321.98
N-WE+ETS 2.68 4.37 3.20 320.51
GRNN+ETS 2.64 4.38 3.35 324.91
MLP 2.97 5.27 3.89 378.81
MLP+ARIMA 3.12 4.83 4.16 362.03
MLP+ETS 3.11 4.80 4.12 358.07
ANFIS 3.56 6.18 4.91 488.75
ANFIS+ARIMA 3.66 6.05 5.40 473.80
ANFIS+ETS 3.54 6.32 4.57 464.29
LSTM 3.73 6.11 4.46 431.83
ARIMA 3.32 5.65 5.27 463.07
ETS 3.50 5.05 4.17 374.52

V2. The variant where the coding variables are the mean and
dispersion of sequence Yi. For the query pattern, they are
both forecasted independently using ARIMA model on the
basis of their historical values. The denotations in this
variant are extended by ‘‘+ARIMA’’, e.g. ‘‘k-NN+ARIMA’’,
‘‘ANFIS+ARIMA’’.

V3. As in variant V2, the coding variables are the mean and
dispersion of sequence Yi. But in this case they are fore-
casted for the query pattern using ETS. The denotations
in this variant are extended by ‘‘+ETS’’, e.g. ‘‘k-NN+ETS’’,
‘‘ANFIS+ETS’’.

These three variants are also used for MLP and ANFIS models
(they also use pattern representation).

5.4. Results

PSFMs are deterministic models which return the same results
for the same data. NN-based models, i.e. MLP, ANFIS and LSTM,
due to the stochastic nature of the learning processes, return
different results for the same data. In this study, these models
were trained 100 times and the final errors were calculated as
averages over 100 independent trials.

Fig. 10 shows the forecasting errors on the test sets (mean
absolute percentage error, MAPE) for each country. The rankings
of the models are shown in Fig. 11. The ranking shown on the
left is based on the median of APE and the ranking shown on the
right is based on the average ranks of the models in the rankings
for individual countries. Table 1 summarizes the accuracy of
the models showing the median of APE, MAPE, the interquartile
ranges of APE and the root mean square error (RMSE).

As can be seen from Figs. 10 and 11 and Table 1, the most
accurate models are the five PSFMs with ETS (variant V3). There
is no significant difference in errors between them. PSFMs in the
basic variants (V1) and in +ARIMA variants (V2) were ranked
lower then PSFMs+ETS in both rankings. The largest errors among
PSFMs were observed for the simple k-NN model with equal
weights.

The comparative models were ranked as the least accurate.
Among them, the best one turned out to be MLP and the worse
ones were ANFIS-based models and LSTM (MAPE > 6%). Note the
10
Table 2
Descriptive statistics of percentage errors PE.
Model Mean Median Std Skewness Kurtosis

k-NN −1.96 −1.27 10.83 −4.88 49.39
k-NNw −1.87 −1.08 10.43 −5.14 44.56
FNM −2.03 −1.22 9.34 −4.16 35.14
N-WE −1.91 −1.18 10.82 −5.41 48.94
GRNN −1.87 −1.16 10.60 −5.34 48.11
k-NN+ARIMA −1.76 −0.75 8.10 −2.66 20.96
k-NNw+ARIMA −1.74 −0.82 7.92 −2.50 19.56
FNM+ARIMA −1.75 −0.84 7.89 −2.76 21.57
N-WE+ARIMA −1.75 −0.85 7.82 −2.68 21.38
GRNN+ARIMA −1.75 −0.81 7.81 −2.59 20.48
k-NN+ETS −1.26 −0.20 9.11 −4.47 38.22
k-NNw+ETS −1.25 −0.20 9.00 −4.40 37.30
FNM+ETS −1.26 −0.11 8.80 −4.75 41.71
N-WE+ETS −1.26 −0.17 8.68 −4.63 40.75
GRNN+ETS −1.26 −0.11 8.61 −4.42 38.38
MLP −1.37 −0.68 11.88 −7.52 109.64
MLP+ARIMA −1.64 −0.92 7.45 −1.64 12.16
MLP+ETS −1.71 −1.03 7.32 −1.55 11.83
ANFIS −2.51 −1.43 11.37 −4.35 34.93
ANFIS+ARIMA −1.94 −0.65 9.63 −1.67 13.29
ANFIS+ETS −1.30 −0.40 12.65 −0.96 39.37
LSTM −3.12 −1.81 9.49 −2.86 22.21
ARIMA −2.35 −1.03 13.62 −9.01 119.20
ETS −1.04 −0.31 7.97 −1.89 13.52

enormous errors for Montenegro (ME) in Fig. 10, MAPE > 25%.
hese are caused by the very irregular character of the time series
or ME and the abnormal value of demand for March and April
013, which is about twice the value typical for these months.
o model managed to deal with this time series satisfactorily.
To evaluate further the forecast errors, we present descriptive

tatistics of percentage errors (PE) in Table 2. The mean value of
E indicates forecast bias. For each model, we obtained a negative
ean PE, indicating a negatively biased forecast, i.e. overpredic-

ion. The negatively biased forecasts were confirmed in all cases
sing the t-test, which rejected the hypothesis that mean PE is
qual to zero (α = 0.05). The PE distributions are similar in shape
o the normal shape but statistical tests for the assessment of nor-
ality (Jarque–Bera test and Lilliefors test) do not confirm this.
mong the proposed PSFMs, the least biased are those models in
he V3 variant, and the most biased are those models in the basic
ariant V1.
The negative values of skewness for all models shown in Ta-

le 2, indicate left-skewed PE distributions. High kurtosis values
ndicate leptokurtic distributions where the probability mass is
oncentrated around the mean.
Examples of forecasts generated by the models for four coun-

ries are depicted in Fig. 12. For PL, the PSFMs produce the
ost accurate forecasts. Among the PSFMs, basic variant V1 is
lightly better than variants V2 and V3. Note that for PL the
lassical models, ARIMA nad ETS, give outlier forecasts. ARIMA
roduces overestimated forecasts, while ETS produces underesti-
ated forecasts. ARIMA also gives the most inaccurate forecasts

or DE and FR. For GB, the forecasts generated by all models
re underestimated. This results from the fact that demand in
B in 2014 went up unexpectedly despite the downward trend
bserved from 2010 to 2013. In FR, the reverse situation caused
slight overestimation of forecasts. Note that for both MLP and
NFIS jumps in the forecasted curve are observed. This is because
hese models predict only one component of the y-pattern, and
o forecast all m components we use m independent models. So,
he relationships between the components are ignored. In the
ase of PSFMs which generate a multi-output response, these
elationships are kept because the forecasted annual cycle is
ormed by weighted averaging the shapes of historical annual
ycles.
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Fig. 10. MAPE for each country.
Fig. 11. Rankings of the models: (a) ranking based on the median of APE, (b) ranking based on the average model ranks in the individual rankings for each country.
5.5. Discussion

PBFM variants. The basic variant, V1, uses coding variables
determined from history, i.e., the means and dispersions of se-
quences Xi. In such a case, the stability of the relationship be-
tween means/dispersions of sequences Xi and Yi is very impor-
tant. When the trend is falling, the y-pattern is encoded with the
mean of the previous sequence Xi which is higher than the mean
of Yi. For a forecasted y-pattern the same higher value of the mean
coding variable is expected. But when the time series, instead
of continuing to fall, starts to rise, the relationship between the
means of sequences Xi and Yi observed in the past is no longer
valid. This results in a wrong forecast which continues the falling
trend. The opposite situation occurs when the trend is rising and
it starts to fall in the final part. This problem is observed for many
countries, e.g. BA, BE, IT, DK, and IE (see the increased errors
for PSFMs in variant V1 for these countries in Fig. 10). A similar
problem arises with dispersion. To prevent such situations we
use variants V2 and V3, where the coding variables are predicted
using ARIMA and ETS. In these cases, final accuracy is dependent
on the accuracies of the three models: (1) PSFM, which predicts
11
y-pattern, (2) ARIMA/ETS, which predicts the mean of sequence
Yq, and (3) ARIMA/ETS, which predicts the dispersion of sequence
Yq. When the coding variables are predicted with low accuracy,
the final error can be higher than in the case of the basic PSFM
variant (see graphs for AT, BG and ES in Fig. 10).

The simulation study found that variant V3 performed best,
i.e., a combination of PSFM with ETS. Slightly higher errors were
shown by variant V2 (PSFM+ARIMA), and the highest errors were
for basic variant V1.
Standard ML vs. PSFM learning. In the standard approach, ML
methods such as MLP and ANFIS create global forecasting models.
During learning all training patterns are treated in the same way,
without any of them being proffered. That is, the model is opti-
mized globally by minimizing the loss function, which is the sum
of errors for all training patterns. So, each training pattern has
the same impact on regression function shaping. Such a model is
globally accurate but may be inaccurate around the current query
point. Outlier patterns, in this case, can disrupt learning and lead
to a loss of generalization.

In PSFMs, the regression function is constructed locally,
around the query x-pattern. It is built from the training y-patterns
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Fig. 12. Real and forecasted electricity demand for PL, DE, GB and FR.
orresponding to the x-patterns which are most similar to the
uery pattern. In the regression model (10) such y-patterns have
arger weights, unlike the y-patterns corresponding to the more
istant x-patterns. Thus the regression surface around the query
attern is not affected by distant patterns as in the case of
tandard learning. This leads to more accurate modeling around
he query pattern, and thus to better forecasts. This also limits the
mpact of outliers when they are among the x-patterns (x-pattern
utliers have low weights as they are distant from the query
attern). Eliminating the impact of outliers among the y-patterns
equires a different approach (not included in the current ver-
ion of PSFMs). In this approach, the y-pattern outlier can be
etected by comparison with other training y-patterns from the
eighborhood of its corresponding x-pattern. A y-pattern which
s distant from other neighboring y-patterns can be detected as
n outlier and removed or its weight can be decreased. The exact
echanism for dealing with outliers in PSFMs will be the subject
f further research.
Note that PSFMs are non-parametric regression models. They

irectly use data to construct the forecast (see (10) where the
odel combines y-patterns and weights which are calculated
ased on x-patterns). They do not require training like para-
etric ML models, where the parameters (weights in NNs) are

earned from the training set. The number of parameters to adjust
n parametric ML is sometimes huge (hundreds or thousands),
hich entails time consuming training. Moreover, hyperparam-
ters such as the number of neurons, learning rate, activation
unction type, number of epochs (and many others depending
n the model architecture) need additional optimization. PSFMs
12
need only to select their hyperparameters. In our case, there
are only two hyperparameters: the input pattern length and
the bandwidth parameter deciding the weighting function shape.
Thus the optimization procedure of PSFMs is much faster than the
learning and optimization of parametric ML models.

Note also that parametric ML needs retraining when we want
to include new data in the model. This is necessary in forecasting
models because new data, i.e. last time series sequence just
available usually contains most information about the forecasted
sequence. There is no retraining in PSFMs. In this case when a
new sequence is added to the training set it can be immediately
used in a regression model (10).
LSTM vs. PSFM. LSTM is a recurrent NN with connections be-
tween nodes forming a directed graph along a temporal sequence.
It is able to exhibit temporal dynamic behavior and capture long-
term dependencies in sequential data by using their internal state
(memory) to process sequences of inputs. Information learned
from the previous time steps is contained in the cell state and
so called hidden state. Information can be added to or removed
from the cell state using three nonlinear gates. At each time step,
the past state of the network and the current input are used to
compute output and updated cell state. The complex structure
of LSTM makes it very hard to understand and analyze. There
are a lot of parameters (input and recurrent weights of each
gate) and hyperparameters to adjust. The learning process is time
consuming and sensitive to vanishing and exploding gradients.
New LSTM architectures, with a multilayered (stacked) structure
equipped with additional mechanisms such as dilation and resid-

ual connections [40], are even more complex and so even more
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ifficult to understand. As other ML models, LSTM creates a global
odel.
In contrast to LSTM, PSFMs have a simple and understandable

perating principle (no internal states, gates, recurrent cycles).
nstead of hundreds of parameters and several hyperparameters
o adjust, they have only two hyperparameters. They process each
uery pattern individually, constructing a local model for it.
tatistical forecasting models vs. PSFM. In ARIMA and ETS the
odel is optimized globally, i.e., its parameters are fine-tuned to
nsure the lowest error for all time series points (however, we
an limit the length of the time series to the last M observations
o take into account only the specificity of the last period in the
odel). The ARIMA model is limited to the last time series points

orders of the AR and MA models). Thus the forecasted value is
‘constructed’’ based on the last observations. The ETS model is
ased on all observations but with an impact which exponen-
ially decreases with time, i.e., the last observations have higher
eights. In contrast, in PSFMs, the local model is constructed for
ach query pattern and it uses time series points not limited to
he last observed ones like in ARIMA (see Assumption 1, where
he history is not limited to the last period) and not weighted
ver time like in ETS. To construct the local regression function,
BFM takes into account observations that can be distant in time
rom the query pattern (if such distant observations are similar in
hape to the query pattern). However, the time distance can be
ntroduced easily in PBFM (10) by additional y-pattern weights
ecreasing with time. Weights, depending on seasonality, can
lso be introduced in PSFMs for multi-seasonal time series. The
utliers in ARIMA and ETS distort the selection of the parameters
nd lead to suboptimal models. In PSFMs, the effect of outliers is
artially reduced as described above.
Another difference between statistical models and PSFMs is

hat the former produce one-step ahead forecasts. Multi-step
orecasting is performed recursively by taking a prediction for
he prior time step as an input for making a prediction for the
ollowing time step. In contrast, PSFM forecasts the y-pattern
epresenting the entire forecasted sequence in one-shot.
imitations and disadvantages of PSFMs. The performance of
SFM is dependent on the fulfillment of Assumption 1. For a given
ime series, this assumption can be verified using appropriate
tatistical tests (see Sections 3 and 5.1). The pattern similarity-
ased framework model was designed for seasonal time series
here the seasonal cycles are similar in shape, and the rela-
ionship between coding variables is stable in time. When this
elationship changes with time, the coding variables should be
redicted (variants V2 and V3 of the algorithm). This increases
he complexity of the model.

PSFMs in the variants presented in this work belong to the
nivariate autonomous modeling approach, where only historical
oad data are used as inputs. By not including other inputs,
uch as weather and economic factors, objections can be raised
ut we have to remember that these exogenous variables are
sually not available and have to be forecasted. This is a major
hallenge in all MTLF approaches with exogenous inputs. Many
esearchers use statistical measures such as correlation coeffi-
ients, personal experience and intuition to assess the validity,
ffectiveness and contribution of such exogenous variables to
nergy and load forecasting [3]. This can lead to low accuracy
orecasts of weather and economic variables, and consequently,
o larger load forecast errors. However, the regression model
10) can be extended to incorporate additional input variables.
hese can be introduced by additional weights dependent on the
imilarity between patterns representing external variables. Such
n approach was shown in [41], where the model for STLF was
xtended to include weather variables.
When using PSFMs, the time series should be long enough to

nclude many seasonal cycles. These cycles, expressed in patterns,
13
should provide sufficient variability in shapes. A lack of variability
limits the model performance. This is because regression function
(10) creates the forecast by combining the historical y-patterns.
When their variability is low or they are not representative, the
model is not flexible enough and thus cannot produce an accurate
forecast.

6. Conclusion

In this work, we presented a framework of pattern similarity-
based forecasting and explored PSFMs for MTLF. The key com-
ponent of these models is the use of patterns of the time series
sequences for time series representation. We defined input and
output patterns which unify input and output data. The patterns
carry information about the shapes of the annual cycles, filtering
out the trend and normalizing data. They simplify relationships
between data, making the forecasting model simpler and faster
to train.

PSFMs belong to a class of lazy learning regression models
where the regression function is built by the aggregation of out-
put patterns with weights dependent on the similarity between
input patterns. The simplest PSFM is the k-NN model with equal
weights. More sophisticated models, such as k-NNw, FNM, N-
WE and GRNN, which use weighting functions, produce more
accurate forecasts.

The simulation study showed the high accuracy of PSFMs
when compared to the classical models, such as ARIMA and
ETS, as well as MLP, ANFIS and LSTM models. The best perfor-
mance was achieved by hybrid PBFMs combining ML with ETS
for forecasting the coding variables. It is also worth noting that
basic PSFM variants (V1) outperform the comparative models,
producing more accurate forecasts while being much simpler and
easier to optimize.

The advantages of PSFMs can be summarized as follows:

1. A forecasting model based on pattern similarity is trans-
parent and its operating principle is understandable. This
is very important in practical applications because it trans-
lates into a greater confidence in the forecasts. Moreover,
PSFMs do not require any specific knowledge of ML or AI
from practitioners.

2. PSFMs are simple. They have only two hyperparameters,
or even one when we assume that the pattern length is
equal to the length of the seasonal cycle. Simple models are
easy to optimize and do not suffer from excessive tuning
and training burdens like other ML models, especially deep
learning ones.

3. In PSFMs, model generalization (bias–variance tradeoff)
can be controlled easily by a bandwidth parameter. In other
ML models, generalization is dependent on all parameters
and hyperparameters, which makes generalization difficult
to achieve.

4. PSFMs do not need retraining when new data arrives. New
data can be immediately added to the training set and used
to produce the forecast.

5. PSFMs produce a vector output, thus they are able to multi-
step forecast without a recursive approach. The compo-
nents of the output pattern are the forecasts for the suc-
cessive time periods.

6. The sizes of the input and output patterns do not affect
the number of parameters or the complexity of the training
process as is the case for other ML models.

7. PSFMs are distinguished by their robustness to incomplete
data. The models can work using patterns with missing
components.
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8. PSFMs can be easily extended by introducing additional
weighting functions in the regression model (10). This en-
ables us to introduce additional input variables and tem-
poral dependencies.

9. PSFMs are not limited to forecasting time series with a
single seasonality. They were designed to forecast time
series with multiple seasonal cycles such as STLF [27,28],
where there are three seasonalities, i.e. yearly, weekly and
daily.

Possible directions for further research on PSFMs are the intro-
duction of additional input variables to PSFMs, PSFM ensembling,
the introduction of confidence degrees in the training data to the
models, and probabilistic forecasting.
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