
Sensitivity Analysis of the Neural
Networks Randomized Learning

Grzegorz Dudek(B)

Electrical Engineering Faculty, Cz ↪estochowa University of Technology,
Cz ↪estochowa, Poland

dudek@el.pcz.czest.pl

Abstract. Randomized algorithms for learning feedforward neural net-
works are increasingly used in practice. They offer very speed training
because the only parameters that are learned are the output weights.
Parameters of hidden neurons are generated randomly once and need
not to be adjusted. The key issue in randomized learning algorithms is
to generate parameters in a right way to ensure good approximation and
generalization properties of the network. Recently the method of gener-
ating hidden nodes parameters was proposed [1], which ensures better
adjustment of the random parameters to the target function and bet-
ter distribution of neurons in the input space, when comparing to the
previous approaches. In this work the new method is tested in terms
of sensitivity to the number of neurons, noise in data and data deficit.
Experiments shows better results for the new method in comparison to
the existing approach of generating random parameters of the network.

Keywords: Randomized learning algorithms ·
Neural networks with random hidden nodes ·
Feedforward neural networks

1 Introduction

In conventional learning of neural networks (NNs) all parameters, weights and
biases, are required freely adjustable. They are tuned properly during a learning
process which usually employs some form of gradient descent method which is
known to be time consuming, sensitive to initial values of parameters and con-
verging to local minima. For complex classification or regression problems the
training is complicated and inefficient. In recent years randomized learning algo-
rithms for NNs are developed by many researchers. The original idea of building
NNs with random weights can be found in [2] and [3]. In these approaches the
weights and biases of hidden nodes are assigned with random values and need not
to be adjusted during the learning process. Thus, the resulting optimization task
solved by NN becomes convex and can be formulated as a linear least-squares

Supported by Grant 2017/27/B/ST6/01804 from the National Science Centre, Poland.

c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 51–61, 2019.
https://doi.org/10.1007/978-3-030-20912-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20912-4_5&domain=pdf
http://orcid.org/0000-0002-2285-0327
https://doi.org/10.1007/978-3-030-20912-4_5

52 G. Dudek

problem [4]. This results in a thousandfold increase in the learning speed over the
classical gradient descent-based learning. Many simulation studies reported in
the literature show high performance of the randomized neural networks (RNNs)
which is compared to fully adaptable ones.

Parameters of the RNN hidden neurons are randomly selected from some
intervals according to any continuous sampling distribution and do not change.
However, how to select these intervals remains an open question. This issue is
considered to be one of the most important research gaps in the field of ran-
domized NN learning [5]. In applications of RNNs reported in literature the
ranges for random parameters are selected without scientific justification and
could not ensure the universal approximation property. Usually these intervals
are assigned as [−1, 1], regardless of the data distribution, complexity of the tar-
get function and type of an activation function. Some authors note the influence
of these intervals on the model performance and suggest to optimize them in
a more appropriate range for a specified application [6,7]. For example in [8]
the weights are chosen from a normal distribution with zero mean and some
specified variance that can be adjusted to obtain input-to-node values that do
not saturate the sigmoids. Then, the biases are computed to center each sigmoid
at one of the training points. In [9] authors combine unsupervised placement of
network nodes according to the input data density with subsequent supervised
or reinforcement learning values of the linear parameters of the network. In [10]
a supervisory mechanism of assigning random weights and biases is proposed
for the model generated incrementally by stochastic configuration algorithms.
The random parameters are generated adaptively selecting the scope for them,
ensuring the universal approximation property of the network.

In this work a new method of generating random NN parameters proposed
recently in [1] is investigated. The method generates weights and biases sepa-
rately depending on the data scope and complexity, and activation function type.
It ensures an adjustment of the random parameters to the target function and
better distribution of neurons in the input space when comparing to the previous
approaches with fixed intervals for random parameters. We test the new method
in terms of sensitivity to the number of neurons, noise in data and training data
deficit.

The rest of this paper is structured as follows. Section 2 introduces random-
ized learning algorithms in two versions: a classical one with fixed intervals for
random parameters and in the new one proposed in [1]. Section 3 reports experi-
mental results concerning sensitivity analysis for both versions of the randomized
learning. Conclusions are given in Sect. 4.

2 Randomized Learning Algorithms

In this work feedforward neural networks (FNNs) with a single hidden layer are
considered. The network has n inputs, one output and m hidden nodes with
activation functions h(x). The training set is Φ = {(xl, yl)|xl ∈ R

n, yl ∈ R, l =
1, 2, ..., N}.

Sensitivity Analysis of the Neural Networks Randomized Learning 53

In the first step of learning the parameters of each hidden node are gener-
ated by random: weights ai = [ai,1, ai,2, . . . , ai,n]T and biases bi, i = 1, 2, . . . ,m,
according to any continuous sampling distribution. Usually ai,j ∼ U(amin, amax)
and bi ∼ U(bmin, bmax).

In the second step the output matrix for the hidden layer is calculated:

H =

⎡
⎢⎣
h(x1)

...
h(xN)

⎤
⎥⎦ =

⎡
⎢⎣

h1(x1) . . . hm(x1)
...

...
...

h1(xN) . . . hm(xN)

⎤
⎥⎦ (1)

where hi(x) is an activation function of the i-th node, which is nonlinear piece-
wise continuous function. In this work a sigmoid activation function is used:

hi(x) =
1

1 + exp
(− (

aTi x + bi
)) (2)

The i-th column of H is the i-th hidden node output vector with
respect to inputs x1,x2, . . . ,xN . Note that hidden nodes map the data
from n-dimensional input space to m-dimensional feature space, and h(x) =
[h1(x), h2(x), . . . , hm(x)] is a nonlinear feature mapping. Because the parame-
ters ai and bi are fixed, the output matrix H is calculated only once and remains
unchanged.

The output weights connecting hidden nodes with output node can be
obtained by solving the following linear equation system:

Hβ = Y (3)

where β = [β1, β2, . . . , βm]T is a vector of output weights and Y =
[y1, y2, . . . , yN]T is a vector of target outputs.

A least mean squares solution of (3) can be expressed by β = H+Y, where
H+ is the Moore-Penrose generalized inverse of matrix H.

The network expresses a linear combination of the activation functions hi(x)
of the form:

ϕ(x) =
m∑
i=1

βihi(x) = h(x)β (4)

It is worth mentioning that the prototype of NN with randomization was
Random Vector Functional Link (RVFL) network proposed by Pao and Takefji
[3]. This solution has also direct links from the input layer to the output one. In
experimental part of this work we use RVFL as a comparative model.

In most of the works on randomized learning algorithms the intervals for
random parameters of hidden nodes are assigned as fixed regardless of the data
distribution and activation function type. Typically amin = bmin = −1 and
amax = bmax = 1. In [1] it was demonstrated that the intervals of the random
weights and biases are extremely important due to approximation properties of
the network. When they are set as [−1, 1] the neurons operate on the saturation
fragments of activation functions and accurate fitting to the strongly nonlinear

54 G. Dudek

function can be impossible. The method proposed in [1] distributes neurons
across the input space and adjusts the activation function slopes to the target
function steepness. According to this approach the weights of the i-th hidden
node are calculated as follows:

ai,k = ζk
Σi
n∑

j=1

ζj

(5)

where ζ1, ζ2, . . . , ζn ∼ U(−1, 1) are i.i.d. numbers and Σi is the sum of weights:
Σi = ai,1 + ai,2 + ... + ai,n, which is randomly selected from the interval:

|Σi| ∈
[
ln

(
1 − r

r

)
, s · ln

(
1 − r

r

)]
(6)

Two parameters in (6), r ∈ (0, 0.5) and s > 1, control the steepness of activation
functions. Specifically, they determine two boundary sigmoids between which
the activation functions are randomly generated.

Having weights ai,k, the bias for the i-th activation function is determined in
such a way that the inflection point of the sigmoid is set at some point x∗ ran-
domly generated inside the input space. When the input vectors x are normalized
so that they belong to the n-dimensional unit hypercube H = [0, 1]n ⊂ R

n, the
point x∗ is selected from H, thus x∗,1, x∗,2, . . . , x∗,n ∼ U(0, 1). The bias for the
i-th activation function is calculated from:

bi = −aTi x∗ (7)

From (7) we can see that the bias of the i-th hidden node is strictly dependent
on the weights of this node. When generating random parameters of the hidden
nodes, the weights and biases should be considered separately, because these
parameters have different meaning. Thus generating them both from the same
interval, usually [−1, 1], is incorrect. More detailed discussion on this topic and
derivations of the above equations can be found in [1].

In the next section we compare the new method of generating random param-
eters with the method based on the fixed intervals of [−1, 1] including RVFL
where additional direct connections between input and output layers are intro-
duced.

3 Simulation Study

This section reports some simulation results over the regression problem includ-
ing a two-variable function approximation task. A target function is defined as
follows:

g(x) = sin (20 · exp (x1)) · x2
1 + sin (20 · exp (x2)) · x2

2 (8)

where x1, x2 ∈ [0, 1].
This function is shown in Fig. 1. Note that a variation of function (8) is the

lowest around the corner [0, 0] and gradually increases towards the corner [1, 1].

Sensitivity Analysis of the Neural Networks Randomized Learning 55

The training set Φ contains 5000 points (xl, yl). The components of xl, xl,1 and
xl,2, are independently uniformly randomly distributed on [0, 1] and yl are dis-
torted by adding the uniform noise distributed in [−0.2, 0.2]. The testing set of
the size 100000 points is distributed uniformly in the input space and is not dis-
turbed by noise. It expresses the true target function, which is spanned between
−1.64 and 1.78.

Fig. 1. The target function and training points.

We test three randomized approaches for FNN learning described in the
previous section:

– RNN1: FNN with random parameters generated according to (5) and (7),
– RNN2: FNN with random parameters generated from the uniform distribu-

tion over [−1, 1],
– RNN3: RVFL network with random parameters generated as in RNN2 from

[−1, 1].

In all cases the sigmoidal activation function is used in the hidden nodes.
As a measure of accuracy in the comparative studies we use root mean squares
error (RMSE). For each experiment 100 independent trials are performed. The
r and s parameters for RNN1 were adopted from [1] as 0.1 and 5, respectively.
With such values good results were obtained for function (8) approximation.

In the first experiment the impact of the number of hidden nodes on the
approximation accuracy of the NNs is investigated. The number of hidden nodes
is changed from 100 to 2000 with step of 100. Figure 2 shows the RMSE distri-
butions using box-and-whisker plots for the investigated randomized learning
methods. As we can see from this figure, the training error for RNN1 con-
verges to the value of around 0.10. The test error for RNN1 has a minimum
(RMSE = 0.0645) for 600 nodes. Adding hidden nodes over 600 increases both

56 G. Dudek

RMSE and its variance. This exhibits an overtraining: too many steep nodes fit
into noisy data points. RMSE for RNN2 and RNN3, where random parameters
are chosen from [−1, 1], is incomparably greater than for RNN1. It is due to
using saturated parts of activation functions to compose strongly nonlinear tar-
get function. Adding new neurons does not improve the results. The pattern of
the training error distribution for different numbers of nodes is very similar to
the pattern of the test error distribution. In RNN2 and RNN3 cases, networks
are not prone to overfitting with an increase in the number of neurons. They
are strongly underfitted. This is exemplified in Fig. 3 (upper charts), where the
fitted surfaces for 2000 nodes are shown. For comparison, bottom charts show
the fitting surfaces constructed by RNN1 with 500 (good fitting) and 2000 (over-
fitting) nodes. In Table 1 the errors are shown for the optimal number of hidden
nodes. Note that RMSE for test data are above six times lower for RNN1 than
for RNN2 and RNN3.

Table 1. Errors for optimal number of neurons.

Approach #neurons RMSEtrn RMSEtst

RNN1 600 0.1119 ± 0.0012 0.0645 ± 0.0393

RNN2 2000 0.4307 ± 0.0001 0.4196 ± 0.0001

RNN3 2000 0.4304 ± 0.0001 0.4193 ± 0.0001

In the second experiment we test how the results are sensitive to the noise
disturbing data. The training data are generated from (8) and are distorted by
adding the uniform noise distributed in [−c, c]. The noise boundary c changes
from 0 to 1 with step of 0.1. It means that the noise level defined as the ratio
of the noise range to the target function range (which is 3.42) is from 0 to
about 58%. For each noise level 100 independent trials are performed for each
randomized NN. The number of hidden nodes was set to 500. Results in Fig. 4
are shown. The training and test errors for RNN1 gradually increase with the
noise level. The increase is faster for the training error. This is because the test
points expressing the true target function are not disturbed by noise, i.e. they
are the same for each noise level in training points. The relationship between the
percentage increase in the training error and the percentage noise level can be
estimated by the linear regression: ΔRMSE% = 32.38c% − 35.70. For test data
this equation is of the form: ΔRMSE% = 5.43c% − 81.77. In the case of RNN2
and RNN3, where the flat parts of the activation functions are mostly used by
neurons, the fitted surfaces are similar to each other for different noise level
in the training data. The training error increases with the noise level because
the training points move away from the fitted surface. In the same time, the
test error stays at the same level because neither test points nor fitted surfaces
change with the noise. But due to modeling using saturated parts of neurons the
test error in RNN2 and RNN3 is much bigger than in the case of RNN1.

Sensitivity Analysis of the Neural Networks Randomized Learning 57

Fig. 2. Impact of the hidden neurons number on the error.

Table 2. Errors for the noise level c = 1

Approach RMSEtrn RMSEtst

RNN1 0.5570 ± 0.0011 0.2222 ± 0.0747

RNN2 0.6985 ± 0.0011 0.4290 ± 0.0021

RNN3 0.6983 ± 0.0003 0.4282 ± 0.0003

In Table 2 the errors are shown for the noise level c = 1 corresponding to
the maximum considered disruption of data at level of 58%. In this case the test
RMSE for RNN1 increased to 0.2222 from 0.0572 for data without noise. For
RNN2 and RNN3 the test RMSE at the maximum noise level was about twice
higher than for RNN1.

58 G. Dudek

Fig. 3. The surfaces fitted to the training points.

In the third experiment we investigate the influence of the number of training
points on accuracy of the randomized NNs. Setting the number of hidden nodes
as 500 we change the number of training points from 500 to 5000 with the step
of 500. Figure 5 shows the results. For a smaller number of training points the
lower training errors are observed. Our 500 steep neurons in RNN1 are able to
fit better into a small number of points. But this small set of training points
does not reflect sufficiently the target function complexity. Deficit in training
points and flexible learning model lead to overfitting (see Fig. 6). This is a cause
of bigger test errors for smaller number of training points. Bigger training sets
lead to improvement in accuracy on the test set. For RNN2 and RNN3 the fitted
surface is not able to fit accurately to the training points (see Fig. 6), and the
training error only slightly improves with the number of training points. Due to
a poor fitting of the model to the training points, the test error is less sensitive
to the training points number when compared to RNN1 case. But in the RNN2
and RNN3 cases the error level is unacceptable high.

Sensitivity Analysis of the Neural Networks Randomized Learning 59

Fig. 4. Impact of the noise level on the error.

Fig. 5. Impact of the training points number on the error.

60 G. Dudek

Fig. 6. Fitted surfaces for 500 training points.

4 Conclusion

The way of generating random parameters of the randomized neural networks
is extremely important. Typically the random weights and biases are chosen
from the fixed interval of [−1, 1]. In such case, the activation functions of hid-
den nodes, which are used for construction the surface fitting data, are usually
incorrectly distributed in the input space having their saturated parts in it. Thus
they cannot approximate a highly nonlinear target function with required accu-
racy. This was confirmed in the experimental part of the work. Adding more flat
neurons to the network does not improve significantly the results. A randomized
network with flat neurons seems to be resistant to noise in the training data and
to training data deficit. But this cannot be taken seriously because it results
from a weak approximation capacity for complex functions. In contrast to the
typical approach of generating random parameters from the fixed interval, the
method where these parameters are generated in such a way that the slopes of
the activation functions are matched to the steepness of the target function and
the neurons are distributed across the input space according to the data arrange-
ment, brings more accurate results. The performance of the network depends on
the parameters controlling the slope of the activation functions (r and s) and
the number of hidden nodes. Too many steep hidden nodes leads to overfitting
which deteriorate generalization properties of the network. So the slope of neu-
rons as well as the neuron number should be adjusted to the target function
taking into account the noise level. When data includes high level of noise, the
training points move away from the target function and therefore its features are
invisible for the network. Also training data deficit makes the target function
blurry. In this case the error between rare training points increases, especially
when the activation functions are too steep. The solution to these problems is
the local fitting of neurons to the target function reflecting its local features.
This will be the subject of the future research.

Sensitivity Analysis of the Neural Networks Randomized Learning 61

References

1. Dudek, G.: Generating random weights and biases in feedforward neural networks
with random hidden nodes. Inf. Sci. 481, 33–56 (2019)

2. Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.W.: Feedforward neural networks with
random weights. In: Proceedings of the 11th IAPR International Conference Pat-
tern Recognition Methodology and Systems, vol. II, pp. 1–4 (1992)

3. Pao, Y.H., Takefji, Y.: Functional-link net computing: theory, system architecture,
and functionalities. IEEE Comput. 25(5), 76–79 (1992)

4. Principe, J., Chen, B.: Universal approximation with convex optimization: gimmick
or reality? IEEE Comput. Intell. Mag. 10, 68–77 (2015)

5. Zhang, L., Suganthan, P.N.: A survey of randomized algorithms for training neural
networks. Inf. Sci. 364–365, 146–155 (2016)

6. Husmeier, D.: Random Vector Functional Link (RVFL) networks. In: Neural Net-
works for Conditional Probability Estimation: Forecasting Beyond Point Predic-
tions. Perspectives in Neural Computing, Chap. 6, pp. 87–97. Springer, London
(1999). https://doi.org/10.1007/978-1-4471-0847-4 6

7. Li, M., Wang, D.: Insights into randomized algorithms for neural networks: prac-
tical issues and common pitfalls. Inf. Sci. 382–383, 170–178 (2017)

8. Ferrari, S., Stengel, R.F.: Smooth function approximation using neural networks.
IEEE Trans. Neural Networks 16(1), 24–38 (2005)

9. Gorban, A.N., Tyukin, I.Y., Prokhorov, D.V., Sofeikov, K.I.: Approximation with
random bases: Pro- et Contra. Inf. Sci. 364, 129–145 (2016)

10. Wang, D., Li, M.: Stochastic configuration networks: fundamentals and algorithms.
IEEE Trans. Cybern. 47(10), 3466–3479 (2017)

https://doi.org/10.1007/978-1-4471-0847-4_6

	Sensitivity Analysis of the Neural Networks Randomized Learning
	1 Introduction
	2 Randomized Learning Algorithms
	3 Simulation Study
	4 Conclusion
	References

