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Abstract. A random vector functional link network (RVFL) is widely
used as a universal approximator for classification and regression prob-
lems. The big advantage of RVFL is fast training without backpropaga-
tion. This is because the weights and biases of hidden nodes are selected
randomly and stay untrained. Recently, alternative architectures with
randomized learning are developed which differ from RVFL in that they
have no direct links and a bias term in the output layer. In this study,
we investigate the effect of direct links and output node bias on the
regression performance of RVFL. For generating random parameters of
hidden nodes we use the classical method and two new methods recently
proposed in the literature. We test the RVFL performance on several
function approximation problems with target functions of different na-
ture: nonlinear, nonlinear with strong fluctuations, nonlinear with linear
component and linear. Surprisingly, we found that the direct links and
output node bias do not play an important role in improving RVFL
accuracy for typical nonlinear regression problems.

Keywords: Random vector functional link network · Neural networks
with random hidden nodes · Randomized learning algorithms.

1 Introduction

A random vector functional link network (RVFL) is a type of feedforward neural
network (FNN) with a single hidden layer and direct links between input and
output layers. Unlike typical FNN, in RVFL the weights and biases of the hidden
nodes are selected randomly and stay fixed. The only parameters which are
learned are weights and biases of the output layer. Due to randomization in
RVFL we can avoid complicated and time-consuming gradient descent methods
for solving the optimization problem which is non-convex in typical FNNs. It
is commonly known that the gradient learning methods have many drawbacks
such as sensitivity to initial values of parameters, convergence to local minima,
vanishing/exploding gradients in deep neural structures, and usually additional
hyperparameters to tune. In RVFL the resulting optimization problem becomes
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convex and the output weights can be determined analytically by using a simple
standard linear least-squares method [1].

RVFL is extensively used for classification and regression problems due to its
adaptive nature and universal approximation property. Many simulation studies
reported in the literature show the high performance of the randomized models
which is compared to fully adaptable ones. Randomization which is cheaper than
optimization ensures faster training and simpler implementation.

RVFL is not the only FNN solution with randomization. Alternative ap-
proaches such as [2] and many other new solutions do not have direct links
between the input and output layers [3]. The effect of direct links as well as a
bias in the output layer on the RVFL performance in classification tasks was in-
vestigated in [4]. The basic conclusion of that work was that the direct link plays
an important performance enhancing role in RVFL, while the bias term in the
output neuron had no significant effect. In this work, we investigate the effect
of direct links and output node bias on the regression performance of RVFL.
For generating random parameters of hidden nodes we use the classical method
and two new methods recently proposed in the literature. We test the RVFL
performance on several function approximation problems with target functions
of different nature: nonlinear, nonlinear with strong fluctuations, nonlinear with
linear component and linear.

The remainder of this paper is structured as follows. In Section 2, we briefly
present RVFL learning algorithm and the decomposition of the function built
by RVFL. In Section 3, we describe three methods of generating weights and
biases of hidden nodes. Section 4 reports the simulation study and compares re-
sults for different RVFL configurations, different methods of random parameters
generation, and different regression problems. Finally, Section 5 concludes the
work.

2 Random Vector Functional Link Network

RVFL was proposed by Pao and Takefuji [5]. It was proven in [6] that RVFL
is a universal approximator for a continuous function on a bounded finite di-
mensional set with a closed-form solution. RVFL can be regarded as a single
hidden layer FNN built with a specific randomized algorithm. The RVFL archi-
tecture is shown in Fig. 1. Note that in addition to a hidden layer transforming
inputs nonlinearly, RVFL also has direct links connecting an input layer with
output nodes. The weights and biases of hidden nodes, ai,j , bi, respectively, are
randomly assigned and fixed during the training phase. The output weights, βi,
are analytically evaluated using a linear least-square method. This results in a
flat-net architecture for which only weights βi must be learned. The learning
problem, which is non-convex for the full learning of all parameters, becomes
convex in RVFL. So, the time-consuming gradient-based learning algorithms are
not needed, which makes the learning process much easier to implement and
extremely rapid.
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Fig. 1. RVFL architecture (random links in blue, direct links and output node bias in
green).

The learning algorithm of RVFL ia as follows. One output is considered,
m hidden nodes and n inputs. The training set is Φ = {(xl, yl)|xl ∈ Rn, yl ∈
R, l = 1, 2, ..., N} and the activation function of hidden nodes is h(x), which is
nonlinear piecewise continuous function, e.g. a sigmoid:

h(x) =
1

1 + exp (− (aTx + b))
(1)

1. Randomly generate hidden node parameters: weights ai = [ai,1, ai,2, . . . , ai,n]
T

and biases bi for all nodes, i = 1, 2, ...,m, according to any continuous sam-
pling distribution.

2. Calculate the hidden layer output matrix H:

H =

 h(x1)
...

h(xN )

 =

 h1(x1) . . . hm(x1)
...

...
...

h1(xN ) . . . hm(xN )

 (2)

where hi(x) is an activation function of the i-th node.
The i-th column of H is the i-th hidden node output vector with respect to in-
puts x1,x2, . . . ,xN . Hidden nodes map nonlinearly inputs from n-dimensional
input space to m-dimensional space. The output matrix H remains un-
changed because parameters of hidden nodes, ai and bi, are fixed.

3. Calculate the output weights:

β = [1XH]+Y (3)

where β = [β0, β1, ..., βn+m]T is a vector of output weights, 1 is an N × 1
one vector corresponding to an output node bias, X is a N×n input matrix,
Y = [y1, y2, ..., yN ]T is a vector of target outputs, and [.]+ is the Moore-
Penrose generalized inverse of matrix [.].

The above equation for β results from the following criterion for minimizing
the approximation error:

min ‖[1XH]β −Y‖ (4)

Admin
Podświetlony



4 G. Dudek

A function expressed by RVFL is a linear combination of inputs xi and
activation functions hi(x):

f(x) =

n∑
i=1

βixi +

m∑
i=1

βn+ihi(x) + β0 (5)

Note that the first component in (5) is linear and represents a hyperplane,
the second component expresses a nonlinear function and the last component
is a bias. These three components of function f(x) are depicted in Fig. 2. The
nonlinear component is a linear combination of hidden node activation functions
hi(x) (sigmoids in our case) which are also shown in this figure.

A natural question that arises is: are all these three components of function
f(x) necessary for an approximation of the target function? Is only a nonlinear
component not enough? In the experimental part of this work, we try to answer
these questions.
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Fig. 2. A example of RVFL function f(x) (left panel), its decomposition (middle panel)
and sigmoids of hidden nodes constructing a nonlinear component (right panel).

3 Generating Weights and Biases of Hidden Nodes

The key issue in FNN randomized learning is finding a way of generating the ran-
dom hidden node parameters to obtain a good projection space [7]. The standard
approach is to generate both weights and biases randomly with a fixed interval
from any continuous sampling distribution. The symmetric interval ensures a
universal approximation property for the functions which meet Lipschitz con-
dition [8]. The appropriate selection of this interval is a problem that has not
been solved as yet and is considered to be one of the major research challenges
in the area of FNN randomized learning [9], [10]. In many cases the interval is
selected as [−1, 1] without any justification, regardless of the problem solved,
data distribution, and activation functions type. In practical applications, the
optimization of this interval is recommended for better model performance [11],
[8], [3].
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In the experimental part of this work, we use three methods of generating
random parameters. One of them is a standard approach, where both weights
and biases of hidden nodes are generated uniformly from interval [−u, u]. A
bound of this symmetrical interval, u, is adjusted to the target function (TF).
This method of generating random parameters is denoted as Gs. Note that in
the right panel of Fig. 2 the sigmoids are randomly evenly distributed in the
input interval which is a correct solution. Unfortunately, the Gs method does
not ensure such even distribution (see [7]).

Another method (denoted as Gu in this work) was proposed in [12]. Due to
different functions of the hidden node parameters, i.e. weights express slopes of
the sigmoids and biases express their shifts, they should be generated separately,
not both from the same interval. According to Gu method, first, the weights ai,j
are selected randomly from U(−u, u) and then biases are determined as follows:

bi = −aTi x∗
i (6)

where x∗
i is one of the training point selected randomly (see [12] for other vari-

ants).

Determining biases from (6) ensures that the hidden nodes will be placed
in accordance with the input data density [13]. The Gu method ensures that
all sigmoids have their steepest fragments, which are most useful for modeling
TF fluctuations, inside the input hypercube as shown in the right panel of Fig.
2. In this way, Gu improves a drawback of Gs which can generate sigmoids
having their saturated fragments inside the input hypercube. These fragments
are useless for building a nonlinear fitted function. Moreover, in Gs, it is difficult
to adjust both parameters, weights and biases, when they are selected from the
same interval. Gu selects weights first and then calculates biases depending on
the weights and data distribution.

The third method of generating random parameters of hidden nodes ensures
sigmoids with uniformly distributed slope angles [14], [12]. This method is de-
noted as Gα in this work. In many cases Gα gives better performance of the
model than Gu, especially for highly nonlinear TFs (see [12] for comparison
of Gs, Gu and Gα). In the first step, Gα generates slope angles of sigmoids
|αi,j | ∼ U(αmin, αmax), where αmin ∈ (0◦, 90◦) and αmax ∈ (αmin, 90◦). The
bound angles, αmin and αmax, are tuned to the TF. For highly nonlinear TFs,
with strong fluctuations, only αmin can be adjusted, keeping αmax = 90◦. The
weights are calculated on the basis of the angles from:

ai,j = 4 tanαi,j (7)

Gα ensures random slopes between αmin and αmax for the multidimensional
sigmoids in each of n directions. The biases of the hidden nodes are calculated
from (6) to set the sigmoids inside the input hypercube depending on data
density.
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4 Experiments and Results

In this section, to asses the impact of the direct links and bias in the output
node on RVFL performance we consider the following RVFL configurations:

+dl+b – RVFL with direct links and output node bias,
+dl–b – RVFL with direct links and without output node bias,
–dl+b – RVFL without direct links and with output node bias,
–dl–b – RVFL without direct links and output node bias.

We use sigmoids as activation functions. The hidden node weights and biases
are generated using three methods described in Section 3:

Gs – the standard approach of generating both weights and biases from U(−u, u),
Gu – generating weights from U(−u, u) and biases according to (6),
Gα – generating slope angles of sigmoids |αi,j | ∼ U(αmin, αmax), then calculat-

ing weights from (7), and biases from (6).

The parameters of these methods as well as the number of hidden nodes
m were selected in grid search for each RVFL variant and TF from the sets:
m = {1, 2, ..., 10, 20, ..., 100, 200, ..., 1000}, u = {1, 2, ..., 10, 20, 50, 100} for 2-
dimensional data or u = {0.1, 0.2, ..., 1, 2, ..., 5} for 5 and 10-dimensional data,
αmin = {0, 15, ..., 75}, and αmax = {αmin + 15, αmin + 30, ..., 90}.

We test RVFL performance over several regression problems using TFs de-
fined as:

g(x) = exp

− n∑
j=1

(xj − 0.5)2

 (8)

g(x) = α

n∑
j=1

sin (20 · expxj) · x2j + δ · 3
n∑

j=1

xj (9)

where α and δ are 0/1 variables.
Function (8) is a simple nonlinear function shown in the left panel of Fig. 3.

The first component of function (9) is a highly nonlinear function shown in the
middle panel of Fig. 3. The second component is a hyperplane. The TF can be
composed of these both components if α = 1 and δ = 1 or of only one component
if α = 0 or δ = 0. The TF with both components is shown in the right panel of
Fig. 3. To asses the RVFL regression performance on TFs of different character
four types of TFs were used:

NL – nonlinear (8),
NLF – nonlinear with strong fluctuations, (9) with α = 1 and δ = 0,
NLF+L – nonlinear with fluctuations and a linear component, (9) with α = 1

and δ = 1,
L – linear, (9) with α = 0 and δ = 1.
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Fig. 3. Target functions and training points for n = 2.

The experiments were carried out for n = 2 and N = 5000, n = 5 and
N = 20000, and n = 10 and N = 50000. As an accuracy measure, we used root
mean squares error (RMSE). In each case, RFVL networks were trained 100
times and the final errors were calculated as the averages over 100 trials.

Tables 1–4 show RMSE for different TFs and RVFL variants. To confirm the
significance of error differences between RVFL without direct links and output
node bias (configuration –dl–b) and other RVFL configurations we used a two-
sided Wilcoxon signed-rank test. We performed the tests separately for Gs, Gu
and Gα. The null hypothesis was as follows: d = RMSE−dl−b−RMSEv, where
v is +dl + b,+dl − b or −dl + b, respectively, comes from a distribution with
zero median. It was assumed that p-value below 5% indicates a rejection of the
null hypothesis. The cases of the null hypothesis rejection are underlined in the
tables (i.e. the cases +dl+b, +dl–b or –dl+b for which the error was significantly
lower than for –dl–b).

Table 1. RMSE for NL.

RVFL variant n = 2 n = 5 n = 10

Gs +dl+b 7.50E-03 ± 9.39E-04 0.0121 ± 5.29E-04 0.0236 ± 4.72E-04
+dl–b 7.41E-03 ± 9.21E-04 0.0121 ± 5.33E-04 0.0236 ± 4.70E-04
–dl+b 7.30E-03 ± 9.42E-04 0.0121 ± 5.28E-04 0.0237 ± 4.46E-04
–dl–b 7.20E-03 ± 9.11E-04 0.0121 ± 5.22E-04 0.0237 ± 4.44E-04

Gu +dl+b 7.45E-03 ± 9.07E-04 0.0128 ± 5.05E-04 0.0227 ± 4.10E-04
+dl–b 7.38E-03 ± 9.14E-04 0.0128 ± 5.13E-04 0.0229 ± 4.21E-04
–dl+b 7.28E-03 ± 9.75E-04 0.0128 ± 5.16E-04 0.0227 ± 4.07E-04
–dl–b 7.20E-03 ± 9.95E-04 0.0128 ± 5.15E-04 0.0230 ± 4.23E-04

Gα +dl+b 7.47E-03 ± 9.39E-04 0.0130 ± 5.05E-04 0.0217 ± 4.11E-04
+dl–b 7.39E-03 ± 9.31E-04 0.0130 ± 5.10E-04 0.0219 ± 4.20E-04
–dl+b 7.27E-03 ± 9.53E-04 0.0129 ± 4.92E-04 0.0217 ± 4.06E-04
–dl–b 7.16E-03 ± 9.87E-04 0.0130 ± 4.98E-04 0.0219 ± 4.20E-04

From Tables 1–3 can be seen that for nonlinear functions all RVFL configu-
rations (+dl+b, +dl–b, –dl+b and –dl–b) produce very similar results. Even in
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Table 2. RMSE for NLF.

RVFL variant n = 2 n = 5 n = 10

Gs +dl+b 0.0414 ± 0.0055 0.2268 ± 0.0122 0.2203 ± 0.0098
+dl–b 0.0414 ± 0.0055 0.2268 ± 0.0122 0.2203 ± 0.0098
–dl+b 0.0415 ± 0.0056 0.2268 ± 0.0122 0.2203 ± 0.0098
–dl–b 0.0415 ± 0.0056 0.2268 ± 0.0122 0.2203 ± 0.0098

Gu +dl+b 0.0378 ± 0.0028 0.2268 ± 0.0121 0.2203 ± 0.0098
+dl–b 0.0378 ± 0.0028 0.2268 ± 0.0121 0.2203 ± 0.0098
–dl+b 0.0379 ± 0.0027 0.2268 ± 0.0121 0.2203 ± 0.0098
–dl–b 0.0379 ± 0.0027 0.2268 ± 0.0121 0.2203 ± 0.0098

Gα +dl+b 0.0335 ± 0.0021 0.1702 ± 0.0111 0.2026 ± 0.0099
+dl–b 0.0335 ± 0.0021 0.1702 ± 0.0111 0.2026 ± 0.0099
–dl+b 0.0336 ± 0.0022 0.1704 ± 0.0111 0.2030 ± 0.0099
–dl–b 0.0336 ± 0.0022 0.1704 ± 0.0111 0.2030 ± 0.0099

Table 3. RMSE for NLF+L.

RVFL variant n = 2 n = 5 n = 10

Gs +dl+b 0.0375 ± 0.0044 0.0887 ± 0.0030 0.0802 ± 0.0030
+dl–b 0.0375 ± 0.0044 0.0887 ± 0.0030 0.0802 ± 0.0030
–dl+b 0.0374 ± 0.0043 0.0888 ± 0.0030 0.0803 ± 0.0030
–dl–b 0.0374 ± 0.0043 0.0888 ± 0.0030 0.0803 ± 0.0030

Gu +dl+b 0.0351 ± 0.0019 0.0887 ± 0.0030 0.0802 ± 0.0030
+dl–b 0.0351 ± 0.0019 0.0887 ± 0.0030 0.0802 ± 0.0030
–dl+b 0.0351 ± 0.0019 0.0888 ± 0.0030 0.0802 ± 0.0030
–dl–b 0.0351 ± 0.0019 0.0888 ± 0.0030 0.0802 ± 0.0030

Gα +dl+b 0.0307 ± 0.0018 0.0706 ± 0.0033 0.0750 ± 0.0028
+dl–b 0.0307 ± 0.0018 0.0706 ± 0.0033 0.0754 ± 0.0028
–dl+b 0.0308 ± 0.0018 0.0707 ± 0.0033 0.0762 ± 0.0028
–dl–b 0.0308 ± 0.0018 0.0707 ± 0.0033 0.0763 ± 0.0028

Table 4. RMSE for L.

RVFL variant n = 2 n = 5 n = 10

Gs +dl+b 2.61E-03 ± 1.10E-03 1.89E-03 ± 5.40E-04 1.52E-03 ± 3.80E-04
+dl–b 2.62E-03 ± 1.09E-03 1.89E-03 ± 5.40E-04 1.70E-03 ± 4.10E-04
–dl+b 3.97E-03 ± 9.87E-04 1.98E-03 ± 5.20E-04 2.20E-03 ± 4.30E-04
–dl–b 4.08E-03 ± 9.63E-04 1.99E-03 ± 5.20E-04 2.33E-03 ± 3.46E-04

Gu +dl+b 2.61E-03 ± 1.10E-03 1.89E-03 ± 5.40E-04 1.52E-03 ± 3.80E-04
+dl–b 2.72E-03 ± 1.05E-03 1.89E-03 ± 5.40E-04 1.70E-03 ± 4.10E-04
–dl+b 3.38E-03 ± 9.94E-04 1.93E-03 ± 5.26E-04 2.02E-03 ± 4.45E-04
–dl–b 3.78E-03 ± 1.04E-03 1.93E-03 ± 5.32E-04 2.26E-03 ± 3.77E-04

Gα +dl+b 2.61E-03 ± 1.10E-03 1.89E-03 ± 5.39E-04 1.72E-03 ± 4.14E-04
+dl–b 2.73E-03 ± 1.07E-03 2.53E-03 ± 5.27E-04 3.94E-03 ± 4.25E-04
–dl+b 3.51E-03 ± 1.05E-03 4.87E-03 ± 6.33E-04 6.69E-03 ± 3.76E-04
–dl–b 3.78E-03 ± 9.96E-04 4.96E-03 ± 6.20E-04 6.73E-03 ± 3.94E-04
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the case of NLF+L where TF contains a significant linear component. Only in
four cases out of 81, the errors were slightly lower than for corresponding –dl–b
configurations. These cases are: Gu +dl+b for NL, Gu –dl+b for NL, Gα +dl+b
for NLF+L, and Gα +dl–b for NLF+L. Note that for 2-dimensional NL, –dl–b
configurations gave lower errors than other configurations for each method of
generating random parameters.

The optimal numbers of hidden nodes (averaged over 100 trials in each case)
are shown in Table 5. Note that for NL there is no difference in the optimal
number of nodes between RVFL configurations. Differences appear for multidi-
mensional TFs with fluctuations, NLF and NLF+L, when random parameters
are generated using Gs or Gu. In these cases, the configurations with direct links
(+dl) need less hidden nodes than those without direct links (–dl). This is maybe
because the hyperplane introduced by the direct links is useful for modeling the
linear parts of the TFs (see the linear TF regions near the corner x = (0, 0, ..., 0)
in the middle and right panels of Fig. 3). We can see from Table 5 that for mul-
tidimensional TFs with fluctuations Gα needs more nodes than Gs and Gu. But
it was observed that also with a small number of nodes, Gα still outperformed
Gs and Gu in accuracy. Adding nodes led to decreasing in error for Gα, while for
Gs and Gu increasing in error was observed at the same time [12]. This can be
related to overfitting caused by the steeper nodes generated by Gs and Gu then
by Gα, where the node slope angles are distributed uniformly. This phenomenon
needs to be explored in detail on other TFs.

Table 5. Optimal numbers of hidden nodes.

NL NLF NLF+L L
n 2 5 10 2 5 10 2 5 10 2 5 10

Gs +dl+b 20 200 987 849 41 48 804 15 23 1.35 1.07 1.10
+dl–b 20 200 988 849 41 51 809 17 25 1.62 1.04 1.19
–dl+b 20 200 983 852 49 61 801 24 39 5.18 5.98 15.59
–dl–b 20 200 982 852 50 62 800 25 40 6.62 7.07 20.80

Gu +dl+b 19 232 963 638 44 53 476 17 26 1.14 1.08 1.17
+dl–b 20 233 968 637 45 54 472 19 25 1.70 1.05 1.02
–dl+b 20 228 968 641 51 58 483 26 34 4.12 5.58 13.50
–dl–b 20 226 973 639 53 60 480 28 36 5.81 6.63 19.90

Gα +dl+b 20 199 898 395 941 940 314 927 929 1.02 1.10 1.06
+dl–b 20 200 901 395 941 940 315 930 930 1.63 5.21 25.87
–dl+b 20 200 898 391 940 941 314 927 940 4.33 27.00 83.20
–dl–b 20 200 901 391 940 941 314 929 940 5.69 30.00 82.90

Table 4 shows the results for linear TF. This TF can be modeled with only
direct links and bias. So, the hidden layer is unnecessary. Note that the optimal
number of hidden nodes for the +dl+b configurations is around one (see Table
5) which is the minimum value of m in our tests. The results for configurations
without direct links (–dl) for L are usually much worse than those with direct
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links. Only for variants Gs and Gu at n = 5 the errors were at a similar level for
all network configurations. In the –dl configurations the linear TF is modeled
with sigmoids and overfitting is a real threat when training data is noisy as in
our case. Using only direct links and bias prevents overfitting for linear TFs. But
it should be noted that for linear TFs we do not need to use NNs. Simple linear
regression is a better choice. Moreover, linear TFs are rare in practice.

Note that for highly nonlinear TFs such as NLF and NLF+L, Gα ensures
much more accurate fitting than other methods of generating random parameters
(see Tables 2 and 3). For low dimensional TFs with fluctuations, Gu was more
accurate than Gs. This is because, for low n, Gs generates many sigmoids that
are saturated in the input hypercube and thus they are useless for modeling
fluctuations. This phenomenon decreases with n (see [12]).

5 Conclusion

In this work, we investigate whether direct links and an output node bias are
necessary in RVFL for regression problems. RVFL can be decomposed into a
linear component represented by the direct links, a nonlinear component rep-
resented by the hidden nodes and a bias term. The experimental study showed
that nonlinear target functions can be modeled with only nonlinear component.
The fitting errors with and without direct links and bias in these cases were at a
similar level. The linear component and bias term, if needed, can be replaced by
hidden nodes. The direct links seem to be useful for modeling the target func-
tions with linear regions. In our simulations modeling of such functions, NLF
and NLF+L, required less hidden nodes when direct links were also used. This
issue requires further research with target functions of different nature.

In our study, we used three methods of generating random parameters of
hidden nodes. The most sophisticated method proposed recently in the literature,
Gα, was the most accurate especially for highly nonlinear target functions.
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