
Improving Randomized Learning
of Feedforward Neural Networks

by Appropriate Generation of Random
Parameters

Grzegorz Dudek(B)

Electrical Engineering Department, Czȩstochowa University of Technology,
Czȩstochowa, Poland

dudek@el.pcz.czest.pl

Abstract. In this work, a method of random parameters generation for
randomized learning of a single-hidden-layer feedforward neural network
is proposed. The method firstly, randomly selects the slope angles of the
hidden neurons activation functions from an interval adjusted to the tar-
get function, then randomly rotates the activation functions, and finally
distributes them across the input space. For complex target functions
the proposed method gives better results than the approach commonly
used in practice, where the random parameters are selected from the
fixed interval. This is because it introduces the steepest fragments of the
activation functions into the input hypercube, avoiding their saturation
fragments.

Keywords: Function approximation · Feedforward Neural Networks ·
Neural networks with random hidden nodes ·
Randomized learning algorithms

1 Introduction

Feedforward neural networks (FNNs) learn from data by iteratively tuning their
parameters, weights and biases, using some form of gradient descent method.
Due to the layered structure of the network, the learning process is complicated,
inefficient and time consuming. The network converges to the local optima, and
the final result is very sensitive to the initial values of parameters.

Some of these drawbacks can be avoided by using a randomized learning
approach. In this case the weights and biases of the hidden nodes are randomly
selected from given intervals according to any continuous sampling distribution
and remain fixed. The only parameters that are learned are the weights between
the hidden layer and the output layer. The resulting optimization task becomes
convex and can be formulated as a linear least-squares problem [1]. So, the prob-
lem can be considered as a linear one and the gradient descent method is not

Supported by Grant 2017/27/B/ST6/01804 from the National Science Centre, Poland.

c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWANN 2019, LNCS 11506, pp. 517–530, 2019.
https://doi.org/10.1007/978-3-030-20521-8_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20521-8_43&domain=pdf
http://orcid.org/0000-0002-2285-0327
https://doi.org/10.1007/978-3-030-20521-8_43


518 G. Dudek

needed to solve it. The output weights can be analytically determined through a
simple generalized inverse operation of the hidden layer output matrices. Due to
the non-iterative nature, the randomized learning of FNNs can be much faster
than classical gradient descent-based learning. In addition, it is easy to imple-
ment in any computing environment.

It was theoretically proven that FNN is a universal approximator for a contin-
uous function on a bounded finite dimensional set, when the random parameters
are selected from a uniform distribution within a proper range [2]. Husmeier
showed that the universal approximation property also holds for a symmetric
interval for random parameters if the function to be approximated meets the
Lipschitz condition [3]. However, how to select the range for the random param-
eters remains an open question. It is well known that this range has a significant
impact on the performance of the network. This has already been noted in early
works on randomized learning algorithms, e.g. authors of [4] and [3] recom-
mended optimizing the interval for a specified task. In [5] a series of simulations
were carried out to illustrate the significance of the range of random parameters
on modeling performance. The authors empirically showed that a widely used
setting for this range, usually [−1, 1], is misleading because the network is unable
to model nonlinear maps, no matter how many training samples are provided
or what sized networks are used. Although, they observed that for some specific
ranges the network performs better in both learning and generalization than for
other ranges, they do not give any tips on how to select an appropriate range.

In [6] the problem of the random parameters range is investigated by intro-
ducing a scaling factor to control the ranges of the randomization: [−s, s] is used
for weights and [0, s] for biases. The authors observed that the commonly adopted
approach where s = 1 may not lead to optimal performance. The network per-
forms poorly when the range of the random parameters becomes either too large
or too small. Setting small s to increase the discrimination power of the features
in the hidden neurons may cause more neurons to saturate. On the other hand,
setting large s to reduce the possibility of neuronal saturation may reduce the
discrimination power of the features in the hidden neurons. To find the optimal
symmetric interval for weights and biases in [7] a stochastic configuration algo-
rithm is used. Random parameters are generated with an inequality constraint
adaptively selecting the range for them, ensuring the universal approximation
property of the model.

In [8] it was noted that if the network nodes are chosen at random and not
subsequently trained, they are usually not located in accordance with the den-
sity of the input data. Consequently, the training of linear parameters becomes
ineffective at reducing errors in the nonlinear part of the network. Moreover, the
number of nodes needed to approximate a nonlinear map grows exponentially,
and the model is very sensitive to the random parameters. To improve the effec-
tiveness of the network, the unsupervised placement of network nodes according
to the input data density could be combined with the subsequent supervised or
reinforcement learning values of the linear parameters of the approximator.



Improving Randomized Learning of Feedforward Neural Networks 519

Despite intensive research in recent years into randomized learning of FNNs,
there are still several open problems which need to be addressed, such as how
to generate random parameters. This issue remains untouched in the literature
and is considered to be one of the most important research gaps in the field of
randomized algorithms for training NNs [9,10]. In many practical applications
in classification or regression problems the ranges are selected as fixed without
scientific justification, typically [−1, 1], regardless of the data and activation
function type.

Recently, in [11] a new method of random parameters generation was pro-
posed. The formulas for weights and biases were derived assuming that the steep-
est fragments of the activation functions are located in the input space region
and their slopes are adjusted to the target function complexity. This method of
generating random parameters allows us to control the generalization degree of
the model and leads to an improvement in the approximation performance of
the network.

This work follows on from [11]. Here we propose an alternative way of initially
setting the activation functions for single-hidden-layer FNN, where we randomly
determine their slope angles and rotations in space. Instead of selecting the
weights and biases from the assumed interval, we randomly select the slope
angles from the interval adjusted to the target function, and then randomly
rotating the activation functions and shifting them into the input hypercube,
we calculate weights and biases. As shown in Sect. 3, the proposed method gives
much better results than the standard approach with fixed intervals for random
parameters. It is also more intuitive than the method proposed in [11] as it has
parameters which are easily interpreted.

2 Generating Random Parameters of Hidden Nodes

For brevity, we use the following acronyms:

CSs - constructional sigmoids, i.e. the set of sigmoid activation functions of
hidden nodes whose linear combination forms the function fitting data,
II - input interval,
FF - fitted function (curve or surface) constructed by FNN,
TF - target function.

In this section we analyze how the random parameters affect the approxima-
tion abilities of FNN. The standard approach for generating random parameters
is analyzed and a new approach is proposed. We consider a single-hidden-layer
FNN with one output, m hidden neurons and n inputs. A sigmoid is used as an
activation function. The output weights are calculated using the Moore-Penrose
pseudo-inverse operation.

To illustrate the results, let us use a single-variable TF in the form:

g(x) = sin (20 · exp(x)) · x2 (1)

where x ∈ [0, 1].



520 G. Dudek

This function is shown by the dashed line in the upper chart of Fig. 1. As can
be seen in this figure, variation of TF (1) increases along the II = [0, 1]. At the
left bound of the II the TF is flat, while towards the right bound its fluctuations
increase.

For NN learning we generate a training set containing 5000 points (xl, yl),
where xl are uniformly randomly distributed on [0, 1] and yl are calculated from
(1) and then distorted by adding the uniform noise distributed in [−0.2, 0.2]. A
test set of the same size is created similarly but without noise. The outputs are
normalized in the range [−1, 1].

We consider the sigmoid activation function for hidden nodes:

h(x) =
1

1 + exp(−(a · x + b))
(2)

where a is a weight deciding about the slope of the sigmoid (dh/dx) and b is a
bias shifting it along the x-axis.

The set of sigmoids included in the hidden neurons are the basis functions
whose linear combination forms the function fitting data. For nonlinear TF this
set should deliver the nonlinear parts of sigmoids (avoiding their saturated frag-
ments) to model the TF with required accuracy. The sigmoids should also be dis-
tributed properly in the II so that their steep fragments correspond to the steep
fragments of the TF. Are these requirements met when the sigmoids weights and
biases are both generated randomly from the typical interval [−1, 1]?

The left panel of Fig. 1 shows results of function (1) fitting when using FNN
with 100 hidden nodes whose parameters a and b are both selected randomly
from [−1, 1]. The upper chart shows the training points and the FF (solid line).
The CSs are shown in the middle chart and CSs multiplied by the output weights
are shown in the bottom chart. Note that CSs are flat in the II, which is shown
as a gray field, and many of them have their steepest parts, which are around
their inflection points (sigmoid value for the inflection point is 0.5), outside the
II. Thus, the CSs slopes and their distribution in II do not correspond to TF
fluctuations. This results in a very weak fitting. This simple example leads to the
conclusion that random parameters of hidden nodes cannot be generated from
the fixed interval [−1, 1]. The intervals for them should, instead, be estimated
taking into account the II and the TF features, such as fluctuations.

2.1 The Idea of the Proposed Method

Instead of determining the interval for weights a, we determine the interval for
the slope angles of CSs. By the slope angle α we mean the angle between a
tangent line to the sigmoid at its inflection point and the x-axis. Using the slope
angles instead of the weights is more intuitive because we can imagine without
any effort a sigmoid having slope angle α, but it is hard to imagine a sigmoid
having the weight a. So, it is clear to us what CSs for α ∈ [30◦, 60◦] look like,
and we have no idea what CSs for a ∈ [2.31, 6.93] look like. In fact, they look
similar because these are corresponding intervals.



Improving Randomized Learning of Feedforward Neural Networks 521

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.5

0

0.5

1

y

RMSE = 0.2843

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.5

0

0.5

1

y

RMSE = 0.01184

Fig. 1. Fitted curve (upper panel), CSs (middle panel) and weighted CSs (bottom
panel) for the standard method, a, b ∈ [−1, 1] (left panel), and the proposed method,
αmin = 30◦ (right panel).

The weight a translates nonlinearly into the slope angle. To find the relation-
ship between them, it should be noted that the derivative of a sigmoid at the
inflection point is equal to tanα:

ah(x)(1 − h(x)) = tan α (3)

Setting this sigmoid in such a way that its inflection point is in x = 0 we get:

a
1

1 + exp(−(a · 0 + 0))

(
1 − 1

1 + exp(−(a · 0 + 0))

)
= tan α (4)

From (4) we achieve:
a = 4 tan α (5)

Note that for a typical interval for a, i.e. [−1, 1] we get α ∈ [−14◦, 14◦],
so rather flat CSs. Note also that selecting a uniformly from a certain interval
(typical case) we get nonlinearly distributed angles α, according to the tangent
function. We propose in this work instead of selecting weights a for CSs, ran-
domly selecting the slope angles α for them from the interval:

Γ = (−90◦,−αmin) ∪ (αmin, 90◦) (6)

where αmin ∈ [0◦, 90◦] is a limit angle adjusted to the TF. For lower value of
αmin we have both flat and steep sigmoids in the set of CSs. When increasing



522 G. Dudek

αmin we generate more steep sigmoids instead of flat ones. Intuitively, functions
with strong fluctuations require larger angle αmin.

Having randomly selected slope angles α for CSs we can calculate weights a
for them from (5). Now we can focus on the biases b, which decide about the
sigmoids shifts. We would like to have the steep fragments of CSs inside the
II. So, let us set CSs inflection points inside the II at the points x∗ which are
randomly selected from the II. For the i-th sigmoid from the CSs set and any
point x∗

i selected for it from the II we obtain:

1
1 + exp(−(aix∗

i + bi))
= 0.5 (7)

After transformations we obtain:

bi = −aix
∗
i (8)

So the bias of the sigmoid strictly depends on its weight. Selecting x∗
i uni-

formly from the II we get uniformly distributed CSs in the II.
The right panel of Fig. 1 shows the results of function (1) fitting when using

the proposed method to determine the weights and biases. The limit slope angle
was selected as αmin = 30◦. This means that the weights are from the interval
(−∞,−2.31)∪ (2.31,∞). But note that we do not uniformly select weights from
this interval. If that were the case, then most of them would have high values
corresponding to angles close to 90◦. Instead, we select the angles randomly
from the uniform distribution on (6), and then calculate weights. Compare the
right panel of Fig. 1 with the left one and note the completely different CSs
distribution and slopes resulting in a pretty good fit.

2.2 Multidimensional Case

The idea of random parameters generation is now expanded for the multi-
dimensional case. Let us consider a multi-dimensional sigmoid S of the form:

h(x) =
1

1 + exp (− (aTx + b))
(9)

which has one of its inflection points, point P , in the origin of the Cartesian
coordinate system, i.e. in O = (0, 0, ..., 0). (The sigmoid inflection points are all
points for which h(x) = 0.5). Let T be the tangent hyperplane to the sigmoid
at point P . This hyperplane takes the form:

a′
1x1 + ... + a′

nxn + a′
0y + b′ = 0 (10)

where xi are n independent variables and y is a dependent variable. A normal
vector to this hyperplane is n = [a′

1, ..., a
′
n, a′

0]
T . Let α ∈ (0◦, 90◦) be an angle

between the normal vector n and the unit vector in the direction of the y-axis:
u = [0, ..., 0, 1]T (see Fig. 2). The vector u is normal for a hyperplane containing
all x-axes. So, α is also an angle between this hyperplane and T , and decides



Improving Randomized Learning of Feedforward Neural Networks 523

Fig. 2. Slope angle α as an angle between the normal vector n and the unit vector u.

about the slope of the sigmoid. When α is near 0◦ we get flat sigmoid; when α
is near 90◦ we get very steep sigmoid.

The cosine of this angle is expressed as:

cos α =
u · n

‖u‖‖n‖ =
0 · a′

1 + ... + 0 · a′
n + 1 · a′

0

1 · √
(a′

1)2 + ... + (a′
n)2 + (a′

0)2
=

a′
0√

(a′
0)2 + ... + (a′

n)2
(11)

From this equation we obtain:

a′
0 = ±

√
cos2 α

1 − cos2 α
((a′

1)2 + ... + (a′
n)2) = ±

√
(a′

1)2 + ... + (a′
n)2

tan α
(12)

where cos α �= 1, tan α �= 0, i.e. α �= 0.
Now we can construct the hyperplane T inclined to the hyperplane containing

all x-axes at an angle of α, passing through point P and randomly rotated around
the y-axis. To do so, first we assume α ∈ (0◦, 90◦). Then, we generate randomly
the first n components of the normal vector n: a′

1, ..., a
′
n. Finally, we calculate

its last component from (12). Note that this hyperplane defines the random
rotation of the sigmoid around the y-axis and also its slope angle, which is α. It
is convenient to express hyperplane T in the form:

y = −a′
1

a′
0

x1 − ... − a′
n

a′
0

xn + 0.5 (13)

We achieve this equation from (10) assuming that T passes through P =
(0, ..., 0, 0.5), so the intercept term must be 0.5.

Having randomly rotated a tangent hyperplane to sigmoid S, we are looking
for weights ak. A partial derivative of S with respect to xk is:

∂h(x)
∂xk

= akh(x)(1 − h(x))

= ak
1

1 + exp(−(aTx + b))

(
1 − 1

1 + exp(−(aTx + b))

) (14)



524 G. Dudek

Sigmoid S passes through point P , so b must be 0. Derivative (14) in P ,
where x1, ..., xn = 0 and b = 0, is:

∂h(P )
∂xk

=
1
4
ak (15)

A partial derivative of hyperplane (13) with respect to xk is −a′
k/a′

0. Because
T is tangent to sigmoid S in P , their derivatives in P are the same, so: 1/4 ·ak =
−a′

k/a′
0, and finally:

ak = −4
a′
k

a′
0

(16)

This equation expresses the relationship between the sigmoid weights and the
normal vector to the tangent hyperplane defining the sigmoid slope and rotation.
We propose to select the slope angles for CSs from the interval:

Δ = (αmin, 90◦) (17)

where αmin ∈ [0◦, 90◦] is a limit angle adjusted to the TF.
Having α for the sigmoid, we determine its random orientation (rotation)

selecting randomly from any symmetric interval n first components of the normal
vector n, and calculating the last one from (12). Repeating this for each sigmoid
from the CSs set, we achieve a set of CSs randomly rotated around the y-axis,
having a random slope angle greater than αmin. Finally, we distribute the CSs
into the input space. To do so, for each i-th sigmoid we randomly select point
x∗
i from the input space and shift the sigmoid in such a way that its inflection

point is in x∗
i . Thus:

1
1 + exp(−(ai,1x∗

i,1 + ... + ai,nx∗
i,n + bi))

= 0.5 (18)

Hence:
bi = −ai,1x

∗
i,1 − ... − ai,nx∗

i,n (19)

Note that the biases of the hidden nodes are not selected from a certain
interval, as they are in the typical approach, but they are dependent on the
node weights. Equation (19) ensures the distribution of CSs in the input space
according to the data distribution.

2.3 Discussion

The proposed method of generating random parameters of hidden nodes ensures
that the steep fragments of CSs are put inside the input space. The input
space is an n-dimensional hypercube H = [xmin 1, xmax 1] × [xmin 2, xmax 2] × ... ×
[xminn, xmaxn], where xmin k and xmax k are the lower and upper bounds, respec-
tively, for data in the dimension k. In most cases it is convenient to normalize all
input variables into the range [0, 1], so the input hypercube is H = [0, 1]n ⊂ R

n.



Improving Randomized Learning of Feedforward Neural Networks 525

The steepness of CSs is controlled by the slope angle αmin, i.e. the CSs
generated have a slope angle from αmin to 90◦. If we want to limit the maximum
value of the slope angle, we can use αmax > αmin as an upper bound for α:

Δ = (αmin, αmax) (20)

Both parameters αmin and αmax should be adjusted to TF, e.g. in the cross-
validation, such as the number of hidden nodes m. The number of hidden nodes
depends on the TF as well. More complex TFs need more neurons to get sufficient
approximation accuracy. To minimize the computational effort in the hyperpa-
rameters selection phase, we can consider fixed αmin = 0◦ and αmax = 90◦ and
only search for m. If this does not bring satisfactory results we can also search
for αmin assuming fixed αmax = 90◦. Finally, when this is still unsatisfactory we
can also search for αmax.

The CS rotation is determined by the normal vector to the tangent hyper-
plane T . Its first n components are selected randomly, independently and uni-
formly from the same interval, which should be symmetrical, i.e. [−d, d]. In such
a case each rotation is just as likely. The interval limit value d is not important.
We recommend the interval for a′

k selection as [−1, 1]. The last component of
the normal vector, a′

0, is calculated from (12) to ensure the slope of the CSs at
an angle of α. The sign for a′

0 is selected randomly.
In the bias determination step we select points x∗ from hypercube H and

then shift the sigmoids to these points. To avoid shifting CSs to the empty region
without data, it is reasonable to shift them to the points from the training set.
In such a case, points x∗ are the randomly selected training points. This ensures
that all CSs have their steep fragments in the regions containing data. Another
way of choosing points x∗ is to group training points into m clusters and take
the prototypes p of these clusters (centroids) as x∗.

In this work, sigmoids are considered as activation functions of the hidden
nodes. But similar considerations can be made for other types of activation func-
tions, such as Gaussian, softplus, sine and others (see [11], where an alternative
method of random parameters generation was proposed and different activation
functions were considered).

The procedure of generating the random parameters of FNNs described above
is summarized in Algorithm 1.

3 Simulation Study

The proposed method of selecting random parameters for FNN is illustrated by
several examples. The first one concerns a single-variable function approxima-
tion, where TF is in the form:

g(x) = 0.2e−(10x−4)2 + 0.5e−(80x−40)2 + 0.3e−(80x−20)2 (21)



526 G. Dudek

Algorithm 1. Generating Random Parameters of FNNs
Input:

Number of hidden nodes m
Number of inputs n
Input hypercube H
Training set Φ (optionally)
Set of prototypes {pi}i=1,...,m (optionally)

Output:

Weights A =

⎡
⎢⎣

a1,1 . . . am,1

...
. . .

...
a1,n . . . am,n

⎤
⎥⎦

Biases b = [b1, . . . , bm]

Procedure:

Set αmin = 0◦ or choose αmin ∈ [0◦, 90◦]
Set αmax = 90◦ or choose αmax ∈ [αmin, 90◦]
for i = 1 to m do

Choose randomly α ∼ U(αmin, αmax)
Choose randomly i.i.d. a′

1, . . . , a
′
n ∼ U(−1, 1)

Calculate

a′
0 = (−1)c

√
(a′

1)
2 + ... + (a′

n)2

tanα

where c ∼ U{0, 1}
Calculate

ai,k = −4
a′
k

a′
0

for k = 1, 2, ..., n

Choose randomly x∗ = [x∗
1, ..., x

∗
n] from H

or set x∗ = xj ∈ Φ, where j ∼ U{1, 2, . . . , N}
or set x∗ = pi, where pi is a prototype of the i-th

cluster of x ∈ Φ
Calculate

bi = −
n∑

k=1

ai,kx∗
k

end for

The training set contains 1000 points (xl, yl), where xl are uniformly ran-
domly distributed on [0, 1] and yl are calculated from (21). A test set of size 300
is generated from a regularly spaced grid on [0, 1].

The left panel of Fig. 3 shows root-mean-square error (RMSE) while searching
for the number of hidden nodes m and αmin in 10-fold cross-validation procedure
(αmax was set as 90◦). The lowest RMSE (1.34·10−6) was achieved for αmin = 85
and m = 320. The RMSE on the test set was 9.35 ·10−7 at the optimal values of



Improving Randomized Learning of Feedforward Neural Networks 527

the hyperparameters. When using the standard method of random parameters
generation, i.e. the weights and biases selected from the interval [−1, 1], the test
RMSE was above 0.1 regardless of the number of neurons. FFs for the proposed
and standard methods of random parameters generation are shown in the right
panel of Fig. 3 (500 nodes were used for the standard method). Note that the
standard method is not able to fit the TF. This is because CSs are too flat in
the II.

0
0

100

0.05

200

R
M

S
E

m

0
300 20

min

40

0.1

400 60
80500 0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

Test points
FF, proposed method
FF, standard method

Fig. 3. TF (21) fitting using the proposed method: RMSE in the grid search (left panel)
and fitted curves (right panel).

In the second example we use two-variable TF in the form:

g(x) = sin (20ex1) · x2
1 + sin (20ex2) · x2

2 (22)

The training set contains 5000 points (xl, yl), where both components of xl

are independently uniformly randomly distributed on [0, 1] and yl are distorted
by adding the uniform noise distributed in [−0.2, 0.2]. The test set containing
100000 points is distributed in the input space on a regularly spaced grid and
is not disturbed by noise. The outputs are normalized in the range [−1, 1]. The
TF and training points are shown in Fig. 4. Note that variation of the TF is the
lowest in the corner (0, 0) and increases towards the corner (1, 1).

The left panel of Fig. 5 shows RMSE while searching for the hyperparameters
values in a 10-fold cross-validation procedure. In this figure, we can observe a
large plateau region for 0◦ < αmin < 70◦ and m > 500. The RMSE in this region
is less than 0.0850 at the lowest value of 0.0690 for αmin = 29◦ and m = 700.

The right panel of Fig. 5 shows RMSE when changing the upper bound slope
angle αmax from αmin to 90◦ at the optimal values for m and αmin. As we can
see from this figure, the lowest error is when αmax is above 70◦.

Figure 6 shows the FF when using the proposed method with the optimal
values of hyperparameters and the standard method when 700 neurons are used
(increasing the neuron number did not improve the results). As we can see from
these figures, the proposed method maps the TF quite well (RMSE = 0.0287)
while the standard method fails (RMSE = 0.2326).



528 G. Dudek

-1
1

-0.5

0

1

y

0.5

x
2

0.5

x
1

1

0.5

0 0

Fig. 4. TF (22) and the training points.

0.05

80 0

0.1

60

min

0.15

m

R
M

S
E

40 500

0.2

20
0 1000

0.25

30 40 50 60 70 80 90

max

0.5

1

1.5

2

2.5

R
M

S
E

Fig. 5. TF (22) fitting using the proposed method: RMSE in the grid search (left panel)
and impact of αmax on RMSE at αmin = 29◦ and m = 700 (right panel).

-1
1

-0.5

0

1

y

0.5

RMSE = 0.0287

x
2

0.5

x
1

1

0.5

0 0

-1
1

-0.5

0

1

y

0.5

RMSE = 0.2326

x
2

0.5

x
1

1

0.5

0 0

Fig. 6. Fitted surface for TF (22), the proposed (left panel) and standard method
(right panel).



Improving Randomized Learning of Feedforward Neural Networks 529

The last example concerns a 21-dimensional modeling problem: Compactiv -
the Computer Activity dataset which is a collection of computer systems activ-
ity measures. The data was collected from a Sun Sparcstation 20/712 with
128 Mbytes of memory running in a multi-user university department. The task
is to predict the portion of time that CPUs run in user mode. There are 8192
samples composed of 21 input variables (activity measures) and one output vari-
able. The whole data set was divided into a training set containing 75% of sam-
ples selected randomly, and a test set containing the remaining samples. The
dataset was downloaded from KEEL (Knowledge Extraction based on Evolu-
tionary Learning) dataset repository (http://www.keel.es). The input and out-
put variables are normalized into [0, 1].

The RMSE in the grid search procedure using a 10-fold cross-validation in
Fig. 7 is shown. The lowest value of RMSE was 0.0309 for αmin = 45◦ and
m = 600. The mean value of the test error for 100 trials of the learning sessions
carried out at the optimal values of hyperparameters was 0.0335. For the stan-
dard method it was 0.0358. The difference between RMSE for the proposed and
standard method is not as high as for the TFs (21) and (22). This is probably
because the TF in this case has no strong fluctuations and can be modeled using
flat neurons.

00

0.04

20

0.06

40

minm

500

R
M

S
E

60

0.08

80
1000

0.1

Fig. 7. Compactive data fitting using the proposed method: RMSE in the grid search.

4 Conclusions

One of the most important issues in the randomized learning of FNNs is the selec-
tion of random parameters: weights and biases of hidden nodes. In the existing
methods the random parameters are selected uniformly from the fixed interval,
such as [−1, 1] or another symmetrical interval whose bounds are adjusted to
the problem being solved. We have shown that the weights and biases of the
hidden nodes have a different meaning and should not be selected from the same
interval.

In this work we recommend generating random parameters in single-hidden-
layer FNNs taking into account the input space location and size, target function
complexity, and activation function type. We propose a method which randomly

http://www.keel.es


530 G. Dudek

selects the slope angles for the activation functions from the interval adjusted to
the target function. Then, after rotating randomly the activation functions and
shifting them into the input hypercube, we calculate weights and biases. The
proposed approach turned out to be much more accurate than the existing one
in regression problems. In the simulation study generating random parameters
from the fixed interval [−1, 1] brought very poor fitting, while the proposed
method performed very well on target functions with strong fluctuations.

Future work will focus on the better adjustment of the hidden nodes to data.
This should translate into a more compact network structure without redundant
nodes. Additionally, the adaptation of the method to classification problems is
planned.

References

1. Principe, J., Chen, B.: Universal approximation with convex optimization: gimmick
or reality? IEEE Comput. Intell. Mag. 10, 68–77 (2015)

2. Igelnik, B., Pao, Y.-H.: Stochastic choice of basis functions in adaptive function
approximation and the functional-link net. IEEE Trans. Neural Netw. 6(6), 1320–
1329 (1995)

3. Husmeier, D.: Random vector functional link (RVFL) networks. Neural Networks
for Conditional Probability Estimation: Forecasting Beyond Point Predictions,
chap. 6, pp. 87–97. Springer, London (1999). https://doi.org/10.1007/978-1-4471-
0847-4 6

4. Pao, Y.-H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics
of the random vector functional-link net. Neurocomputing 6(2), 163–180 (1994)

5. Li, M., Wang, D.: Insights into randomized algorithms for neural networks: prac-
tical issues and common pitfalls. Inf. Sci. 382–383, 170–178 (2017)

6. Zhang, L., Suganthan, P.: A comprehensive evaluation of random vector functional
link networks. Inf. Sci. 367, 1094–1105 (2016)

7. Wang, D., Li, M.: Stochastic configuration networks: fundamentals and algorithms.
IEEE Trans. Cybern. 47(10), 3466–3479 (2017)

8. Gorban, A.N., Tyukin, I.Y., Prokhorov, D.V., Sofeikov, K.I.: Approximation with
random bases: pro- et contra. Inf. Sci. 364, 146–155 (2016)

9. Zhang, L., Suganthan, P.: A Survey of randomized algorithms for training neural
networks. Inf. Sci. 364, 146–155 (2016)

10. Weipeng, C., Wang, X., Ming, Z., Gao, J.: A review on neural networks with
random weights. Neurocomputing 275, 278–287 (2018)

11. Dudek, G.: Generating random weights and biases in feedforward neural networks
with random hidden nodes. Inf. Sci. 481, 33–56 (2019)

12. Scardapane, S., Wang, D.: Randomness in neural networks: an overview. WIREs
Data Min. Knowl. Discov. 7(2), e1200 (2017)

https://doi.org/10.1007/978-1-4471-0847-4_6
https://doi.org/10.1007/978-1-4471-0847-4_6

	Improving Randomized Learning of Feedforward Neural Networks by Appropriate Generation of Random Parameters
	1 Introduction
	2 Generating Random Parameters of Hidden Nodes
	2.1 The Idea of the Proposed Method
	2.2 Multidimensional Case
	2.3 Discussion

	3 Simulation Study
	4 Conclusions
	References




