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A Hybrid Residual Dilated LSTM and Exponential
Smoothing Model for Midterm Electric

Load Forecasting
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Abstract— This work presents a hybrid and hierarchical deep
learning model for midterm load forecasting. The model combines
exponential smoothing (ETS), advanced long short-term memory
(LSTM), and ensembling. ETS extracts dynamically the main
components of each individual time series and enables the model
to learn their representation. Multilayer LSTM is equipped with
dilated recurrent skip connections and a spatial shortcut path
from lower layers to allow the model to better capture long-
term seasonal relationships and ensure more efficient training.
A common learning procedure for LSTM and ETS, with a
penalized pinball loss, leads to simultaneous optimization of
data representation and forecasting performance. In addition,
ensembling at three levels ensures a powerful regularization.
A simulation study performed on the monthly electricity demand
time series for 35 European countries confirmed the high per-
formance of the proposed model and its competitiveness with
classical models such as ARIMA and ETS as well as state-of-
the-art models based on machine learning.

Index Terms— Deep learning, exponential smoothing, long
short-term memory, midterm load forecasting (MTLF), recurrent
neural networks (NNs), time series forecasting.

I. INTRODUCTION

ELECTRICITY demand forecasting is an essential tool
in all sectors in the electric power industry. Midterm

load forecasting (MTLF), which involves forecasting the daily
peak load for future months as well as monthly electricity
demand, is necessary for power system operation and planning
in such areas as maintenance scheduling, fuel reserve plan-
ning, hydrothermal coordination, planning of electrical energy
import and export, and also security assessment. In deregulated
power systems, MTLF is a basis for the negotiation of forward
contracts. Forecast accuracy translates directly into financial
performance for energy companies and energy market par-
ticipants. The financial impact can be measured in millions
of dollars for every point of forecasting accuracy gained.
All the above reasons justify interest in new forecasting tools
for MTLF.
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In this work, we focus on monthly electricity demand
forecasting. Monthly electricity demand time series express a
nonlinear trend, yearly cycles, and a random component. The
trend is dependent on the rate of economic development in
a country, while seasonal cycles are related to the climate,
weather factors, and the variability of seasons [1]. Factors
disrupting electricity demand in a midterm horizon include
unpredictable economic events and political decisions [2].

MTLF methods can be divided into statistical/econometric
models or machine learning (ML)/computational intelligence
models [3]. Typical examples of the former are ARIMA,
ETS, and linear regression. ARIMA and ETS can deal with
seasonal time series, but linear regression requires additional
operations, such as decomposition or the extension of the
model with periodic components [4]. Statistical models have
undoubted advantages, being relatively simple, robust, effi-
cient, and automatic, so that they can be used by nonexpert
users.

The flexibility of ML models has increased researchers’
interest in them as MTLF tools [5]. Of these, neural net-
works (NNs) are the most explored because of their attractive
features such as learning capability, universal approximation
property, nonlinear modeling, massive parallelism, and ease of
specifying a loss function, to align it better with forecasting
goals. Some examples of using different architectures of NNs
for MLTF are: [6] where NN learns on historical demand and
weather factors, [7] where Kohonen NN was used, [8] where
NNs were supported by fuzzy logic, [9] where generalized
regression NN was used, [10] where NNs, linear regression,
and AdaBoost were used, [11] where weighted evolving fuzzy
NNs were combined, and [12] where recurrent NNs were used.
Among other ML MTLF models, the following can be men-
tioned: support vector machines [13] and pattern similarity-
based models [14].

Recent trends in ML such as deep learning, especially
deep recurrent NNs (RNNs), are very attractive for time
series forecasting [15]. RNNs with connections between nodes
forming a directed graph along a temporal sequence are able
to exhibit temporal dynamic behavior using their internal
state (memory) to process sequences of inputs. Recent works
have reported that RNNs, such as the long short-term memory
(LSTM), provide high accuracy in forecasting and outperform
most of the traditional statistical and ML methods, such as
ARIMA, support vector machine, and shallow NNs [16].
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There are many examples of an application of LSTMs to load
forecasting: [17]–[19].

Many new ideas in the field of deep learning have been
successfully applied to time series forecasting. For exam-
ple, in [20], bidirectional LSTM is proposed for short-term
scheduling in power markets. This solution has two benefits:
long-range memory and bidirectional processing. It takes
advantage of deep architectures, which are able to build up
progressively higher level representations of data, by piling up
RNN layers on top of each other. A residual recurrent highway
network for learning deep sequence predictions was proposed
in [21]. It contains highways within the temporal structure
of the network for unimpeded information propagation, thus
alleviating gradient vanishing problem. Hierarchical structure
learning is posed as a residual learning framework to prevent
performance degradation problems. Another example of using
a new deep learning solution for time series forecasting is the
N-BEATS model proposed is [22]. Its architecture is based
on backward and forward residual links and a deep stack of
fully connected layers. N-BEATS has a number of desirable
properties, being interpretable, applicable without modification
to a wide array of target domains, and fast to train.

In addition to point forecasting, deep learning also enables
probabilistic forecasting. A model proposed in [23], DeepAR,
produces accurate probabilistic forecasts, based on training
an autoregressive RNN on a large number of related time
series. This model makes probabilistic forecasts in the form of
Monte Carlo samples that can be used to compute consistent
quantile estimates for all subranges in the prediction horizon.
Another solution for probabilistic time series forecasting was
proposed in [24]. It combines state-space models with deep
learning. By parameterizing a per-time-series linear state-space
model with a jointly learned RNN, the method retains the
desired properties of state-space models such as data efficiency
and interpretability while making use of the ability to learn
complex patterns from raw data offered by deep learning
approaches.

To improve forecasting performance, RNN is also mixed
with other methods such as ETS. Such a model won the
M4 forecasting competition in 2018 [25]. This competition
utilized 100 000 real-life time series and incorporates all major
forecasting methods, including those based on AI and ML,
as well as traditional statistical ones [26]. The winning model,
developed by Smyl [27], is a hybrid approach utilizing both
statistical and ML features. It combined ETS with advanced
LSTM, which is supported by such mechanisms as dilation,
residual connections, and attention [28]–[30]. It produced the
most accurate forecasts as well as the most precise prediction
intervals. According to sMAPE, it was close to 10% more
accurate than the combination benchmark of the competition,
which is a huge improvement. For monthly data (48 000 time
series), it outperformed all other 60 submissions achieving the
highest accuracy according to each of the three performance
measures.

The motivation for this work is as follows. Accurate
load forecasts are of utmost importance to ensure a safe
and efficient power system operation, increased revenues
from the electricity market, and financial risk reduction.

Forecast accuracy translates directly into financial performance
for the energy market players and the financial impact can
be measured in millions of dollars for every point of fore-
casting accuracy gained. MTLF is a relevant and challenging
problem requiring the forecasting model to be highly flexible
and deal with the stochastic data expressing nonstationar-
ity and seasonality. In this work, we propose a state-of-
the-art forecasting model for MTLF that meets these high
requirements. It is based on the winning submission to the
M4 competition for monthly data. It combines ETS, LSTM,
and ensembling. ETS enables the model to capture the main
components of the individual time series, such as seasonality
and level, whereas LSTM allows nonlinear trends and cross-
learning. A common learning procedure for LSTM and ETS
leads to simultaneous optimization of data representation and
forecasting performance. Ensembling at three levels reduces
the model variance and increases generalization. Moreover,
a penalized asymmetric pinball loss function can reduce the
forecast bias. All these mechanisms enable the forecasting of
“difficult” time series and ensure high forecasting accuracy,
which was verified in the M4 competition.

The main contribution of this study includes the following
two points.

1) This work empirically demonstrates that the proposed
generic hybrid model using specific mechanisms of time
series processing and prediction outperforms in MTLF
well-established statistical and ML approaches and is
on a pair with state-of-the-art domain-adjusted models
combining ML and statistical approaches.

2) Time series used for MTLF share some patterns that
cannot be exploited when using traditional per-series
forecasting models. At the same time, the amount of
data is rather small (a few dozens of monthly series).
We show that despite that, a hybrid model that combines
some per-series parameters with a global LSTM-style
NN can perform well in this task.

The rest of the work is organized as follows. Section II
describes the proposed forecasting model: its architecture, fea-
tures, components, and implementation details as well as data
flow and processing. Section III describes the experimental
framework used to evaluate the performance of the proposed
model. Finally, Section IV concludes the work.

II. FORECASTING MODEL

The proposed model is based on the winning submission
to the M4 forecasting competition 2018 for monthly data and
point forecasts [27]. It is a hybrid and hierarchical forecasting
model that enables ETS and advanced LSTM to be mixed
into a common framework. The model architecture, its specific
features, and components are described in the following.

A. Framework and Features

The proposed forecasting model is shown in Fig. 1. It is
composed of the following.

1) ETS—which is a Holt–Winters-type multiplicative sea-
sonal model. It is used for extracting two components
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Fig. 1. Block diagram of the ETS+RD-LSTM forecasting system.

from the time series: level and seasonality. ETS loads a
set of time series (Y ), calculates the level and seasonal
components individually for each series, and returns sets
of levels (L) and seasonal components (S).

2) Preprocessing—the level and seasonal components are
used for deseasonalization and adaptive normalization of
the time series. The inputs to the preprocessing module
are: set of time series Y and sets of level and seasonal
components, L and S, respectively. The preprocessed
data are divided into input and output training data and
returned in training set � .

3) RD-LSTM—which is residual dilated LSTM composed
of four layers. Due to its recurrent nature, this model is
capable of learning long-term dependencies in sequential
data. RD-LSTM learns in cross-learning mode on train-
ing set � . The forecasts for all time series produced by
RD-LSTM are returned in set X̂ .

4) Postprocessing—the forecasts of the deseasonalized and
normalized time series are “reseasonalized” and renor-
malized. The inputs to the postprocessing module are:
forecasts X̂ and level and seasonality sets, L and S. The
output is set Ŷ , containing the forecasts for each time
series.

5) Ensembling—the forecasts produced by individual mod-
els are averaged. This enhances the robustness of the
method further, mitigating model and parameter uncer-
tainty. The ensembling module receives the sets of
forecasts produced by individual models, Ŷ r

k (k and
r relate to ensemble members, see Section II-E for
details), aggregates them, and returns a set of forecasts
for all time series, Ŷavg.

6) Stochastic gradient descent (SGD)—the parameters of
both ETS and RD-LSTM are updated by the same over-
all optimization procedure, SGD, with the overarching
goal of minimizing forecasting errors.

The proposed model has a hierarchical structure, i.e., the
data are exploited in a hierarchical manner. Both local and
global time series features are extracted. The global features
are learned by RD-LSTM across many time series. The
specific features of each individual time series are extracted
by ETS. Thus, each series has a partially unique and partially
shared model.

Note the hybrid structure of the model, where statisti-
cal modeling is combined concurrently with ML algorithms.

The model combines ETS, advanced LSTM, and ensembling.
ETS is focused on each individual series and enables the model
to capture its main components, such as seasonality and level.
These components are used for time series preprocessing,
normalization, and deseasonalization.

An advanced LSTM-based RNN allows nonlinear trends
and cross-learning. This is an extended, multilayer version
of LSTM with residual dilated LSTM blocks. The dilated
recurrent skip connections and spatial shortcut path from
lower layers, applied in this solution, allow the model to
better capture long-term seasonal relationships and ensure
more efficient training. The RD-LSTM model is trained on
many time series (cross-learning). To train deep NNs, which
have many parameters, cross-learning is necessary. Moreover,
it enables the method to capture the shared features and
components of the time series.

ETS and RD-LSTM are optimized simultaneously, i.e., the
ETS parameters and the RD-LSTM weights are optimized
by SGD at the same time. The same overall learning
procedure optimizes the model, including data preprocess-
ing. Therefore, the learning process includes representation
learning—searching for the most suitable representations of
input and output data (individually for each time series),
which ensures the most accurate forecasts. It is worth noting
the dynamical character of the training set that is related to
representation learning. The training set is updated in each
epoch of RD-LSTM learning. This is because SGD updates
the ETS parameters in each epoch, and therefore, the level
and seasonal components, used for preprocessing, are updated
as well.

Ensembling is seen as a much more powerful regularization
technique than more popular alternatives, e.g., dropout or
L2-norm penalty [22]. In our case, ensembling combines
individual forecasts at three levels: stage of training level, data
subset level, and model level. This reduces the variance related
to the stochastic nature of SGD and also related to data and
parameter uncertainty.

B. Exponential Smoothing

The complex nature of a time series, e.g., nonstationarity,
nonlinear trend, and seasonal variations, makes forecasting
difficult and puts high demands on the models. A typical
approach, in this case, is to simplify the forecasting problem by
deseasonalization, detrending, or decomposition. A time series
is usually decomposed into seasonal, trend, and stochastic
components. The components expressing less complexity than
the original time series can be modeled independently using
simpler models. The most popular methods of decomposi-
tion are [31]: additive decomposition, multiplicative decom-
position, X11, SEAT, and STL. Although very useful, this
approach has a drawback. It separates the preprocessing from
the forecasting, which results in the final solution not being
optimal. Some classic statistical models, such as ETS, employ
a better way; the forecasting model has a built-in mechanism
to deal with seasonality. The final model uses the optimal
decomposition of the time series.

It is worth mentioning that in the state-of-the-art deep learn-
ing models, the time series preprocessing can be incorporated
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into the learning process as in [27] or [44]. In the latter work,
there is an additional deep learning layer that learns how
the data should be normalized according to their distribution
instead of using fixed normalization schemes. The adaptive
normalization parameters are global, i.e., the same for each
time point. In [27] (this approach is also used in this study),
these parameters are local, adjusted for each time point of
each time series. This makes the model very flexible in
processing time series of different nature, with nonlinear trend
and seasonality.

In our approach, we use ETS as the preprocessing tool. ETS
extracts two components from the time series: level (smoothed
value) and seasonality. Then, we use these components to nor-
malize and deseasonalize the original time series. Preprocessed
time series are forecast by RD-LSTM. ETS and RD-LSTM are
optimized simultaneously using SGD. Therefore, the resulting
forecasting model, including data preprocessing, is optimized
as a whole. This distinctive feature of the proposed approach
needs to be emphasized.

The ETS model used in this study was inspired by the
Holt–Winters multiplicative seasonal model. However, it has
been simplified by the removal of the linear trend component.
This is because the trend forecasting is the task of RD-LSTM,
which is able to produce a nonlinear trend that is more valuable
in our case. The updating formulas for the ETS model with a
seasonal cycle length of 12 (useful for monthly data) are as
follows [27]:

lt = α
yt

st
+ (1 − α)lt−1

st+12 = β
yt

lt
+ (1 − β)st (1)

where yt is the time series value at time point t , lt , and st

are the level and seasonal components, respectively, and α,
β ∈ [0, 1] are smoothing coefficients.

The level equation shows a weighted average between the
seasonally adjusted observation and the level for time t − 1.
The seasonal equation expresses a seasonal component for
time t + 12 as a weighted average between a new estimate of
the seasonality component (yt/ lt ) and the past estimate (st).
Fig. 2 shows an example of the monthly electricity demand
time series and its level and seasonal components obtained
from (1).

The ETS model parameters, 12 initial seasonal components
and two smoothing coefficients for each time series, were
adjusted together with RD-LSTM weights by SGD. Knowing
these parameters allows the level and seasonal components
to be calculated, which are then used for preprocessing:
deseasonalization and normalization.

C. Preprocessing and Postprocessing

The level and seasonal components are calculated for all
points of each series, which are then used for deseason-
alization and adaptive normalization during the on-the-fly
preprocessing. This is the most crucial element of the fore-
casting procedure as it determines its performance. The time
series is preprocessed in each training epoch using the updated

Fig. 2. Original time series and its level and seasonal components.

values of level and seasonal components. These updated
values are calculated from (1), where the ETS parameters are
increasingly fine-tuned in each epoch by SGD.

The time series is preprocessed using rolling windows: input
and output ones. Both windows have a length of 12, which is
equal to the length of both the seasonal cycle and the forecast
horizon. The input window, �in, contains 12 consecutive
elements of the time series, which after preprocessing will be
the RD-LSTM inputs (i.e., components of input vector xin

t ).
The corresponding output window, �out, contains the next
12 consecutive elements, which after preprocessing will be
the RD-LSTM outputs (i.e., components of output vector xout

t ).
The time series fragments inside both windows are normalized
by dividing them by the last value of the level in the input
window l∗t and, then, divided further by the relevant seasonal
component. As a result of this operation, we obtain positive
input and output values close to one. Finally, to limit the
destructive impact of outliers on the forecasts, a squashing
function, log(.), is applied. The resulting preprocessing can be
expressed as follows:

xt = log

(
yt

l∗t st

)
(2)

where xt is the preprocessed t th element of the time series,
l∗t is the last value of the level in input window �in, and st is
the t th seasonal component.

Note that normalization is adaptive and local, and the
“normalizer” follows the series values. This allows us to
include the current features of the series (l∗t and st ) in the
input and output variables.

The preprocessed elements of the time series contained in
the successive input and output windows can be represented
by vectors as follows.

1) First pair of input and output windows

xin
1 = [x1 x2 · · · x12], xout

1 = [x13x14 · · · x24].
2) Second pair of input and output windows

xin
2 = [x2 x3 · · · x13], xout

2 = [x14x15 · · · x25],
3) · · ·
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Fig. 3. Examples of the input (left) and output (right) vectors created for the
time series shown in Fig. 2. Top: x-vectors for the first two cycles. Bottom:
x-vectors for the last two cycles. The x-vectors created in the first training
epoch in blue, in the last epoch in red.

4) N th pair of input and output windows:
xin

N = [xN xN+1 . . . xN+11]
xout

N = [xN+12xN+13 . . . xN+23].
These vectors are included in the training subset for the

i th time series: �i = {(xin
t , xout

t ) : t = 1, 2, . . . , N}. The
training subsets for all M time series are combined and form
the training set � = {�1,�2, . . . ,�M}, which is used for
RD-LSTM cross-learning. Note the dynamic character of the
training set. It is updated in each epoch because the level and
seasonal components in (2) are updated.

Fig. 3 shows the input and output vectors for the time series,
which is shown in Fig. 2. The top shows the corresponding
input and output x-vectors representing the first two seasonal
cycles of the time series. The bottom shows the input and
output x-vectors representing the last two seasonal cycles.
It can be seen from this figure that the x-vectors express pat-
terns of the time series fragments after filtering out both level
and seasonality. This pattern representation of the time series
has been used successfully in earlier studies concerning ML
forecasting models, especially similarity-based models [32].
Different definitions of the time series patterns can be found
in [32]. However, these definitions are fixed, while in this
work, we use dynamic patterns that change during learning
(compare the patterns in the first and last training epochs
in Fig. 3).

RD-LSTM operates on preprocessed time series values,
xt . In the postprocessing step, the forecasts generated by
RD-LSTM, x̂t , need to be “unwound” in the following way:

ŷt = exp(x̂t)l
∗
t st . (3)

Note that both level l∗t and seasonal component st in (3),
which are necessary to calculate ŷt from x̂t , are known. They
are determined from (1) on the basis of the time series history.

D. Residual Dilated LSTM

LSTM is a special kind of RNN capable of learning long-
term dependencies in sequential data [33]. A common LSTM
block is composed of a memory cell that can maintain its state
over time, and three nonlinear “regulators,” called gates, which
control the flow of information inside the block. A typical
LSTM block is shown in Fig. 4. In this diagram, ht and

Fig. 4. LSTM block.

ct denote the hidden state and the cell state at time step t ,
respectively. The cell state contains information learned from
the previous time steps. Information can be added to or
removed from the cell state using the gates: input gate (i ),
forget gate ( f ), and output gate (o). At each time step t ,
the block uses the past state of the network, i.e., ct−1 and
ht−1, and the input xt to compute output ht and updated cell
state ct . The hidden and cell states are recurrently connected
back to the block input. All of the gates are controlled by the
hidden state of the past cycle and the input x-vector. Most
modern studies incorporate many of the improvements that
have been made to the LSTM architecture since its original
formulation [34].

Detailed mathematical expressions describing LSTM block
are given in the following. The cell state at time step t is

c1
t = f1

t ⊗ c1
t−1 + i1t ⊗ g1

t (4)

where operator ⊗ denotes the Hadamard product (elementwise
product) and superscript 1 refers to the first layer of RD-LSTM
network, where we use the standard LSTM block.

The hidden state at time step t is given by

h1
t = o1

t ⊗ σc
(
c1

t

)
(5)

where the state activation function σc is a hyperbolic tangent
function.

Formulas related to the gates are as follows:
f1
t = σg

(
W1

f xt + V1
f h1

t−1 + b1
f

)
(6)

i1t = σg
(
W1

i xt + V1
i h1

t−1 + b1
i

)
(7)

g1
t = σc

(
W1

gxt + V1
gh1

t−1 + b1
g

)
(8)

o1
t = σg

(
W1

oxt + V1
oh1

t−1 + b1
o

)
(9)

where W, V, and b are input weights, recurrent weights,
and biases, respectively, and σg is a gate sigmoid activation
function (1 + e−x)−1.

In our study, we also use a dilated residual version of
LSTM (RD-LSTM). Dilated RNN architecture was proposed
in [28] as a solution to tackle three major challenges of RNN
when learning on long sequences: complex dependencies, van-
ishing and exploding gradients, and efficient parallelization.
It is characterized by multiresolution dilated recurrent skip
connections. Moreover, it reduces the number of parameters
needed and enhances training efficiency significantly in tasks
involving very long-term dependencies. A dilated LSTM block
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Fig. 5. RD-LSTM block.

receives as input states, not the last ones, ct−1 and ht−1, but
earlier states, ct−d and ht−d , where d > 1 is a dilation. Thus,
to compute the current states of the LSTM block, the last d −1
states are skipped. Usually, multiple dilated recurrent layers
are stacked with hierarchical dilations to construct a system,
which learns the temporal dependencies of different scales at
different layers. In [28], it was shown that this solution can
reliably improve the ability of recurrent models to learn long-
term dependence in problems from different domains. It seems
that dilated LSTM can be particularly useful for seasonal time
series, where the relationships between the series elements
have a cyclical character. This character can be incorporated
into the model by dilations related to seasonality.

A residual version of LSTM was proposed in [29]. A stan-
dard memory cell, which learns long-term dependencies of
sequential data, provides a temporal shortcut path to avoid
vanishing or exploding gradients in the temporal domain. The
residual LSTM provides an additional spatial shortcut path
from lower layers for efficient training of deep LSTM archi-
tectures. To avoid a conflict between spatial- and temporal-
domain gradient flows, residual LSTM separates the spatial
shortcut path from the temporal one. This gives greater flexi-
bility to deal with vanishing or exploding gradients.

Fig. 5 shows a residual dilated LSTM block that was used
in this study. We denote this block by RD-LSTM. In this
figure, hl−1

t is a shortcut path from the (l − 1)th layer that is
added to updated cell state ct processed by function σc. Our
implementation of the residual LSTM is a simplified version
of the original one. The peephole connections are removed as
well as linear transformations of the shortcut path hl−1

t and
transformed cell state σc(cl

t). These transformations are not
necessary because, in our case, the dimensions of hl−1

t and
σc(cl

t ) match that of hl
t .

The mathematical expressions describing the RD-LSTM
block are as follows:

cl
t = fl

t ⊗ cl
t−d + ilt ⊗ gl

t (10)

hl
t = ol

t ⊗ (
σc

(
cl

t

) + hl−1
t

)
(11)

fl
t = σg

(
Wl

f hl−1
t + Vl

f hl
t−d + bl

f

)
(12)

ilt = σg
(
Wl

i h
l−1
t + Vl

i h
l
t−d + bl

i

)
(13)

gl
t = σc

(
Wl

ghl−1
t + Vl

ghl
t−d + bl

g

)
(14)

ol
t = σg

(
Wl

ohl−1
t + Vl

ohl
t−d + bl

o

)
(15)

Fig. 6. RD-LSTM network architecture.

where superscript l indicates the layer number (from 2 to 4 in
our case, see next) and d is a dilation (3, 6, or 12 in our case,
see next).

The proposed RD-LSTM architecture, which is a result of
painstaking experimentation on M4 monthly data (48 000 time
series), is shown in Fig. 6. It is composed of four recurrent
layers and a linear unit LU. The first layer consists of the
standard LSTM block shown in Fig. 4. The subsequent three
layers consist of RD-LSTM blocks (see Fig. 5) with increasing
dilations d = 3, 6, and 12. The last element is a linear unit that
transforms the output of the last layer, h4

t , into the forecast of
the output x-vector

x̂out
t = Wxh4

t + bx . (16)

The learnable parameters of RD-LSTM are: input
weights W, recurrent weights V, and biases b. They are
tuned in the cross-learning mode simultaneously with the ETS
parameters using SGD. The length of the cell and hidden
states, m, the same for all layers, was selected on the training
set (see Section III for details).

RD-LSTM processes the temporal information as follows.
The model sequentially learns on the consecutive pairs of
input and output vectors, xin

t and xout
t , respectively, for t =

1, 2, . . . For each xin
t , RD-LSTM produces the forecast of

xout
t taking into account previous states, h1

t−1, c1
t−1, h2

t−3, c2
t−3,

h3
t−6, c3

t−6, h4
t−12, and c4

t−12 (see Fig. 6). These states contain
past information about time series provided not only from
the last t − 1 cycle but also from cycles t − 3, t − 6, and
t − 12. This mechanism can be useful for the seasonal time
series to introduce additional information about long-term
seasonal relationships. In each t th learning cycle, RD-LSTM
modifies its parameters depending on the forecast error for
the t th training pair and generates new states, hl

t and cl
t ,

for the next cycles (in fact, due to residual connections,
the new hidden states are also used in the current cycle). Thus,
the temporal information flows from the previous cycles to the
next ones using past hidden and cell states. We can control this
information changing the dilations.
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Note that an input is not a scalar but a vector representing a
sequence of the time series of length 12, i.e., a seasonal period.
It allows the RD-LSTM to be exposed to the immediate history
of the series directly. An output is a vector representing the
whole forecast sequence of length 12.

When the output x-pattern is determined from (16), the fore-
cast monthly demands are calculated from (3). In the latter
equation, x̂t is the tth component of vector x̂out

avg.

E. Ensembling

Ensembling is a well-known approach to increase the pre-
dictive performance of statistical and ML models. Ensemble
methods combine in some fashion multiple learning algorithms
to produce a common response, hopefully improving accuracy
and stability compared to a single learner. The key issue
in ensemble learning is ensuring diversity of learners [43].
A right tradeoff between performance and diversity of learn-
ers decides about ensemble learning success. In our case,
for ensembling, we can use several sources of diversity in
RD-LSTM. The first one is the stochastic training process
using SGD. The second one is similar to bagging, i.e., training
each learner using a randomly drawn subset of the training set.
The third one is training ensemble members using different
initial values of the parameters. Thus, the forecasts generated
by the RD-LSTM model are ensembled at three levels as
follows.

1) Stage of Training Level: Averaging forecasts produced
by L most recent training epochs.

2) Data Subset Level: Averaging forecasts from a pool of
K forecasting models, which learns on the subsets of
the training set.

3) Model Level: Averaging forecasts from R independent
runs of the pool of K models produced on the data
subset level.

The idea behind using the averaging forecasts produced in
a few most recent training epochs (first level of ensembling) is
that averaging has the effect of calming down the noisy SGD
optimization process. SGD uses mini-batches of training sam-
ples to estimate the actual gradients. The resulting searching
process operates on the approximated gradients that make the
trajectory noisy. Averaging the forecasts obtained in the most
recent epochs, when the algorithm converges around the local
minimum, may reduce the effect of stochastic searching and
produce more accurate forecasts.

At the data subset level, the forecasts from K models that
learn on the subsets of the training set, �1, �2, . . . , �K , are
averaged. The training set, � = {�1,�2, . . . ,�M }, is com-
posed of subsets �i containing the training samples for the
i th time series. To create the training �-subsets, first, a set of
M time series is split randomly into K subsets of similar size:
�1, �2,…, �K . The kth �-subset contains the �-subsets for
all time series excluding those in �k , i.e., �k = �\{�i}i∈�k .
Each of K models learns on its own training subset, �k , and
generates forecasts for the time series included in �k . Then,
the K − 1 forecasts for each time series produced by the pool
of K models are averaged.

Fig. 7. Ensembling.

The last level of ensembling simply averages the forecasts
for each time series generated in R independent runs of a pool
of K models. In each run, the training subsets �k are created
anew.

Note that the diversity of learners, which is a key property
that governs the ensemble performance [35], has various
sources in our proposed approach. They include: 1) data
uncertainty: learning on mini-batches and learning on different
�-subsets of the training set and 2) parameter uncertainty:
learning using different initial values of the model parameters
in each run.

The last two ensembling levels are shown in Fig. 7. In this
figure, K training �-subsets are created. The set of time series
included in the kth �-subsets in the r th run is denoted by Y r

k ,
and the set of forecasts generated by the model in this case is
denoted by Ŷ r

k . For each time series, R(K − 1) forecasts are
averaged. This is shown as a joint operation for levels 2 and 3
in the figure and can be expressed as

ŷavg = 1

R(K − 1)

R∑
r=1

K−1∑
k=1

ŷr,k (17)

where K is the size of the pool of models, R is the number
of runs, and ŷr,k is the forecast y-vector generated as the kth
one in the r th run.

In this work, we use a simple average for ensembling, but
other functions, such as median, mode, or trimmed mean,
could be applied [35]. As shown in [36], a simple average
of forecasts often outperforms more complicated weighting
schemes.

Note that the K · R models created at the data subset levels
in R runs can be trained simultaneously. Thus, the proposed
forecasting system is suitable to be implemented in parallel.

F. Loss Function

As a loss function, we used pinball loss operating on
normalized and deseasonalized RD-LSTM outputs and actuals

Lt =
{

(xt − x̂t)τ, if xt ≥ x̂t

(x̂t − xt)(1 − τ ), if x̂t > xt
(18)

where τ ∈ (0, 1) controls the function asymmetry.
When τ = 0.5, the loss function is symmetrical and penal-

izes positive and negative deviations equally. When the model
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Fig. 8. Monthly electricity demand time series for 35 European countries.

tends to have a positive or negative bias, we can reduce the
bias by introducing τ smaller or larger than 0.5, respectively.
Thus, the asymmetric pinball function, penalizing positive and
negative deviations differently, allows the method to deal with
bias. It is worth noting that pinball loss is commonly employed
in quantile regression and probabilistic forecasting [37].

The experience gained during the M4 competition shows
that the smoothness of the level time series influences the
forecasting accuracy substantially. It turned out that when the
input to the RD-LSTM was smooth, the RD-LSTM focused on
predicting the trend, instead of overfitting on some spurious,
seasonality-related patterns. A smooth-level curve also means
that the seasonal components absorbed the seasonality prop-
erly. To deal with the wiggliness of a level curve, a penalized
loss function was introduced as follows.

1) Calculate the logarithms of the quotients of the neigh-
boring points of the level time series: dt = log(lt+1/ lt).

2) Calculate differences of the above: et = dt+1 − dt .
3) Square and average them for each series.
The resulting penalized loss function related to a given time

series takes the form

L = 1

T

T∑
t=1

Lt + λ
2

T − 2

T −2∑
t=1

log

(
lt+2lt

l2
t+1

)
(19)

where T is the number of forecasts and λ is a regulariza-
tion parameter that determines how much to penalizes the
wiggliness of a level curve.

The level wiggliness penalty affected the performance of
the method significantly and contributed greatly to winning
the M4 competition [27].

III. EXPERIMENTAL STUDY

This section presents the results of applying the proposed
forecasting model to the monthly electricity demand fore-
casting for 35 European countries. The data were obtained
from the ENTSO-E repository (www.entsoe.eu). The time
series have different lengths: 24 years (11 countries), 17 years
(6 countries), 12 years (4 countries), 8 years (2 countries), and
5 years (12 countries). The last year of data is 2014. The time
series are presented in Fig. 8. As can be seen from this figure,
monthly electricity demand time series exhibit different levels,
nonlinear trends, strong annual cycles, and variable variances.
The shapes of yearly cycles change over time.

The forecasting model as well as comparative models were
applied to forecast 12 monthly demands for the last year

of data, 2014. The data from previous years were used for
hyperparameter selection and learning. Specifically, for the
selection of hyperparameters, the models were trained on
the time series fragments up to 2012 and validated in 2013
(during the M4 competition, a very strong correlation between
errors for the test period and the last period of training data
was observed). Then, the selected optimal hyperparameters
were used to construct the model for 2014. The selected
hyperparameters were as follows:

1) number of epochs: 16;
2) learning rate: 10−3;
3) length of the cell and hidden states: m = 40;
4) asymmetry parameter in pinball loss: τ = 0.4;
5) regularization parameter: λ = 50;
6) ensembling parameters: L = 5, K = 3, and R = 3.
Due to the stochastic nature of ETS+RD-LSTM, the results

reported in this article take averages over 30 independent
trials (learning sessions). The model was implemented in C++
relying on the DyNet library [38]. It was compiled in Visual
Studio 2017 (Windows 10) and run in parallel on an eight-core
CPU (AMD Ryzen 7 1700, 3.0 GHz, 32 GB RAM).

A. Comparative Models

The proposed model was compared with state-of-the-art
models based on ML as well as classical statistical models,
such as ARIMA and ETS. All ML models except LSTM use a
pattern representation of time series [14]. Patterns that express
preprocessed repetitive sequences in a time series ensure input
and output data unification through trend filtering and variance
equalization. Consequently, the relationship between input
and output data is simplified and the transformed forecasting
problem can be solved using simple models.

The comparative models are described in detail in [14] and
outlined in the following.

1) k-Nearest Neighbor Weighted Regression Model
(k-NNw): It estimates a vector-valued regression
function as an average of output patterns in a varying
neighborhood of a query pattern. A weighting function
allows the model to consider the similarity between
the query pattern and its nearest neighbors. The model
hyperparameters are: input pattern length and number
of nearest neighbors k. Linear weighting function
was used.

2) Fuzzy Neighborhood Model (FNM): In this case,
the regression model is similar to k-NNw except that it
aggregates not only k-nearest neighbors of the query pat-
tern but also all training patterns. The weighting function
takes the form of a membership function (Gaussian-type
function), which assigns to each training pattern a degree
of membership to the query pattern neighborhood. The
model hyperparameters are: input pattern length and
membership function width.

3) Nadaraya—Watson estimator (N-WE): It is a kernel
regression model belonging to the same category of
nonparametric models as k-NNw and FNM. N-WE esti-
mates the regression function as a locally weighted aver-
age, using a kernel function (Gaussian) as a weighting

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on June 09,2021 at 07:33:33 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DUDEK et al.: HYBRID RESIDUAL DILATED LSTM AND EXPONENTIAL SMOOTHING MODEL 9

function. The model hyperparameters are: input pattern
length and kernel bandwidth parameters.

4) General Regression NN (GRNN) model: This is a four-
layer NN with Gaussian nodes centered at training
patterns. The node outputs express similarities between
the query pattern and the training patterns. These outputs
are treated as the weights of the training patterns in the
regression model. The model hyperparameters are: input
pattern length and bandwidth parameter for nodes.

5) Multilayer perceptron (MLP) [39] with a single hidden
layer and sigmoidal neurons. It used for learning the
Levenberg–Marquardt method with Bayesian regulariza-
tion to prevent overfitting. The MLP hyperparameters
are: input pattern length and number of hidden nodes.
We use MATLAB R2018a implementation of MLP
(function feedforwardnet from Neural Network
Toolbox).

6) Adaptive Neuro-Fuzzy Inference System (ANFIS) [40]:
The initial membership function parameters in the
premise parts of rules are determined using fuzzy
c-means clustering. A hybrid learning method is applied
for ANFIS training, which uses a combination of the
least squares for consequent parameters and backpropa-
gation gradient descent method for premise parameters.
The ANFIS hyperparameters are: input pattern length
and number of rules. The MATLAB R2018a implemen-
tation of ANFIS was used (function anfis from Fuzzy
Logic Toolbox).

7) k-NNw+ETS, FNM+ETS, N-WE+ETS, GRNN+ETS,
MLP+ETS, and ANFIS+ETS—variants of the above
models with output patterns encoded with variables
describing the current features of the time series. These
features are the mean value of the series in the seasonal
cycle and its dispersion. To postprocess the forecast
output pattern, the coding variables are predicted for
the next period using ETS. We use R implementation
of ETS (see next).

8) LSTM, where the responses are the training sequences
with values shifted by one time step (a sequence-to-
sequence regression LSTM network). For multiple time
steps, after one step was predicted, the LSTM state
was updated. Previous prediction was used as input to
LSTM, producing a forecast for the next time step.
LSTM was optimized using Adam (adaptive moment
estimation) optimizer. The length of the hidden state was
the only hyperparameter to be tuned. Other hyperpara-
meters remain at their default values. The experiments
were carried out using MATLAB R2018a implementa-
tion of LSTM (function trainNetwork from Neural
Network Toolbox).

9) ARIMA—ARIMA(p, d, q)(P, D, Q)12 model imple-
mented in function auto.arima in R environment
(package forecast). This function implements auto-
matic ARIMA modeling, which combines unit root
tests, minimization of the Akaike information criterion
(AICc), and maximum likelihood estimation to obtain
the optimal ARIMA model [31].

TABLE I

RESULTS COMPARISON AMONG THE PROPOSED
AND COMPARATIVE MODELS

10) ETS—exponential smoothing state space model [42]
implemented in function ets (R package forecast).
This implementation includes many types of ETS mod-
els depending on how the seasonal, trend, and error
components are considered. They can be expressed addi-
tively or multiplicatively, and the trend can be damped
or not. As in the case of auto.arima, ets returns the
optimal model estimating its parameters using AICc.

The models, k-NNw, FNM, N-WE, and GRNN are also
known as pattern similarity-based forecasting models (PSFMs)
because the forecast is constructed by aggregating the training
output patterns using similarity between the query pattern
and training input patterns [14]. All the model hyperpara-
meters mentioned above were selected on the training set in
grid search procedures. Due to the stochastic nature of the
NN-based models, i.e., MLP, ANFIS, and LSTM, 100 inde-
pendent learning sessions for these models were performed
and the final errors were calculated as averages over 100 trials.

B. Results

Table I shows the results of forecasting for the proposed
and comparative models: median of absolute percentage error
(APE), mean APE (MAPE), interquartile range of APE as a
measure of the forecast dispersion, and root-mean-square error
(RMSE). These are values averaged over 35 countries. The
lowest errors are for “+ETS” PSBMs, where the coding vari-
ables are predicted using ETS. The errors for ETS+RD-LSTM
are slightly higher but lower than for all other models.
To confirm that the differences in errors are statistically
significant, we performed the Wilcoxon rank-sum test. Results
indicated that there is no difference at the 5% significance
level in MAPE between ETS+RD-LSTM, all PSFMs, MLP,
and MLP+ETS.

More detailed results are shown in Figs. 9 and 10. Fig. 9
shows MAPE for each country. As can be seen from this
figure, ETS+RD-LSTM is one of the most accurate models
in most cases. Fig. 10 shows MAPE for each month of the
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Fig. 9. MAPE for each country.

Fig. 10. MAPE for each month of the forecast period.

Fig. 11. Rankings of the models.

forecast period. Note lower errors for months 8–10 and higher
for months 1–4 and 12. ETS+RD-LSTM achieved better
results than most of the comparative models for months 2,
5–8, 10, and 12. For months 1 and 3, it achieved higher errors
than most competitors.

Rankings of the models are shown in Fig. 11. These are
based on average ranks of the models in the rankings for
individual countries. The left of Fig. 11 shows the ranking
based on MAPE and the right of Fig. 11 shows the ranking
based on RMSE. Note the high position of ETS+RD-LSTM.
It is in the first position in RMSE ranking and the sixth
position in MAPE ranking. Note that in the latter case,
the difference between the first six positions is very small.

Examples of forecasts produced by the selected models for
six countries are shown in Fig. 12. For PL data, most models,
including ETS+RD-LSTM, do not exceed MAPE = 2%,
which should be considered a very good result. Similar results
were achieved for ES, IT, and DE. In these cases, MAPE for
ETS+RD-LSTM was 1.61% (most accurate model), 2.12%
(third most accurate model), and 2.29%. For GB, the forecasts
are underestimated. This results from the fact that demand
went up unexpectedly in 2014 despite the downward trend

Fig. 12. Real and forecast monthly electricity demand for selected countries.

observed in the previous period from 2010 to 2013. The
reverse situation for FR caused a slight overestimation of
forecasts. For GB data, ETS+RD-LSTM with MAPE =
8.52% was the least accurate model, and for FR data, with
MAPE = 5.49%, it was one the most accurate models.

Table II shows the basic descriptive statistics of the percent-
age errors (PEs) and Fig. 13 shows the empirical probability
density functions of PEs for the selected models. The PE
distributions are similar to normal, but tests for the assessment
of normality (Jarque–Bera test and Lilliefors test) do not
confirm this. In all cases, the forecasts are overestimated,
having a negative PE mean. Note that ETS+RD-LSTM is
the least biased model. Negative values of skewness indicate
the left-skewed PE distributions, and high kurtosis values
indicate leptokurtic distributions where the probability mass
is concentrated around the mean.

C. Ablation Study

We performed an ablation study to find out what is the
impact of the model components on its performance. We used
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TABLE II

DESCRIPTIVE STATISTICS OF PERCENTAGE ERRORS

Fig. 13. PDF of the PEs.

TABLE III

MAPE FOR DIFFERENT RD-LSTM ARCHITECTURES AND DILATIONS

MAPE metric as performance criterion and Wilcoxon rank-
sum test with the 5% significance level for comparing the
base model with its lean versions. Results presented in the
following are calculated as averages over 30 trials.

1) Ensembling: We start our study with the base model
excluding individual levels of ensembling: stage of training
level (–L1), data subset level (–L2), model level (–L3),
and finally excluding all ensembling levels (–L1L2L3). The
results (MAPE) were as follows: –L1: 4.46%, –L2: 4.41%,
–L3: 4.47%, and –L1L2L3: 4.48%. The Wilcoxon test indi-
cated that there is no difference in MAPE between the base
model and its variants without ensembling.

2) Residual Connections: After removing residual connec-
tions, the RD-LSTM architecture is composed of the four
stacked standard LSTM blocks (without shortcut paths from
lower layers). The error without residual connections increased
to 4.74% and is statistically higher than error for the base
model.

3) Dilations: The architecture of the base model is com-
posed of the four LSTM layers with dilations d = 1, 3, 6,
and 12. Table III shows MAPE for other architectures. As can
be seen from this table, MAPE is on a similar level for all
configurations. Two architectures (bolded) yield statistically
lower errors.

Fig. 14. ETS parameters during training.

4) Loss Function: The asymmetric pinball loss function
(18), penalizing positive and negative deviations differently,
allows the method to deal with bias. When we use the
symmetric pinball loss, with τ = 0.5, the positive and negative
deviations are penalized equally. In such a case, the error
increased to 4.51%. However, this increase is not statistically
significant as well as the error increase when we use MSE
instead of the pinball loss (MAPE = 4.59%). When we
removed a penalty term from the penalized loss function (19),
the error admittedly decreased to 4.39%, but it was statistically
indistinguishable from the base model error.

5) ETS: ETS is a built-in component of the proposed
model providing a mechanism for time series preprocessing.
As mentioned in Section II-B, this mechanism adaptively
adjusts the ETS parameters, i.e., initial values of the 12 sea-
sonal components and two smoothing coefficients. SGD
updates them in each training epoch for each time series
individually. This is shown in Fig. 14. Fig. 14 (left) shows
the initial values of the seasonal components for PL time
series, and Fig. 14 (middle and right) shows the smoothing
coefficients for all countries. As can be seen from this figure,
initial seasonal components shrink toward 1. It was character-
istic not only of PL data but also of all other countries. Note
that coefficients α decrease and coefficients β increase with
training epochs. When we remove the ETS component from
the model, the time series are not adaptively preprocessed.
In such a case, the RD-LSTM module faces a more difficult
task. This results in an increase in error to 4.71%.

D. Discussion

The results presented in Section III-B show that our pro-
posed ETS+RD-LSTM model is very effective at solving
the MTLF problem. It has the high expressive power to
solve nonlinear stochastic forecasting problems. In our study,
we used the architecture that won the M4 competition without
major modifications. The simulation study showed that it
can compete with other models, including classical statistical
methods, ML, and hybrid approaches.

The ablation study revealed that some components of the
base winning model are crucial and others can be excluded or
simplified when we apply ETS+RD-LSTM to MTLF. Namely,
it turned out that the following conditions hold.

1) Ensembling did not meet the expectations set before
it. Excluding all ensembling levels, we achieved sim-
ilar results to the base model with three levels of
ensembling. Note that without ensembling, the learn-
ing procedure simplifies: instead of training K · R
ETS+RD-LSTM models, we train only one model.
Ensembling contributed significantly to the success in
the M4 competition. However, it should be noted that
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in our case, the model learned on only 35 time series,
whereas in M4, it learned from a data set containing
48 000 monthly time series. For such large data sets,
ensembling showed its advantages.

2) Residual connections play an important role in the model
operation. Besides speeding up the training process, they
introduce additional information from the lower layers
to the upper ones. This allowed the model to increase
accuracy in MTLF.

3) The number of layers and dilation hyperparameters is
dependent strongly on the forecasting problem. We used
the wining M4 architecture, but simpler architectures
turned out to be just as accurate. The most parsimonious
architecture is the one with only one layer.

4) The asymmetric pinball loss function allows the model
to reduce the forecast bias. In our case, we achieved
slightly lower errors when applying the asymmetric
function than the symmetric one. The pinball loss func-
tion can be replaced easily by other loss functions, e.g.,
MSE. The penalization term in the loss function smooths
the level component and thus reduces overfitting, which
leads to improved performance. However, in MTLF,
it did not matter. The results with and without penal-
ization were at a similar level.

5) ETS is a crucial built-in component of the model that
adaptively preprocesses time series and enables the
model to learn their representations. RD-LSTM without
time series preprocessing losses its performance.

It must be remembered that ETS+RD-LSTM was designed
as a universal model for forecasting time series with annual
seasonality from diverse domains. The conducted experiments
have shown that this universal architecture achieves state-
of-the-art performance also in MTLF. However, the base
architecture can be simplified without losing performance as
the ablation study has shown. The reason for this is that in our
case, we use a small amount of data to train ETS+RD-LSTM
(only 35 short time series). In such a case, the model cannot
fully use its powerful mechanisms that reveal themselves when
it is trained on big data. These mechanisms include cross-
learning transfering and shearing individual learning, ensem-
bling combining individual forecasts, asymmetric penalized
loss function that prevents overfitting and reduces bias, and
dilation in multilayered architecture that enables the model to
capture long-term seasonal relationships.

Disadvantages of the model include a complex architecture
and a large number of parameters and hyperparameters to
tune. In the base variant, the architecture consists of ETS
component and stacked LSTM components. The complex
architecture with hundreds of parameters to adjust needs the
time-consuming training. As in the case of other deep NNs,
the learning process using gradient-based algorithms suffers
from the sensitivity to initial values of training parameters,
convergence to local minima, and the vanishing/exploding
gradient problem.

IV. CONCLUSION

In this work, we proposed and empirically validated a
new architecture for MTLF. It was inspired by the winning

submission to the M4 forecasting competition 2018, which
combines ETS, advanced LSTM, and ensembling. The model
has a hierarchical structure composed of a global part learned
across many time series (weights of the LSTM) with a time
series specific part (ETS smoothing coefficients and initial
seasonal components). Using SGD, it learns a mapping from
input to output vectors and time series representations at the
same time. ETS-inspired formulas extract the main compo-
nents of individual time series to be used for deseasonalization
and normalization. Preprocessed time series are forecast using
residual dilated LSTM. Due to the introduction of dilated
recurrent skip connections and a spatial shortcut path from
lower layers, LSTM is able to capture better long-term sea-
sonal relationships and ensure more efficient training. To deal
with forecast bias, we used a pinball loss function with a
parameter controlling its asymmetry. The model is equipped
with two regularization mechanisms: penalized loss function
and three-level ensembling.

We applied the proposed model to the monthly electricity
demand forecasting for 35 European countries. The results
demonstrated its state-of-the-art performance and competitive-
ness with classical models such as ARIMA and ETS as well
as state-of-the-art models based on ML.
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