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Abstract—Electricity price forecasting has become crucial for 
energy companies due to its fundamental importance for 
decision making processes and operational management. 
Electricity price time series exhibit variable means, significant 
volatility and spikes, which places high demands on forecasting 
models. Moreover, in recent years researchers and practitioners 
have come to understand the limitations of point forecasts and 
require models to generate probabilistic forecasts. In contrast to 
point forecasts, the probabilistic forecasts takes the form of a 
predictive probability distribution over future quantities or 
events of interest. In the paper the probabilistic forecasting 
model based on Nadaraya-Watson estimator is proposed. The 
model generates the point forecasts as 24-component vectors 
representing day-ahead electricity prices. The probabilistic 
forecasts are calculated as quantiles based on the residual 
distribution for historical data forecasts. The performance of the 
proposed model is validated by testing on data from the Polish 
electricity market. 

Index Terms-- Electricity price forecasting, Kernel regression, 
Probabilistic forecasting, Quantile forecasts. 

I. INTRODUCTION 

In electricity markets, each intra-day trading period is 
characterized by a rather distinct price profile reflecting the 
daily variation of demand, supply, costs and operational 
constraints. Also many shocks in fuel prices and institutional 
involvement such as carbon dioxide prices affect the price 
profile. Another important factor affecting electricity prices, 
which is gaining more and more importance in recent years, 
are smart grids development and renewable energy sources 
(since the beginning of the 21st century, global investments in 
renewable energy sources have been growing exponentially). 
Moreover, the electricity price drivers are expected to vary 
across time periods and markets, depending on local 
specificities, such as the generation mix, the degree of market 
power, and the market design [1]. All these factors make the 
forecasting of electricity prices a big challenge for energy 
supply companies for which price forecasts have become 

essential in decision making processes, such as the 
procurement strategies optimization. 

The electricity price forecasting literature has focused on 
point forecasting, where the expected values of future prices 
are forecasted [2]. The flexible forecasting methods are 
searched which can reflect actual market outcomes in the 
dynamic environment as well as capture price spikes (often 
abrupt and unanticipated) and complex relationships between 
variables.  

Probabilistic electricity price forecasting provides 
additional information on the variability and uncertainty of 
future price values. In the probabilistic approaches we are 
interested in the prediction intervals which contain the true 
values of future electricity prices with a specified probability. 
To obtain prediction intervals different methods are used, e.g. 
bootstrapping [3]. Another example is [4] where a set of 
individual forecasting models of different types generate point 
forecasts. Using principle component analysis these point 
forecasts are projected onto a set of principal components, 
which are treated as input variables in a quantile regression 
producing interval forecasts. More difficult task is to forecast 
the entire forecast density instead of the single prediction 
interval. In [5] a semi-parametric methodology for generating 
such densities is presented. It is based on a time-adaptive 
quantile regression model and a description of the distribution 
tails with exponential distributions. More literature examples 
on recent advances in electricity price forecasting and tutorial 
review of probabilistic forecasting can be found in [6]. The 
authors of this paper present winners of the Global Energy 
Forecasting Competition (GEFCom2014) price track and 
existing approaches for probabilistic electricity price 
forecasting based on statistical and computational intelligence 
tools such as density forecasts, bootstrapped prediction 
intervals, factor models and spike occurrence forecasting.  

In this work a simple tool for probabilistic electricity price 
forecasting is proposed. The Nadaraya-Watson estimator is 
used for point forecasting hourly prices for the next day. Input 
data include only price profile from the preceding day. The 



model generates entire daily price profile at once (as 24-
component vector) taking into account cross-dependencies 
between hourly prices. Then, a set of 99 quantiles as 
discretization of the full predictive densities of price 
distribution is calculated from the point forecasts and the 
empirical distribution of errors determined on the historical 
data.  

II. DATA 

Two datasets are used in this study. The first one 
comprises imbalance settlement hourly prices (p1) obtained 
from the Polish Balancing Market (source: 
https://www.pse.pl/). The second one comprises day-ahead 
marked hourly prices (p2) obtained from the Polish Power 
Exchange (source: https://www.tge.pl/). Both price time series 
from the period covering 2015 are shown in Fig. 1. 

To detect components of the p1 and p2 time series, they 
are decomposed using STL method, i.e. Seasonal and Trend 
decomposition using Loess (local regression) [7]. Fig. 2 shows 
results. The grey bars to the right of each panel show the 
relative scales of the components. Each bar represents the 
same length. The smallest bars in the bottom panels show that 
the variation in the remainder components are greater 
compared to the variation in the seasonal and trend 
components. Thus, the random component in both price time 
series plays the largest role. It is larger in p1 time series than 
in p2 time series: average absolute value of the remainder is 
17.73 for p1 vs. 10.19 for p2. As we can see from Fig. 2, p2 
time series has greater seasonal component than p1. The scope 
of this component is around 90 for p2 and 58 for p1. It is 
worth nothing also flexible trends expressing weekly 
seasonality. 

The features of the price time series described above: 
dominant random component, multiple seasonal patterns, 
flexible trend, and also spikes make them hard to predict and 
put high demands on the forecasting model.  

III. FORECASTING MODEL 

The forecasting model consist of the Nadaraya-Watson 
model (N-WM) which produces point forecasts and the 
procedure of extending point forecasts into quantile forecasts. 
N-WM generates forecasts for the next day y (24 price values 
at once for our hourly granularity data) on the basis of the 
daily profile of the previous day x. Thus, the input data when 
forecasts for the day k are generated is a vector xk = [pk–1,1  
pk–1,2 … pk–1,24]

T X = ℝ24, and the output data is a vector  
yk = [pk,1 pk,2 … pk,24]

T Y = ℝ24, where pk,j is an electricity 
price at hour j of the day k. No data processing has been 
applied. 

A. Nadaraya-Watson Estimator 

Nadaraya-Watson estimator belongs to the class of  
nonparametric kernel regression. The model estimates a 
nonlinear relationship between random variables as a locally 
weighted average, using kernels as weighting functions. When 
both input and output data are vectors and kernels are 
expressed using multidimensional product kernels, N-WM is 
defined as follows [8]: 
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where N is a number of construction samples, n is a number of 
components in x, K(.) is a kernel function and h is its 
bandwidth.  

 

 

Figure 1.  Imbalance settlement hourly prices (upper chart) and  day-ahead 
marked prices (bottom chart). 
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Figure 2.  STL decomposition of imbalance settlement price (p1) time series 

(upper chart) and  day-ahead marked price (p2) time series (bottom chart). 



Construction samples are pairs of profiles (xk, yk) from 
history representing the same days of the week as the current 
input profile x and the forecasted profile y, respectively. For 
example, when we forecast price profile for Tuesday, the pairs 
of construction profiles are selected from history, where x-
profiles represent Mondays and y-profiles represent Tuesdays. 
This decomposition of the forecasting problem into separate 
days of the week results from the existence of the weekly 
season in the price time series and different profile shapes for 
working and weekend days as well. 

When the most popular Gaussian kernel is used, N-WM 
takes the form: 
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This equation expresses  a linear combination of vectors yk 
weighted by the normalized kernels, which nonlinearly map 
the distance between patterns x and xk. The distance is 
parameterized by the bandwidths. Thus, the bandwidth hj 
controls the share of the j-th component of x in the distance. 
The bandwidth values decide about the bias-variance tradeoff 
of the estimator. When they are too small the estimator tends 
to undersmoothing, and when they are too large it tends to 
oversmoothing. Thus the selection of the bandwidth values is 
a crucial issue. To find them we calculate their initial values 
using formula proposed by Scott [9] for the normal product 
density estimators: 
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where j̂  is the standard deviation of the j-th component of x 

estimated from the sample. 

The bandwidths are searched using iterative process where 
vectors h are generated one by one according to: 

 Sahh  

where a = amin, amin + a, amin + 2a, ..., amax. 

The optimal a value is selected taking into account the 
model performance on historical data (see Section IV).    

B. Quantile forecasts 

The N-WM generates point forecasts. To get probabilistic 
forecasts in quantiles, the model is used to forecast historical 
data. The residuals distribution for historical data is 
determined and its quantiles are calculated. We assume that 
for new forecasting task the error distribution will not change 
and will be similar to the error distribution for historical 
period. In the experimental part of the work we use historical 
period covering 2014 for residual quantiles estimation when 
constructing the forecasting model for data from 2015. The 
histograms of residuals for 2014 in Fig. 3 are shown. As we 

can see from this figure for p2 much bigger residuals are 
observed than for p1.  

The quantiles of residuals for probabilities  
p = 0.01, 0.02, ..., 0.99 are calculated and added to the point 
forecasts. This gives quantiles of the forecast distribution. The 
point forecast is the median of this distribution. A prediction 
interval is a range of specified coverage probability under that 
distribution. For example 95% prediction interval is defined 
by the 0.025 and 0.975 quantiles of the forecast distribution. 

Fig. 4 shows an example of the forecast distribution in 
quantiles. The point forecast generated as 24-component 
vector by N-WM is expanded to 99 quantiles. The bottom line  
represents 0.01 quantile and the top line represent 0.99 
quantile. The range between them is the 98% prediction 
interval.  

The proposed method of generation of the quantile 
forecasts is different from that proposed in [10], where the 
standard deviation of errors for historical data was calculated. 
Having the point forecast and standard deviation, the inverse 
cumulative distribution function was used to expand the 
forecasts to quantiles. The forecast distribution obtained in this 
way is symmetrical about the point forecast. The proposed 
approach gives more realistic asymmetric distribution. The 
quantiles for probabilities close to one are much larger than 
for the normal distribution due to the occurrence of many 
spikes (see Fig. 1).  
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Figure 3.  Histograms of residuals for 2014. 
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Figure 4.  An example of the forecast distribution in quantiles. 



IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed approach 
using N-WM, the method was examined on two price time 
series described in Section II: 

 p1: time series of the imbalance settlement hourly prices 
obtained from the Polish Balancing Market over the period 
2012–2015,  

 p2: time series of the day-ahead marked hourly prices 
obtained from the Polish Power Exchange over the period 
2012–2015. 

Data form 2015 are treated as the test data. The forecasting 
model is used separately for each day of this period. The 
forecasting task for the model is to forecast electricity prices 
for the next day. For each forecasting task (test sample) the 
construction samples are selected individually from the period 
from January 1st, 2012 to the day preceding the forecasted 
day. 

To select the best values of the parameters hj in (3) we use 
iterative procedure described in Section III.A, changing a 
from 0.25 to 4.00 with a step of 0.01. For each a value the 
model is tested on each day of 2014 using construction 
samples from history. An average forecast error (MAPE) is 
used as a model performance measure indicating the optimal 
value of a. Using this value the model is applied for data from 
2015 to get point forecasts. 

Residual quantiles are estimated on data from 2014 using 
optimal N-WM. The cumulative distribution functions 
corresponding to the residual quantiles in Fig. 5 are shown. 
From this figure we can read the correction p for the point 
forecast to get its quantile. For example, the 0.2 quantile is 
about 1p̂ – 28 for p1 time series and 2p̂ – 11 for p2 time series, 

whilst 0.8 quantile is about 1p̂ + 25 for p1 and 2p̂ + 14 for p2. 
In the proposed simplified approach, for getting the given 
quantile forecast the same corrections p are used for each 
point forecast. 

Fig. 6 shows forecast for the first week of 2015. Prediction 
intervals were determined on the basis of quantiles. In this 
figure point forecasts for ARIMA and exponential smoothing 
(EST) are also shown. The ARIMA and EST parameters were 
estimated in the stepwise procedures for traversing the model 
spaces implemented in the forecast package for the R 
environment for statistical computing [11]. These automatic 
procedures return the optimal models with the lowest Akaike 
information criterion value. The ARIMA and EST models 
were built for each forecasting task (each day of 2015) 
independently using 3-week price time series fragments 
immediately preceding the forecasted day.  

The average errors of point forecasts: mean absolute 
percentage error (MAPE) and root mean squared error 
(RSME) in Tables I and II are shown. Interquartile ranges 
(IQR) of the percentage errors are also shown in these tables 
as a measure of error dispersion (IQR is usually used instead 
of the standard deviation as a more robust dispersion measure 
when analyzing asymmetric distributions like in our case). 
For comparison forecast results for the naïve model are also 
shown in these tables. This approach simply takes the 

forecasted electricity price of day k exactly equivalent to the 
electricity price of day k – 7. 

As can be seen from Tables I and II, for both price time 
series the best results were achieved for the proposed N-WM. 
The second best results were provided by EST. Note that the 
naïve model was only a little worse than the more 
sophisticated models. This confirms the difficult nature of the 
analyzed price time series. As expected, the accuracy of 
forecasting the p1 time series is much worse than the 
accuracy for p2 time series. More detailed results, the 
histograms of residuals for 2015 in Fig. 7 are shown. For both 
datasets negative distribution skewness for N-WM is 
observed. It means that the forecasted prices are on average 
higher than actual ones. 
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Figure 5.  Cumulative distribution functions for calculating the quantiles of 
electricity prices determined using N-WM.   
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Figure 6.  Forecasts for the first week of 2015: settlement hourly prices 
(upper chart) and day-ahead marked prices (bottom chart). 



For evaluating the full predictive densities composed by 
the quantile forecasts the pinball loss is often used [6]: 
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where  = qp ˆ , q̂  is the price forecast at the -th quantile 
and p is the actual price. 

Average values of the pinball loss over all target quantiles 
for data from 2015 were: 10.45 for p1 and 5.97 for p2.  

TABLE I.  FORECAST RESULTS FOR P1 DATA 

Model MAPE IQR RMSE 
N-WM 20.32 30.47 45.57 
ARIMA 24.80 37.68 53.58 

EST 21.02 30.72 49.10 
Naive 26.18 35.72 64.11 

TABLE II.  FORECAST RESULTS FOR P2 DATA 

Model MAPE IQR RMSE 
N-WM 9.38 13.22 34.17 
ARIMA 13.52 20.01 44.04 

EST 10.36 15.38 40.39 
Naive 12.37 16.43 54.74 
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Figure 7.  Histograms of residuals for settlement hourly prices (upper chart) 
and day-ahead marked prices (bottom chart). 

V. CONCLUSIONS 

The aim of this work was to develop a simple model based 
on Nadaraya-Watson estimator for probabilistic forecasting 
hourly electricity prices at day-ahead markets. The model 
generates the point forecasts as a daily price profile using the 
most similar profiles to the current profile from the history. 
The construction profiles forming the forecasted profile by 
weighted averaging, are selected from entire available data 
period. Note the difference comparing to ARIMA and 
exponential smoothing, where the forecasts are constructed on 
the basis of a time series fragment preceding the forecasted 
day (limited to 3 weeks in our case). 

The proposed method constructs the full predictive 
densities composed by 0.01,0.02, …, 0.99 quantiles, which are 
estimated using empirical distribution of residuals determined 
on historical data. The roughness of the quantile estimation 
caused by the adoption of the same residual distribution for 
the entire forecast period will be improved in future studies. It 
is planned to estimate the distribution of residuals individually 
for each forecasting task. This should bring more accurate 
probabilistic forecasts. 

REFERENCES 

[1] N.V. Karakatsani, D.W. Bunn, "Forecasting electricity prices: The 
impact of fundamentals and time-varying coefficients," International 
Journal of Forecasting, vol. 24(4), pp. 764-785, 2008. 

[2] R. Weron, "Electricity price forecasting: A review of the state-of-the-
art with a look into the future," International Journal of Forecasting, 
vol. 30(4), pp. 1030-1081, 2014. 

[3] X. Chen, Z.Y. Dong, K. Meng, Y. Xu, K.P. Wong, and H.W. Ngan, 
"Electricity price forecasting with extreme learning machine and 
bootstrapping," IEEE Transactions on Power Systems, vol. 27(4), pp. 
2055–2062, 2012. 

[4] K. Maciejowska, J. Nowotarski, R. Weron, "Probabilistic forecasting of 
electricity spot prices using Factor Quantile Regression Averaging," 
International Journal of Forecasting, vol. 32(3), pp. 957–965, 2016.  

[5] T. Jonsson, P. Pinson, H. Madsen, and H.A. Nielsen, "Predictive 
densities for day-ahead electricity prices using time-adaptive quantile 
regression," Energies, vol. 7(9), pp. 5523–5547, 2014. 

[6] J. Nowotarski, and R. Weron, "Recent advances in electricity price 
forecasting: A review of probabilistic forecasting," Renewable and 
Sustainable Energy Reviews, vol. 81, part 1, pp. 1548-1568, 2018. 

[7] R.B. Cleveland, W.S. Cleveland, J.E. McRae and I.J. Terpenning, 
"STL: A seasonal-trend decomposition procedure based on loess," 
Journal of Official Statistics, vol. 6(1), pp. 3–73, 1990. 

[8] G. Dudek, "Pattern similarity-based methods for short-term load 
forecasting – Part 2: Models," Applied Soft Computing, vol. 36, pp. 
422-441, 2015. 

[9] D.W. Scott, Multivariate Density Estimation: Theory, Practice, and 
Visualization. Wiley, 1992. 

[10] G. Dudek, "Multilayer perceptron for GEFCom2014 probabilistic 
electricity price forecasting," International Journal of Forecasting, vol. 
32, pp. 1057-1060, 2016. 

[11] R.J. Hyndman, Y. Khandakar, "Automatic time series forecasting: The 
forecast package for R," Journal of Statistical Software, vol. 27(3), pp. 
1–22, 2008. 

 

 

 

 


