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Abstract: 

In this paper univariate models for short-term load forecasting based on linear regression and patterns 

of daily cycles of load time series are proposed. The patterns used as input and output variables 

simplify the forecasting problem by filtering out the trend and seasonal variations of periods longer 

than the daily one. The nonstationarity in mean and variance is also eliminated. The simplified 

relationship between variables (patterns) is modeled locally in the neighborhood of the current input 

using linear regression. The load forecast is constructed from the forecasted output pattern and the 

current values of variables describing the load time series. The proposed stepwise and lasso 

regressions reduce the number of predictors to a few. In the principal components regression and 

partial least-squares regression only one predictor is used. This allows us to visualize the data and 

regression function. The performances of the proposed methods were compared with that of other 

models based on ARIMA, exponential smoothing, neural networks and Nadaraya-Watson estimator. 

Application examples confirm valuable properties of the proposed approaches and their high accuracy. 
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1. Introduction 

 

Short-term load forecasting (STLF) is necessary for economic generation of power and 

system security. It refers to forecasts of system load from hours to several days ahead. The 

accurate load forecasts lead to lower operating cost which contributes to savings in electric 

utilities. The STLF accuracy is also important for the deregulated electricity markets. The 

amount of energy which the utility has to buy or sell in the real time market at unfavorable 

prices depends on the forecast error. Thus STLF is a very important problem for electric 

utilities, regional transmission organizations, energy suppliers and financial institutions. This 

is reflected in the literature by many forecasting methods that have been applied, including 

conventional methods and new computational intelligence and machine learning methods. A 

large research activity in the field of STLF is related with the problem complexity: the load 

time series is nonstationary in mean and variance, expresses trend, multiple seasonal 

variations (daily, weekly and annual) and random noise. In addition, load is affected by many 

external factors such as weather, time, demography, economy, electricity prices, geographical 

conditions, consumer types and their habits.         

Among the conventional STLF methods the most commonly employed are: the Holt-

Winters exponential smoothing (ES) and the autoregressive integrated moving average 

(ARIMA) models [1]. In ES the time series is decomposed into a trend component (expressed 

by level and growth terms) and seasonal components which can be combined additively or 

multiplicatively. ES allows us to model nonlinear and heteroscedastic time series but the 

exogenous variables cannot be introduced into the model. Other important disadvantages of 

ES are overparameterization and a large number of starting values to estimate. In [2] to reduce 

the dimension of the model new ES formulation called parsimonious seasonal ES was 

proposed. But there are still dozens or hundreds of terms to initialize and update in the model. 
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The recently developed exponentially weighted methods in application to STLF are presented 

in [3].     

ARIMA processes are a very rich class of possible models and allows us to model 

multiple seasonal cycles. The stochastic nature of load is often modeled with seasonal 

ARIMA models in practice. A disadvantage of ARIMA models is their linear nature. The 

order selection process of ARIMA is usually considered subjective and difficult to apply, 

which is a main obstacle in using these models. To simplify the forecasting problem the time 

series is often decomposed. The components: trend, seasonal components and irregular 

component, showing less complexity than the original series, are modeled independently (e.g. 

[4]). Another time series decomposition method using lifting scheme (the second generation 

wavelet transform) was described in [5].   

The most popular computational intelligence methods applied in STLF are neural 

networks. They have many attractive features such as: universal approximation property, 

learning capabilities, massive parallelism, robustness in the presence of noise, and fault 

tolerance. The drawbacks of neural network include: disruptive and unstable training, 

difficulty in matching the network structure to the problem complexity, weak capacity of 

extrapolation and many parameters to estimate (hundreds of weights). Some examples of 

using neural networks in STLF are: [6], where the complexity of the network is controlled by 

the Bayesian approach, [7], where a new hybrid forecasting method composed of wavelet 

transform, multilayer perceptron and evolutionary algorithm is proposed, [8], where a generic 

framework combining similar day selection, wavelet decomposition, and multilayer 

perceptron is presented, and [9], where the neural network generates the prediction intervals. 

Another branch of computational intelligence, fuzzy logic, allows us to enter 

information by facts and rules formulated verbally by experts and describing the behavior of 

complex systems by using linguistic expressions. With the help of fuzzy rules the imprecise, 

incomplete and ambiguous information can be introduced into the STLF models. When it is 

difficult to gain knowledge directly from the experts, to generate a set of if-then rules the 

neuro-fuzzy approach is applied, which learns from examples. But the neuro-fuzzy system 

structure is complex and the number of parameters is usually large (it depends on the problem 

dimensionality and complexity), so the learning is difficult and does not guarantee 

convergence to the global minimum. Examples of STLF models based on fuzzy logic are: 

[10], where the neuro-fuzzy system is used to adjust the results of load forecasting obtained 

by radial basis function neural network, [11], where two neuro-fuzzy networks are proposed: 

a wavelet fuzzy neural network using the fuzzified wavelet features as the inputs, and fuzzy 

neural network employing the Choquet integral as the outputs, [12], where an integrated 

approach which combines a self-organizing fuzzy neural network learning method with a 

bilevel optimization method is described, and [13], where the forecasting model combines 

fuzzy logic, wavelet transform and neural network. Another useful computational intelligence 

tools for STLF are: support vector machines (SVM) [14], [15],  ensembles of models [16], 

[17] and artificial immune systems [18] (description of more STLF models you can find on 

the website http://gdudek.el.pcz.pl/publications). 

It is noteworthy that many of the STLF models developed in recent years are hybrid 

solutions. They combine data preprocessing methods (e.g. wavelet transform) with 

approximation methods (such as neural and neuro-fuzzy networks or SVM) and optimization 

or learning methods (e.g. evolutionary and swarm algorithms).  

The disadvantages of the above mentioned complex forecasting models with many 

parameters are: hard and time-consuming training, problems with generalization, unclear 

structure and uninterpretable parameters. Most often time series with multiple seasonal cycles 

and trend, expressing nonstationarity in mean and variance cannot be modeled directly and 

additional treatments such as detrending, deseasonality or decomposition are needed. 
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In contrast to the complex models commonly used in STLF in this work simple methods 

of linear regression are proposed. The number of parameters here is small and they can be 

estimated using simple least squares approach. The key element of the proposed methods is 

data preprocessing: defining patterns of seasonal cycles. This simplifies the STLF problem 

eliminating nonstationarity, and filtering trend and seasonal cycles longer than the daily one. 

The paper is organized in a theoretical and an empirical part. In the beginning the 

patterns of daily cycles of load time series are defined. Then the main concepts of the linear 

regression models for STLF are introduced. In the last section the real load data are used to 

provide examples of model building and forecasting in practice. The results of the proposed 

methods are compared to results of other STLF methods: ARIMA, ES, multilayer perceptron 

and Nadaraya-Watson estimator. 

 

2. Patterns of the Times Series Seasonal Cycles 

 

Data preprocessing based on patterns simplifies the forecasting time series with multiple 

seasonal cycles. In our case the patterns of the daily cycles are introduced: the input patterns x 

and output ones y. The input pattern is a vector x = [x1 x2 … xn]
T
 X = ℝn

, representing the 

vector of loads in successive timepoints of the daily period: L = [L1 L2 … Ln]
T
, where n = 24 

for hourly load time series, n = 48 for half-hourly load time series and  

n = 96 for quarter-hourly load time series. The functions mapping the time series elements L 

into patterns are dependent on the time series (trend, seasonal variations), the forecast period 

and horizon. They should maximize the model quality. In this study the input pattern xi, 

representing the i-th daily period, is defined as follows: 
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where: i = 1, 2, …, N is the daily period number, N is the number of days in the time series,  

t = 1, 2, …, n is the time series element number in the period i, Li,t is the t-th time series 

element (load) in the period i, 
iL  is the mean load value in the period i. 

According to definition (1), first we subtract the vector Li mean from its components 

and then we divide the resulting vector by its length. As a result we get the normalized vectors 

xi with length 1, zero mean and the same variance. Note that the time series which is 

nonstationary in mean and variance is represented now by x-patterns having the same mean 

and variance. The trend and additional seasonal variations (weekly and annual ones in our 

case) are filtered. The x-patterns contain information only about the shapes of daily curves. 

Whilst the x-patterns represent input variables (predictors), i.e. the loads for the day i,  

the y-patterns  represent the output variables, i.e. the forecasted loads for the day i+, where  
is a forecast horizon in days. The components of the n-dimensional output pattern yi = [yi,1 yi,2 

… yi,n]
T
 Y = ℝn

, representing the load vector Li+ are defined as follows: 
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where: i = 1, 2, …, N, t = 1, 2, …, n. 
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This is the similar equation to (1) but in this case we do not use the mean load of the day i+  

( iL ) in the numerator and 
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 in the denominator, because these values are 

not known in the moment of forecasting. We use known values of iL  and 
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instead. This is very important because when the forecast of pattern yi is generated by the 

model we can determine the forecast of vector Li+ using transformed equation (2):   
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where tiy ,


 is the forecasted t-th component of the pattern yi.   

Note that iL  and the value of square root in (3) are known at the time of forecasting and can 

be used for decoding of tiy ,


 to get tiL ,


. Note also that 
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dispersion of the current daily cycle. Using this square root in the denominator of (1) we unify 

the dispersion of x-patterns. Using iL  in the numerator of (1) we unify the level of patterns. 

So the x-patterns are filtered versions of the daily curves. They carry information about the 

shape of the daily curves. This is shown in Fig. 1 (a) and (b). It can be seen from these figures 

that the daily cycles of different days of the week   {Monday, …, Sunday} and from 

different periods of the year are represented by x-patterns having the same mean and variance. 

So we can simply compare the shapes of different days.  

 In the case of y-patterns using transformation (2) we unify the patterns for each type of 

the day of the week  separately. The patterns of different days can be incomparable. This is 

because in (2) we use the mean and dispersion of the i-th day to encode Li+. So the y-patterns 

of Mondays for  = 1 are located higher than y-patterns of other days because we use 
iL  of 

Sundays in (2), which are usually lower than iL  of Mondays. For analogous reasons y-

patterns of Saturdays and Sundays are located at a lower level than y-patterns of weekdays. 

This is shown in Fig. 1 (c).   

 Because the position (level) of y-pattern depends on the day type , the forecasting 

models are built for the particular day type using training set  containing patterns 

corresponding to this day type. For example when we build the model for Monday and for  = 

1 (next day forecast) we learn it on the training set containing x-patterns of Sundays and y-

patterns of corresponding Mondays. If  = 2 (two days ahead forecast) we use x-patterns of 

Saturdays and y-patterns of Mondays in the training set. This approach and the unification of 

input and output variables using patterns simplify the forecasting model in which we do not 

need to implement weekly and annual cycles. The information about the position of the daily 

period in the weekly and annual cycles, which is contained in iL , we introduce to the forecast 

tiL ,


 in (3) by adding iL  as well as we introduce the information about current dispersion of 

the time series multiplying tiy ,


 by 
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, )( . So when we forecast the load time series 

using the pattern-based approach, first we filter out the information about the position of the 

days i and i+  in the weekly and annual cycles ((1) and (2)). Then we build the model on 

patterns and we generate the forecast of the y-pattern. Finally we introduce the information 

about the position of the forecasted day in the weekly and annual cycles using (3).   
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Fig. 1.  Two fragments of the load time series (a) and their x-patterns (b) and y-patterns (c). 

 

More functions defining patterns you can find in [19]. A fragment of time series 

represented by x-patterns does not have to coincide with the daily period (e.g. x-pattern can 

represent loads at hours 13 to 24 of the day i–1 and hours 1 to 12 of the day i). It can include 

several adjacent daily cycles (e.g two days preceding the day of forecast) or a part of one 

cycle (e.g. t = 1, 2, ..., 12 hours of the day i). It does not have to include the contiguous 

sequence of elements. We can select elements to the input pattern, e.g. loads at hours 2, 5, 14 

and 22. We can also use the feature extraction methods to create new pattern components 

from the original time series. 

 

3. Linear Regression Models for STLF 

 

The relationship between x- and y-patterns can be nonlinear. In our approach this 

function is approximated locally in the neighborhood around the current input pattern for 

which we want to get the forecast (we call this pattern a query pattern x*). By the 

neighborhood of x* in the simplest case we mean the set of its k nearest neighbors defined as 

the k x-patterns from the history which are closest to x* in terms of Euclidean distance and 

which represent the same day type  as x*. In the neighborhood of x* the target function 
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mapping x-patterns to y-patterns is less complex than in the entire range of x variation. It is 

assumed that for small k this function can be approximated locally using linear regression (in 

the experimental part of the work it is assumed k = 12). To simplify the regression model the 

problem of approximating the vector-valued function g : X  Y is decomposed into a set of 

problems of approximating the scalar-valued functions gt : X  Yt, t = 1, 2, …, n. Now 

instead of multivariate linear regression model the multiple linear regression models can be 

used, one for each component of y. 

The idea of the proposed pattern-based linear regression in Fig. 2 is presented and 

summarized in the following steps: 

1. Mapping the original time series elements to patterns x and y using (1) and (2). 

2. Selection of the k nearest neighbors of the query pattern x* and creation of the training 

set  = {(xi, yi,t)}, where xi are the nearest neighbors of x* representing the same day 

of the week as x*. 

3. Construction of the linear regression model M mapping X  Yt based on . 

4. Determination of the forecasted ty


 value for x* using M.  

5. Decoding ty


 to get the forecast tL


 using (3).  

In step 1 the load time series is preprocessed. The input and output patterns are 

determined for the successive daily periods, up to the current period. Pattern xi represents i-th 

daily period from the history, and yi paired with it represents (i+)-th daily period. The query 

pattern x* represents the current daily period. When the day type of x* is  and we forecast 

the load at hour t for the next day, we find k patterns xi most similar to pattern x* (step 2). We 

include these x-patterns and t-th components of paired with them y-patterns into the training 

set . Then, in step 3 the linear model is built. The estimation of the model parameters and 

model optimization procedures (described below in Sections 3.1–3.5) are performed on the 

 
 

Fig. 2.  The flowchart of pattern-based linear regression for STLF. 
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training set . The response of the model to the query pattern x* is the forecasted value of the 

y-pattern t-th component ty


 (step 4). In step 5 to get the forecasted load at hour t for the next 

day we decode ty


 according to (3). We use for this current, known parameters of the time 

series: iL  and 
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The proposed linear models do not include exogenous variables such as weather factors 

or price of electricity. To take them into account additional model can be built that corrects 

load forecast generated by the base linear model depending on the exogenous variables. This 

is the subject of future work. An example of such approach is presented in [10]. Atypical days 

such as public holidays are not handled for the proposed models. This is because there is often 

no information about atypical daily curve of the forecasted day in the previous day which is 

represented by the x-pattern. So the proposed forecasting models cannot predict atypical y-

pattern using this x-pattern as input.  

 

3.1. Multiple Linear Regression 

 

The multiple linear regression (MLR [20]) model for STLF is of the form: 

   nn xxy ...110 , (4) 

where 0, 1, …, n are coefficients and  is a random disturbance or error.  

The coefficients are estimated using least-squares fit. Notice that in the local approach 

the number of points used to build a model (k) can be less than their dimensionality and the 

number of free parameters of the model. In such a case the model is oversized: it has too 

many degrees of freedom in relation to the problem complexity expressed by only a few 

training points. In m-dimensional space (in model (4) m = n +1), we need at least m points to 

define a hyperplane. When m > k we get an infinite number of solutions of regression model 

(4), i.e. the least squares coefficients j are not uniquely defined. 

It is worth notice also that the components of x-patterns representing subsequent 

elements of time series are usually strongly correlated (see Fig. 3). Correlations between 

predictors indicate that some of them are linear combination of others (multicollinearity). 

Building model on collinear predictors leads to imprecise estimate of coefficients and missing 

importance of predictors. If predictors carry similar information about the response variable, 

some of them can be ignored. To select the most informative predictors the stepwise and lasso 

regression procedures described in sections 3.2 and 3.3 are used, respectively. Another cure 

for collinearity is the ridge regression which reduces the absolute value of coefficients. As a 

result their estimates have lower variance which may lead to better prediction. However this 

does not lead to dimensionality reduction. Yet another way to deal with collinearity and 

excessive dimensionality is the creation of new predictors combining the original ones. Two 

ways of extraction of predictors:  principal component regression and partial least-squares 

regression are presented in sections 3.4 and 3.5, respectively. New predictors are uncorrelated 

and to explain the variability of the response less predictors is needed. 
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Fig. 3.  The autocorrelation function of the load time series of the Polish power system. 

 

3.2. Stepwise Regression 

 

 Stepwise regression [21] is a method for selection of the best subset of predictors to the 

linear model by adding and removing predictors in a systematic way. The linear model in this 

case is of the form: 

   nnn xwxwy ...1110
, (5) 

where w1, …, wn are binary weights. 

The goal is to find the binary weight vector w = [w1 w2 … wn]
T
 and the coefficient 

values j for predictors with nonzero weights. The criterion of adding or removing the 

predictor is based on the p-value for an F test of the change in sum of squared error. When we 

analyze the introduction of the t-th predictor to the model, the null hypothesis is that this 

predictor would have a zero weight if added to the model. If the null hypothesis is rejected, 

the predictor is added to the model (wt = 1). When we analyze removing of the t-th predictor 

from the model, the null hypothesis is that this predictor has a zero weight. If there is 

insufficient evidence to reject the null hypothesis, the predictor is removed from the model  

(wt = 0).  

The selection procedure starts with empty set of predictors in the model. At each step it 

adds the predictor with the smallest p-value until there is no predictors having p-value less 

than an entrance tolerance (0.05 was used). Then the elimination procedure is activated which 

removes from the model the predictor with the largest p-value, if it is greater than an exit 

tolerance (0.1). The selection and elimination procedures are repeated alternately until there is 

no predictor for removal. 

Some other criteria can be used to add and remove predictors like [20]: R-squared, 

Mallows Cp, Akaike information criterion or Bayes information criterion. The solutions 

generated by the stepwise regression are suboptimal and there is no guarantee that a different 

initial model or different sequence of steps will not lead to a better model.    

 

3.3. Regularized Least-Squares Regressions 

 

In the regularized least-squares regression the minimized criterion is composed of the 

usual regression criterion and a penalty term dependent on the coefficient values. Thus the 

coefficients are shrunk towards zero. This can greatly reduce the variance, resulting in a better 

mean-squared error. The ridge regression estimates coefficients by minimizing the criterion 

containing sum of squared coefficients as a penalty term [22]: 
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where   0 is a parameter that controls the amount of shrinkage. 

The large value of  leads to more shrinkage. We get different coefficient estimates for 

different values of . But the coefficient values are never set to zero exactly, and therefore 

cannot perform predictor selection in the linear model. 

The alternative way of regularization is lasso (least absolute selection and shrinkage 

operator). This is a shrinkage method like ridge, with subtle but important difference: the 

penalty term in lasso is a sum of absolute values of coefficients. The lasso estimate is defined 

as [22]: 
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The nature of penalty term in lasso causes some coefficients to be shrunken to zero 

exactly, thus the lasso is able to perform predictor selection in the linear model. As  

increases more and more coefficients are set to zero (see Fig. 6 right). In the experimental part 

of the work the value of  in the ridge and lasso regressions was tuned in the leave-one-out 

procedure.  

 

3.4. Principal Components Regression 

 

Principal component regression (PCR) [20], [22] produces new predictors (principal 

components) which are linear combinations of the original ones and are linearly uncorrelated. 

The first principal component has the largest sample variance. Subsequent principal 

components have the highest variances possible under the constraint that they are orthogonal 

to the preceding components. The principal components are used in place of the original 

predictors in the regression model: 

   cczzy ...110 , (8) 

where zj is the j-th principal component, c  n is the numbers of components included into the 

model. 

There is no need to use all principal components in the model but only the first few ones (c) 

because usually they explain most of the variability in the response variable. So the 

components with the lowest variance can be discarded.   

  

3.5. Partial Least-Squares Regression 

 

Partial least-squares regression (PLSR) has some relationship to PCR. It also constructs 

new predictors by linear combination of original ones, but unlike PCR it uses also the 

response variable to do so. The new predictors called latent variables are the best orthogonal 

linear combinations of xt for predicting y (they explain best the response). PLSR searches for 

such orthogonal directions to project x-points that have the highest variance and highest 

correlation with the response. The number of predictors used in the final model is a parameter 

of PLSR like in PCR. These both methods are useful when there is more predictors than 

observations and when there is multicollinearity among predictors. The algorithms of partial 

least-squares and connections between PLSR and PCR can be found in [23].  



11 

 

 

4. Simulation Examples 

 

In the first example the proposed linear models are examined in the tasks of load 

forecasting of the Polish power system for the next day ( = 1). The hourly load time series is 

from the period 2002-2004 (see Fig. 4; these data can be downloaded from the website 

http://gdudek.el.pcz.pl/varia/stlf-data). The test samples are from January 2004 (without 

atypical 1 January; atypical days such public holidays are not handled for the proposed 

methods) and July 2004, i.e. we forecast loads in the successive days of January and July. 

Models are constructed using 12 nearest neighbors of the query point x* from the history, i.e. 

they are selected from the period from 1 January 2004 until the day before the day of the 

forecast. The Euclidean distance is used to select the nearest x-patterns. For each hour of the 

day of forecast a separate model is built. So for our test samples (30+31)24 = 1464 models 

were constructed. Because m > k (m = 25, k = 12) before using model (4) ten predictors were 

selected using stepwise regression (only with selection procedure and without elimination 

procedure). The algorithm starts with empty set of predictors and it adds at each step the 

predictor with the smallest p-value until the number of predictors reaches 10. The similar 

approach for reducing the initial number of predictors in the ridge and lasso regressions was 

used.  

 

 
 

Fig. 4.  The hourly electricity demand in Poland in three-year (a) and one-week (b) intervals. 

 

The frequencies of predictors selected in the stepwise and lasso regressions and the 

predictor number frequencies in Fig. 5 are shown. Among all 24 predictors included in x-

patterns the most often selected predictor represents the load at hour 24. It means that this 

predictor, which is the nearest in time to the forecasted variable among all predictors, carries 

much information about this variable. Fig. 3 suggests that good candidate as a predictor could 

be that one with lag 168 having high value of autocorrelation function. But in the proposed 

approach x-patterns were defined on the basis of the last daily period from the history.   
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The final models of stepwise regression most often were based on only one predictor, 

and in many cases they included only an intercept. In the case of lasso in over 30% of cases 

the final model included only an intercept. In such a case for some query pattern x* we get the 

forecast as 0y


. It means that the y-values of the nearest neighbors of x* are similar to 

each other, i.e. the approximating hyperplane is parallel to all x-axis of the coordinate plane. 

Remember that this liner model is valid only for this query point. For another query point we 

determine another set of neighbors and the hyperplane changes.    
 

 
 

Fig. 5.  The frequencies of predictors (left) and the frequencies of the predictor numbers (right) in stepwise and 

lasso regressions. 

 

In Fig. 6 the ridge and lasso traces (simultaneous graph of the regression coefficients 

plotted against parameter ) for one of the forecasting task are shown. Lasso selects three 

predictors in this case: x7, x10 and x18 at the optimal value of  = 0.0092.  

A small number of predictors selected in stepwise and lasso regressions confirms the 

assumption that the same information about the response variable is repeated in many 

predictors. Thus there is no sense to generate many of orthogonal components in PCR and 

PLSR models. The preliminary tests performed on the different load time series were shown 

that although the training error decreases with the number of principal components, the test 

error increases, in general. So the number of components was limited to only one, but it is 

worth remembering that this new component compresses information extracted from all 

original predictors. The local regressions using PCR and PLSR for one of the forecasting task 

in Fig. 7 are shown. In this case MAPE (Mean Absolute Percentage Error) for PCR was 1.15 

and for PLSR was 1.49.   
 

 
Fig. 6.  The ridge (left) and lasso (right) traces for the forecasting task of July 1, 2004, hour 12. 
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Fig. 7.  The local regressions using PCR (left) and PLSR (right) for the forecasting task of July 1, 2004, hour 12 

(o – query point). 

 

In Table 1 the forecast errors (MAPE = 100mean(|(forecast – actual value)/actual 

value|)) for the test samples are presented. MAPE is traditionally used as an error measure in 

STLF. As a measure of error dispersion interquartile ranges (IQR) were used. As we can see 

from this table the lowest errors were achieved by PLSR and PCR. It is noteworthy the for 

MLR errors are about twice larger than for other models. The density functions of percentage 

errors (PE = 100(forecast – actual value)/actual value) are presented in Fig. 8. These 

functions for PLSR and PCR are very similar as well as for stepwise and lasso regressions.   

 
Table 1. Forecast Errors and their Interquartile Ranges in the First Example  

Linear model 
January July Average 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

MLR 2.37 2.44 2.63 2.42 2.50 2.45 

Stepwise 1.52 1.44 1.14 1.20 1.33 1.28 

Ridge 1.59 1.50 1.23 1.23 1.41 1.29 

Lasso 1.51 1.39 1.06 1.02 1.28 1.18 

PCR 1.36 1.21 0.94 0.99 1.15 1.09 

PLSR 1.18 1.29 1.00 1.03 1.09 1.14 

 

 
Fig. 8.  The probability density functions of percentage errors. 
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 FR: time series of the half-hourly load of the French power system from the period of 

2007–2009. The test sample includes data from 2009 except for 21 atypical days,  

 GB: time series of the half-hourly load of the British power system from the period of 

2007–2009. The test sample includes data from 2009 except for 18 atypical days, 
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 VC: time series of the half-hourly load of the power system of Victoria, Australia, 

from the period of 2006–2008. The test sample includes data from 2008 except for 12 

atypical days.   

 

Our models were compared with other popular models of STLF: ARIMA, exponential 

smoothing (ES) and multilayer perceptron (MLP) as well as with the nonparametric 

regression model: Nadaraya-Watson estimator (N-WE).  

In ARIMA and ES the time series were decomposed into n series, i.e. for each t a 

separate series was created. This eliminates the daily seasonality and simplifies the 

forecasting problem. The ARIMA and ES parameters were estimated for each forecasting task 

(forecast of system load at time t of day i) using 12-week time series fragments immediately 

preceding the forecasted day. Atypical days in these fragments were replaced with the days 

from the previous weeks. Due to using short time series fragments for parameter estimation 

(much shorter than the annual period) and due to time series decomposition into n series we 

do not have to take into account the annual and daily seasonality in the models. In such a case 

the number of the parameters is much smaller and they are easier to estimate compared to 

models with triple seasonality.  

For each forecasting task the seasonal ARIMA(p, d, q)(P, D, Q)v model was created 

(where the period of the seasonal pattern appearing v = 7, i.e. one week period)  as well as the 

ES state space model. ES models are classified into 30 types [24] depending on how the 

seasonal, trend and error components are taken into account (they can be expressed additively 

or multiplicatively, and the trend can be damped or not). To estimate parameters of ARIMA 

and ES stepwise procedures for traversing the model spaces implemented in the forecast 

package for the R environment for statistical computing [25] were used. These automatic 

procedures return the optimal models with the lowest Akaike information criterion value.  

The MLP model is learned locally [26] using training patterns selected from the 

neighborhood of the query pattern. These are the same 12 patterns that are used to construct 

the proposed linear models. For each forecasting task a separate MLP is learned. To prevent 

overfitting MLP is learned using Levenberg-Marquardt algorithm with Bayesian 

regularization [27]. Since the target function is approximated locally using a small number of 

learning points, rather a simple form of this function should be expected. This implies small 

number of neurons. Based on the research reported in [26] the network composed of only one 

neuron with bipolar sigmoid (or hyperbolic tangent) activation function was chosen as an 

optimal architecture. 

The pattern-based STLF model using Nadaraya-Watson estimator was proposed in [28]. 

This is a representative of pattern-similarity based forecasting models [29]. The model 

parameters: smoothing parameters or bandwidts h1, h2, ..., hn are estimated in the grid search 

procedure using the same training sample as in linear models and MLP. In the grid search the 

starting point is determined using the Scott's rule and then the neighborhood of this point is 

searched in the iteration process (see [28] for details). To avoid overfitting the model was 

optimized using leave-one-out cross-validation. 

In Table 2 errors for one day ahead load forecasting are presented. The errors generated 

by the naïve model of the form: the forecasted daily curve is the same as seven days ago, are 

also shown in this table. The best results are marked with an asterisk and the second best 

results are marked with a double asterisk (best results were confirmed by Wilcoxon rank sum 

test with 5% significance level). As we can see from this table PLSR takes the first place 

among tested models for FR and GB data and second place for PL and VC data. Note that N-

WE generates the best results for three datasets, but the difference in errors between this 
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model and PLSR is small except FR data, where PLSR is better. The conventional forecasting 

models: ARIMA and ES work significantly worse than pattern-based models. To see how 

PCR and PLSR work on more recent data they were tested on time series of hourly load of the 

Polish power system from the period of 2012–2014 (test sample includes data from 2014 with 

the exception of 14 atypical days). The results for PLSR did not differ from those for PL data: 

MAPEtst = 1.34. For PCR results were a little worse: MAPEtst = 1.44.   

In Fig. 9 the errors for forecast horizons up to 7 days are compared. For longer horizons 

the linear regression models generated good results compared to the reference models. For 

VC data and horizons more than two days the conventional models ARIMA and ES 

outperformed other models.  

 
Table 2. Forecast Errors and their Interquartile Ranges (MAPEtst/IQRtst) in the Second Example  

Model PL FR GB VC 

PCR 1.35/1.33** 1.71/1.78 1.60/1.68** 3.00/2.70 

PLSR 1.34/1.32** 1.57/1.61* 1.54/1.61* 2.83/2.60** 

ARIMA 1.82/1.71 2.32/2.53 2.02/2.07 3.67/3.42 

ES 1.66/1.57 2.10/2.29 1.85/1.84 3.52/3.35 

MLP 1.44/1.41 1.64/1.70** 1.65/1.70** 2.92/2.69 

N-WE 1.30/1.30* 1.66/1.67 1.55/1.63* 2.82/2.56* 

Naïve 3.43/3.42 5.05/5.96 3.52/3.82 4.88/4.55 

 

 

 

 
 

Fig. 9.  Errors for different forecast horizons. 
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presented in this figure include time of the model optimization and forecasting for all hours of 
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regression is used first to reduce the initial number of predictors, the algorithm spends most of 

the time in stepwise phase (about 62 seconds). The most time efficient models are PLSR and 

PCR. When using these models the process of model building and forecasting for 24 hours of 

the next day takes less than half of a second. 

 

  
 

Fig. 10.  The total time of building the forecasting models for 24 hours of the next day for PL data. 

 

 

5. Conclusions 

 

The major contribution of this work is to propose new simple univariate linear 

regression models based on patterns of daily cycles for STLF. Patterns allows the forecasting 

problem to be simplified by filtering out the trend, annual and weekly cycles. The relationship 

between input and output patterns is approximated locally in the neighborhood of the query 

pattern using linear regression. Thus we resign from the global modeling of the target function 

in the entire range creating the locally competent model for the region around the query point. 

Since the local complexity is lower than the global one, we can use a simple model. This 

model brings good results for the current query point, but we have to construct new models 

for other query points.  

The similar approach based on patterns and local modeling was used earlier in other 

STLF models: MLP and N-WE. Although these models are nonlinear, the proposed linear 

models have better extrapolation property. Because the linear models are not as flexible as 

neural networks and nonparametric regression models there is no problem with overfitting. 

The cumbersome and time-consuming procedures to prevent overfitting are unnecessary. In 

the application examples the STLF methods based on patterns and local modeling outperform 

conventional models: ARIMA and exponential smoothing especially for shorter horizons. 

Using principal component regression or partial least-squares regression the number of 

predictors can be reduced to only one which allows us to visualize the regression function. In 

this case the models have only two parameters simply estimated using least-squared approach. 

This is a great advantage in comparison to the complex STLF models based on ARIMA, 

exponential smoothing, neural and neuro-fuzzy networks or SVM, where there are dozens or 

hundreds of parameters and their estimation requires advanced optimization methods. 
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