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Abstract. Medium-term electric energy demand forecasting is coming
a key tool for energy management, power system operation and main-
tenance scheduling. This paper offers a solution to forecasting monthly
electricity demand based on multilayer perceptron model which approx-
imates a relationship between historical and future demand patterns.
Energy demand time series exhibit non-stationarity, long-run trend,
cycles of seasonal fluctuations and random noise. To simplify the forecast-
ing problem the monthly demand time series is represented by patterns
of yearly periods, which filter out a trend and unify data. An output vari-
able is encoded using coding variables describing the process. The coding
variables are determined on historical data or predicted using ARIMA
and exponential smoothing. As an illustration, the proposed neural net-
work model is applied to monthly energy demand forecasting for four
European countries. The results confirm high accuracy of the model and
its competitiveness compared to other models such as ARIMA, exponen-
tial smoothing, kernel regression and neuro-fuzzy system.

Keywords: Medium-term load forecasting + Multilayer perceptron -
Pattern-based forecasting

1 Introduction

Power system load forecasting is an integral activity built into the processes of
the system operation planning in a longer horizon and its current control. It is
impossible to operate the system without accurate predictions. This is due to the
fact that electricity cannot be stored in larger quantities and current demand has
to be covered by production at any time. The accuracy of forecasts translates
into production and transmission costs as well as the degree of reliability of the
electricity supplies to recipients. Accurate forecasts of electricity demand are also
required in competitive electricity markets. Forecasts for different time horizons
and territorial areas determine the investment strategies of energy companies
and allow them to optimize their market positions. This directly translates into
the financial results of the competitive energy market participants.
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Time series of the monthly electricity demand, which are the subject of this
work, usually express an upward trend and yearly seasonality. The trend is corre-
lated with the level of economic development of a given country. Seasonal fluctu-
ations reflect the annual cycle associated with climatic factors and variability of
seasons. Among the factors that disrupt both the trend and seasonal variations
of the series, political decisions and factors affecting economic development are
mentioned.

The methods of medium-term prediction of power systems loads can be
divided into two general categories [1]: autonomous modeling approach and
conditional modeling approach. In the first approach primarily historical loads
and information about weather conditions are applied as input variables to pre-
dict electrical power loads. This approach is more suitable for stable economies,
without sudden changes affecting the electricity demand. The conditional mod-
eling focuses on the economic analysis and long-term planning and forecasting
of energy policy. The socio-economic conditions are taken into account, which
influence the energy demand in a given region. Economic growth is described by
economic indicators, which constitute additional inputs of the forecasting model
[1,2]. The executive parts of these both approaches employ statistical models or
models based on machine learning and computational intelligence. Classical sta-
tistical models include autoregressive moving average models such as ARIMA,
exponential smoothing and linear regression. Limited adaptive abilities of these
methods as well as problems with modeling nonlinear relationships have resulted
in increased interest in artificial intelligence techniques [3]. Artificial neural net-
works (NNs) are the most popular representatives of this group. They offer many
advantages compared to statistical models such as identifying and modeling non-
linear functions, learning appropriate relationships directly from data, ability to
generalization and parallel processing. In [3] the authors applied NNs in two
variants: multilayer perceptron and radial basis function network, to forecast
the trend of the monthly loads time series. The seasonal component is pre-
dicted using the Fourier series. Both forecasts, trend and seasonal fluctuations
are aggregated. Due to the problem decomposition, considerable simplification
of neural models has been achieved. The networks contained only two hidden
neurons, which translated into faster training. Both components of the monthly
load time series, a trend and seasonal fluctuations, are independently predicted
in [4] using NNs. To identify the trend, the authors used moving averages and
cubic splines. The combined forecast turned out to be more accurate than the
forecast generated by the single NN.

NNs are often combined with other methods such as fuzzy logic and evo-
lutionary algorithms. For example in [5] they are supported by fuzzy logic. In
this work seasonal variables are defined in the form of trapezoidal indicators
of the season. The authors train a collection of NNs with the same architec-
ture but other starting weights. NNs responses are aggregated, which in effect
gives more accurate forecasts. To prevent overfitting various regularization tech-
niques are used. A weighted evolving fuzzy neural network for monthly electricity
demand forecasting was proposed in [6]. Fuzzy rules implemented in neurons are
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introduced here additively in the training process. The novelty of this work is
introducing a weighted factor to calculate the importance of each factor among
the different rules. Moreover, an exponential transfer function is employed to
transfer the distance of any two factors to the value of similarity among differ-
ent rules. In [7] NNs trained by different heuristic algorithms, including grav-
itational search algorithm and cuckoo optimization algorithm, are utilized to
estimate monthly electricity demands. The authors showed that the proposed
approach outperforms the others and provides more accurate forecasting than
traditional methods. An example of combination of NNs and genetic algorithms
can be found in [8]. This work uses NNs, which architecture is developed using
genetic algorithm to realize the hourly load forecasting based on the monthly
total load consumption.

In this work we use multilayer perceptron for forecasting monthly electricity
demand. What distinguishes the proposed model from other neural models is
that it works on patterns of seasonal cycles of the time series. Patterns allows
us to unify data and filter out the trend. The relationship between input and
output variables in the pattern space is simpler compared to the original space.
Thus, the forecasting neural model has an easier task to solve and can contain
only a few neurons.

The paper is organized as follows. Section 2 presents the proposed forecasting
model including time series representation using patterns. In Sect. 3 the perfor-
mance of the proposed model on real-world data is evaluated. Finally, Sect. 4 is
a summary of our conclusions.

2 Forecasting Model

Monthly electricity demand time series exhibit yearly cycles which we trans-
form into input patterns. An input pattern x; = [x;12Z;2...7; )7 of length
n = 12 is a vector of predictors representing n timepoints preceding the fore-
casted point, i.e. the time series sequence covering a seasonal cycle X; =
{Ei_ni1,Ei_pnio,...,E;}. The vector x; is a normalized version of the demand
vector [F;_ny1Fi_nyo... E;]T. Tts components are calculated as follows [9,10]:

Ei—n+t - Ez
g, = Dindt — L 1
5t D7 ( )
where t = 1,2,...,n, F; is the mean value of the sequence X;, and D; =

Z?Zl(Ei_,lJrj — Ei)z is a measure of its dispersion.

The normalized x-vectors for different n-length demand sequences have all
the unity length, mean value equal to zero and the same variance. Thus, the
input data are unified. The trend is filter out and x-patterns carry information

about the shapes of the yearly cycles.
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The forecasted variable is E; -, i.e. electricity demand at month ¢+ 7, where
7 > 1 is a forecast horizon. This variable is also encoded to unify data filtering
the trend out. The encoded demand is:

Ei—I—T - E*

5 2)

Yi«r =

In this equation coding variables E. and D, should be determined for the sea-
sonal cycle covering the timepoint 7 + 7. But this future cycle is unobtainable in
the moment of forecasting (timepoint ). Thus, the coding variables cannot be
determined from it. We use in their place coding variables determined for the
known preceding seasonal cycle X;, i.e. E, = F;, D, = D;. Let us mark this
approach by C1.

In the second approach, C2, E, and D, represents mean value and dis-
persion of the seasonal cycle including ¢ + 7. When the forecast horizon is
7 € {1,2,...,12}, this cycle covers the future sequence {FE; 1, E;io,...,Fii12}
which is unknown. We predict the coding variables for this sequence using
ARIMA and exponential smoothing (ETS).

The third approach for coding variable calculation, C3, is used only for one-
step ahead forecasts. In this case F, and D, are determined on the basis of
the sequence {FE;_,10,Fi_pi3,...,F;11}, where the last component, F; 1, is
unavailable. In such case, as in C2, the coding variables are forecasted using
ARIMA and ETS.

Having transformed input and output data the training set is composed. It
includes pairs of x-patterns and corresponding encoded output variables y: & =
{(xi,yir)|xi € R"y;r € R/l = 1,2,..., N}. The x-pattern size determines a
number of NN inputs, 12. The number of hidden neurons is a variable, adjusted
to the complexity of the target function which maps x onto y. When the forecast
horizon is 7, the neural model has one output, y. This variant of the forecasting
model is marked by Al in the simulation study section. But other variant is also
considered, marked by A2, where the network forecasts all seasonal cycle for the
next year. In this case it has n = 12 outputs for 7 = 1,2, ..., 12, and the training
setis ¥ = {(x;,y:)|x; € R",y; € R",l =1,2,...., N}, where y; = [y; 1¥i 2---Yin]-
Variants A1 and A2 are used for twelve months ahead forecasts. In experimental
part of the work we test the NNs also in one month ahead forecasting (variant B).
In this case the training set is @, where 7 = 1 and x-pattern represents the sequence
of twelve months directly preceding the forecasted month.

In all cases the NN has a single hidden layer with sigmoidal neurons. It learns
using Levenberg—Marquardt algorithm with Bayesian regularization, which min-
imizes a combination of squared errors and the weights. This prevent overfitting.
The model hyperparameters, i.e. the number of neurons, were selected in leave-
one-out cross-validation. When the forecasts of the encoded demands are gener-
ated by the network, the forecasts of demands are calculated using transformed
equation (2):

~

Ei+7’ = ?J\i,TD* + E* (3)
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3 Simulation Study

In this section, the proposed neural model is evaluated on real-word data includ-
ing monthly electricity demand for four European countries: Poland (PL), Ger-
many (DE), Spain (ES) and France (FR). The data are taken from the publicly
available ENTSO-E repository (www.entsoe.eu). They cover time period from
1998 to 2014 for PL, and from 1991 to 2014 for other countries. Our goal is to
construct the forecasting models for 2014 using historical data.
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Fig. 1. Real and forecasted monthly demand for A1 variant.

We consider three variants of the forecasting procedure, Al, A2 and B. In
variant A1l the model generates forecast for the k-th month of 2014 on the basis
of data up to December 2013. The forecast horizon changes from 7 = 1 for
January 2014, to 7 = 12 for December 2014. We train twelve NNs to generate
forecasts for successive months of 2014 (each month forecasted by a separate
model). Inputs of the models are the same: x-pattern representing time series
fragment from January to December of the previous year. The output variable
is encoded using C1 or C2 approach. In the latter case coding variables E, and
D, for 2014 arc predicted using ARIMA and ETS on the basis of their historical
values.

In variant A2 instead of using twelve NNs for forecasting for individual
months, we use single NN with twelve outputs. Input patterns are the same
as for variant Al. Output variables are encoded using C1 or C2 approach. In C2
case we use ARIMA and ETS to forecast them.
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Fig. 2. Real and forecasted monthly demand for A2 variant.

In variant B the model generates forecast for the next month (from January to
December 2014, 7 = 1) on the basis of data up to this month (e.g. the model for
July 2014 gets input pattern representing time series fragment from July 2013 to
June 2014). For each month we build separate NN model, which learns on the input
patterns representing twelve preceding months. The output variable is encoded
using C1 or C3 approach. The latter case needs the coding variables F, and D, to

be predicted. As for the A variants we use for this ARIMA and ET'S.
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Fig. 3. Real and forecasted monthly demand for B variant.
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Fig. 4. Errors for Al variant.

Figures 1, 2 and 3 show the real and forecasted monthly demand and Figs. 4, 5
and 6 show the errors (mean absolute percent errors MAPE) for each forecasted
month. The forecast errors are shown in Tables 1 and 2. For comparison errors
for other forecasting models are also presented: ARIMA, ETS, Nadaraya-Watson
estimator NW-E [10] and neuro-fuzzy system N-FS [9]. The last two models work
on patterns defined in the same way as in this work. Best results for each data
are underlined. When comparing errors of all models, it should be noted that
both NW-E and N-FS overcame other models in three out of eight cases each.
As we can see from Tables 1 and 2, the proposed method is competitive to other
ones but it is hard to indicate its best variant. However, C1 variant is usually
better than C2 and C3 ones. It means that the coding variables do not have to
be predicted. We can calculate them from the known preceding seasonal cycle.
This simplifies the forecasting procedure.
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Fig. 5. Errors for A2 variant.
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Fig. 6. Errors for B variant.

In Table 3 the number of neurons are shown selected in leave-one-out proce-
dure. Surprisingly, NN in variant A2 having the most difficult task to forecast
twelve monthly demands at once needs the least hidden neurons: in most cases
only one. Single-output NNs need more neurons to approximate the target func-
tion: from 2.58 up to 5.92.

Table 1. MAPE for optimal number of neurons, A1 and A2 variants.

Model PL |DE |ES |FR
A1-C1 1.76 | 1.86 | 2.02 | 6.84
A1-C2-ARIMA | 2.17|2.31|3.21 | 7.47
A1-C2-ETS 2.31/2.32]2.10|5.48
A2-C1 1.7511.931.90 | 4.71
A2-C2-ARIMA 1.38|1.88|3.39 | 7.41
A2-C2-ETS 1.55 | 1.86 1 2.28 | 5.42

ARIMA 3.2514.36 | 1.93 | 10.76
ETS 6.422.822.36|6.77
N-WE 1.531.80|1.49 4.71

N-FS 1.5714.94|1.67|3.34
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Table 2. MAPE for optimal number of neurons, B variant.

Model PL |DE ES |FR
B-C1 1.8313.271.42 | 3.23
B-C3-ARIMA | 1.97 | 2.29 | 1.80 | 4.00
B-C3-ETS 1.8712.30 | 1.62 | 4.00

ARIMA 1.7512.33|1.434.10
ETS 2.2812.64|2.85|3.66
N-WE 1.3012.47/1.16 | 2.83
N-FS 1.06 1 2.87]0.95|5.85

Table 3. Optimal number of neurons.

Model PL |DE |ES |FR
Al1-C1 5.254.17|3.33 | 4.58
A1-C2-ARIMA/ETS | 2.92 | 4.17|5.92 | 4.00
A2-C1 4 11 |2 |2

A2-C2-ARIMA/ETS |1 |1 |1 |1

B-C1 4.424.50 | 3.42 | 4.33
B-C3-ARIMA/ETS |3.00 | 2.58 |4.17 | 3.17

4 Conclusion

In this work we examine the neural network model for pattern-based forecasting
monthly electricity demand. The model works on patterns representing normal-
ized yearly seasonal cycles of the demand time series. Input patterns express
shapes of the yearly cycles after filtering out a trend and unifying a variance.
Also the output data are unified using coding variables which are calculated
based on the historical data or they are predicted. The pattern approach sim-
plify the forecasting problem so the forecasting model does not have to capture
the complex nature of the process. This leads to model simplification and faster
learning.

Multilayer perceptron provides a flexible model which can forecast both indi-
vidual monthly demand and the whole yearly cycle. The proposed neural model
is competitive with other state-of-the-art models such as neuro-fuzzy system and
Nadaraya-Watson estimator as well as the classical statistical models including
ARIMA and exponential smoothing. However, it is difficult to indicate the best
variant of the model. It should be selected depending on the data, because each
monthly demand time series is characterized by its own features such as the
trend, variance, seasonal variations and the level of random noise.
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