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Abstract. This work presents an extended hybrid and hierarchical deep
learning model for electrical energy consumption forecasting. The model
combines initial time series (T'S) decomposition, exponential smoothing
(ETS) for forecasting trend and dispersion components, ETS for desea-
sonalization, advanced long short-term memory (LSTM), and ensem-
bling. Multi-layer LSTM is equipped with dilated recurrent skip connec-
tions and a spatial shortcut path from lower layers to allow the model to
better capture long-term seasonal relationships and ensure more efficient
training. Deseasonalization and LSTM are combined in a simultaneous
learning process using stochastic gradient descent (SGD) which leads to
learning T'S representations and mapping at the same time. To deal with
a forecast bias, an asymmetric pinball loss function was applied. Three-
level ensembling provides a powerful regularization reducing the model
variance. A simulation study performed on the monthly electricity de-
mand TS for 35 European countries demonstrates a high performance of
the proposed model. It generates more accurate forecasts than its pre-
decessor (ETS+RD-LSTM [1]), statistical models such as ARIMA and
ETS as well as state-of-the-art models based on machine learning (ML).

Keywords: Exponential smoothing - Long short-term memory - Mid-
term load forecasting.

1 Introduction

The power system load is a nonlinear and nonstationary process that can change
rapidly due to many factors such as macroeconomic variations, weather, electric-
ity prices, consumer types and habits, etc. Therefore, electricity demand fore-
casting, which is essential for the power system operation and planning, is a big
challenge. In this study we consider mid-term electrical load forecasting (MTLF)
focusing on monthly electricity demand forecasting over 12 months horizon.
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Initiative of Excellence”, 2019-2022. Project no. 020/RID/2018/19, the amount of financing 12,000,000.00 PLN.
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MTLF methods can be roughly classified into statistical/econometrics meth-
ods or ML methods [2]. The former include ARIMA, ETS and linear regression
(LR). ARIMA and ETS can deal with seasonal TS but LR requires additional
operations such as decomposition or extension of the model with periodic com-
ponents [3]. Limited adaptability of the statistical MTLF models and problems
with nonlinear relationship modeling have increased researchers’ interest in ML
and Al tools [4]. Of these, neural networks (NNs) are the most popular because of
their attractive features including learning capabilities, universal approximation
property, nonlinear modeling and massive parallelism. Some examples of using
NNs for MLTF are: [5] where NN uses historical loads and weather variables to
predict monthly demand and is trained by heuristic algorithms to improve per-
formance, [6] where Kohonen NN is used, [7] where NNs are supported by fuzzy
logic, [8] where generalized regression NN is used, [9] where weighted evolving
fuzzy NN is used, and [10] where NNs, LR and AdaBoost are combined.

Recent trends in ML such as deep recurrent NNs (RNNs), are very attractive
for TS forecasting [11]. RNNs are able to exhibit temporal dynamic behavior
using their internal state to process sequences of inputs. Recent works have
reported that RNNs, such as the LSTM, provide high accuracy in forecasting
and outperform most of the traditional statistical and ML methods [12]. Some
application examples of LSTMs to load forecasting can be found in [13-15].

In [1] we proposed a hybrid residual dilated LSTM and ETS model (ETS+RD-
LSTM) for MTLF. This model was based on the winning submission to the M4
forecasting competition 2018 [16], developed by Slawek Smyl [17]. A simulation
study confirmed the high performance of the model and its competitiveness with
classical models such as ARIMA and ETS as well as state-of-the-art ML models.
In this work we extend ETS4+RD-LSTM by introducing initial TS normalization,
i.e. detrending and unifying the variance. This method of T'S preprocessing we
used in our previous works achieving very good results [18]. Recently we used it
for LSTM model obtaining a 15% reduction in error [19]. We expect that the T'S
initial normalization, which simplifies the relationship between input and output
data, allows ETS+RD-LSTM to improve its performance.

2 Forecasting Model

The proposed model is a modified version of ETS+RD-LSTM which we de-
scribed in [1]. We extend ETS+RD-LSTM by introducing initial TS normal-
ization. A normalization procedure removes a trend and unifies variance of the
TS. The normalized TS exhibit yearly patterns which are further removed using
deseasonalization as an integral part of ETS+RD-LSTM. The normalized and
deseasonalized TS are forecasted using RD-LSTM. Then the forecasts are re-
seasonalized using seasonal components extracted by ETS. To reduce the model
variance, we use ensembling at three levels which aggregates individual forecasts.
The resulting aggregated forecasts are finally denormalized. For denormalization,
the forecasts of the mean yearly demand and yearly dispersion are needed. They
are produced by additional two ETS modules.
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2.1 Architecture and Features

An architecture of the proposed forecasting system is shown in Fig. 3. The system
components are as follows (symbols in italics denote the sets of TS or forecasts):

Normalization — each original monthly electricity demand TS is normalized.
This procedure removes a trend from the TS and unifies its variance. Nor-
malization module loads a set of TS (Z), calculates the series of yearly mean
demands (Z) and yearly dispersions (X) for each TS, and determines nor-
malized series (V).

ETS — exponential smoothing modules for forecasting the yearly mean de-
mands and their dispersions. These values are necessary for denormalization.
Deseasonalization — each normalized TS is deseasonalized. This procedure
extracts the seasonal components, S, individually for each series using ETS
(ETSd module), and determines deseasonalized TS, X.

RD-LSTM - residual dilated LSTM for forecasting the normalized and de-
seasonalized TS, X.

Reseasonalization — each TS forecast produced by RD-LSTM is reseasonal-
ized using inverse operations to deseasonalization.

Ensembling — the reseasonalized forecasts produced by RD-LSTM are aver-
aged. The ensembling module receives the sets of individual forecasts, Yk’" ,
and returns an aggregated forecast for each TS, )Afavg.

Denormalization — the averaged forecasts Y, are denormalized using fore-

casted values of the yearly means, Z, and dispersions, >
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Fig. 1. The proposed forecasting system architecture
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The proposed system has a hybrid and hierarchical structure. It combines

statistical modeling (ETS), advanced ML, (RD-LSTM), and ensembling. ETS is
used as a forecasting model for yearly means, Z, and dispersions, Y, as well as

for

extraction of seasonal components (ETSd). The preprocessed TS, without

trend and seasonal variations, are forecasted using RD-LSTM. Details of data
preprocessing and flow are described in subsection 2.2.

The TS are exploited in a hierarchical manner, meaning that both local and

global components are utilized in order to extract and combine information at
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either a series or a dataset level, thus enhancing the forecasting accuracy. The
global features are learned by RD-LSTM across many TS (cross-learning). The
specific features of each individual TS, such as trend, variance, and seasonal-
ity, are extracted by normalization and ETSd modules. Thus, each series has a
partially unique and partially shared model.

The strength of RD-LSTM, which revealed in M4 competition, is cross-
learning, i.e., using many series to train a single model. This is unlike standard
statistical TS algorithms, where a separate model is developed for each series.
Another important ingredient in the success of the proposed method precursor
in the M4 competition was the on-the-fly preprocessing that was an inherent
part of the training process. Crucially, the parameters of this preprocessing (in
the proposed model these are twelve initial seasonal components and smoothing
coefficient 3, see subsection 2.2) were being updated by the same overall opti-
mization procedure (SGD) as weights of RD-LSTM, with the overarching goal of
minimizing forecasting errors. This enables the model to simultaneous optimiza-
tion of data representation, i.e. searching for the most suitable representations
of input and output data for RD-LSTM, and forecasting performance.

ETSd is used as the preprocessing tool. It extracts a seasonal component
which is used for deseasonalization of the normalized TS. ETSd was inspired by
the Holt-Winters multiplicative seasonal model. However, it has been simplified
by removing trend and level components (see subsection 2.2). This is because
the input TS are normalized, i.e. they have no trend and their level is one. ET'Sd
is optimized simultaneously with RD-LSTM using pinball loss function [17]:

L= {( “Er o ifm 2 1)
(T —x)X—7) Ty >y

where z; and #; are the actual and forecasted values, respectively, and 7 € (0,1)
is a parameter controlling the loss function asymmetry.

When 7 = 0.5 the loss function is symmetrical and penalizes positive and
negative deviations equally. When the model tends to have a positive or neg-
ative bias, we can reduce the bias by introducing 7 smaller or larger than 0.5,
respectively. Thus, the asymmetric pinball loss function, penalizing positive and
negative deviations differently, allows the method to deal with bias.

ETS for forecasting the yearly mean demands and their dispersions are de-
fined as innovations state space models [20]. They combine the seasonal, trend
and error components in different ways (additively or multiplicatively). For each
TS the optimal ETS model is selected using Akaike information criterion (AIC).

Ensembling is used for reduction the model variance related to the stochastic
nature of SGD, and also related to data and parameter uncertainty. Ensembling
is seen as a much more powerful regularization technique than more popular
alternatives, e.g. dropout or L2-norm penalty [21]. In our case, ensembling com-
bines individual forecasts at three levels: stage of training level, data subset level
and model level. At the stage of training level, the forecasts produced by L most
recent training epochs are averaged. This can reduce the effect of stochastic
searching, i.e. calming down the noisy SGD optimization process. At the data
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subset level, we use K models which learn on the subsets of the training set,
Uy, Uy, ..., Uk. Fach k-th model produces forecasts for TS included in its own
training subset ¥. Then the forecasts produced by the pool of K models are
averaged individually for each TS. The third level of ensembling simply averages
the forecasts for each TS generated in R independent runs of a pool of K models.
In each run, the training subsets ¥ are created anew (see [1] for details).

2.2 Time Series Processing

A monthly electricity demand TS exhibits a trend, yearly seasonality and random
component (see Fig. 2(a)). To simplify the forecasting problem, the TS is prepro-
cessed as follows. Let {2;}¥.; be a monthly electricity demand TS starting from

January and ending in December. This TS is divided into yearly subsequences
i112(i—1)+12
{Zt}t:12(i—1)+1’

z; = [2i12i2...2i12)7. The normalized version of z;, y; = [yi1¥i2- .- ¥i12
determined as follows:

i =1,..., N/12. Each i-th subsequence is expressed by a vector
17, is

zij — %
Yij = —— +1 (2)

g;

. _ . ; 12 _
where j = 1, ..., 12, Z; is a mean of subsequence {z} }, and o; = \/ijl(zm —Z)?

is a measure of its dispersion.
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Fig. 2. TS preprocessing: (a) original TS {z:}, (b) yearly mean demand TS {Z:}, (c)
yearly dispersion TS {0}, (d) normalized TS {y:}, (e) seasonal component TS {s;},
and (f) normalized and deseasonalized TS {z.}

Note that yearly subsequences {z¢} have different means and dispersions (see
Fig. 2(a)). After normalization they are unified, i.e. all yearly subsequences have
an average of one, the same variance and also a unity of length. They carry
information about the shapes of the yearly sequences. Now we create a new T'S
composed of normalized subsequences representing successive yearly periods:
{ye} = {y} 5\2112 ={y1,1,91,2, .-, yn/12,12}- This TS is shown in Fig. 2(d). Note
its regular character and stationarity.
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The TS of the mean yearly demand, {Ei}fv:/llz, and yearly dispersion, {oi}gv:/llz,
are shown in Fig. 2(b) and (c), respectively. They are forecasted by ETS one
step ahead (for the next year) and used for denormalization.

The normalized TS, {y;}, is further deseasonalized. To do so, we use a sim-
plified Holt-Winters multiplicative seasonal model with only one component:

Sip12 = Py + (1 — B)se (3)

where s; is the seasonal component at timepoint ¢ and 8 € [0, 1] is a smoothing
coefficient.

The seasonal component is shown in Fig. 2(e). It is used for deseasonaliza-
tion during the on-the-fly preprocessing. The TS {y;} is deseasonalized in each
training epoch using the updated values of seasonal components. These updated
values are calculated from (3), where parameters, 12 initial seasonal components
and f3, are increasingly fine tuned for each TS in each epoch by SGD.

The TS is deseasonalized using rolling windows: input and output ones. The
input window contains twelve consecutive elements of the TS which after de-
seasonalization will be the RD-LSTM inputs. The corresponding output window
contains the next twelve consecutive elements, which after deseasonalization will
be the RD-LSTM outputs. The TS fragments inside both windows are desea-
sonalized by dividing them by the relevant seasonal component. Then, to limit
the destructive impact of outliers on the forecasts, a squashing function, log(.),
is applied. The resulting deseasonalization can be expressed as follows:

where x; is the deseasonalized t-th element of the normalized TS, and s; is the
t-th seasonal component.

The preprocessed TS sequences contained in the successive input and output
windows are represented by vectors: xi" = [z ... x4 12], X0 = [T4413 - - - Tyyo4],
t =1,...,N — 24. These vectors are included in the training subset for the i-th
TS: &; = {(xi*, x¢**)}N 724, The training subsets for all M TS are combined
and form the training set ¥ = {P1, ..., Py} which is used for RD-LSTM cross-
learning. Note the dynamic character of the training set. It is updated in each
epoch because the seasonal components in (4) are updated by SGD.

The forecasts produced by RD-LSTM, Z;, are reseasonalized as follows:

])t = S¢ exp(it) (5)
where s; is determined from (3) on the basis of the TS history.
Finally, the TS is denormalized using transformed equation (2):
25 = (G5 — 1) + 2 (6)

where i refers to the forecasted yearly period, j = 1,...,12, Z; and &; are the
forecasted yearly mean and dispersion for period 1.
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Fig. 3. RD-LSTM architecture (a), LSTM block (b), and RD-LSTM block (c)

Table 1. Equations for the forward pass of LSTM blocks

Standard LSTM block

RD-LSTM block

fi = 0g(Wix: + Vih;_; + b))
ii =0y(Wix; + Vihi_; +b;)
g = 0c(Wyxi + Vyhi; +by)
of = 0y(Wlx; +Vihi_; +b})
ci=fi®c +ii®g

h; = o} ® oc(ci)

fi = 0g(Wih; " + Vihi_, + b))
i} = 0y (Wihi ' + Vihi_,; + b})
g, = 0c(Wyhi™' + Vih;_, +by)
of = 0y(Wohi™" + VLhi , +bl)
c=floc ,+iiog

hi = o{ ® (dc(ct) +h; ")

where W, V and b are input weights, recurrent weights and biases, respectively, o, is a hyperbolic tangent
function, og is a sigmoid activation function (1 4+ e~ %)71, ® denotes the Hadamard product, superscript 1 refers
to the first layer of RD-LSTM network, where we use the standard LSTM block, superscript I indicates the layer
number for RD-LSTM blocks (from 2 to 4 in our case), and d is a dilation (3, 6 or 12 in our case).

2.3 Residual Delated LSTM

The RD-LSTM architecture used in this study is shown in Fig. 3(a) [1]. It is
composed of four recurrent layers and a linear unit LU. The first layer consists
of the standard LSTM block shown in Fig. 3(b). The subsequent three layers
consist of RD-LSTM blocks, i.e. blocks equipped with dilated recurrent skip
connections and a spatial shortcut path from lower layers (Fig. 3(c)).

A standard LSTM block consists of hidden state h; and cell state c;. The
cell state contains information learned from the previous time steps which can
be added to or removed from the cell state using the gates: input gate (z), forget
gate (f) and output gate (0). At each time step ¢, the block uses the past state,
c;_1 and h;_4, and input x; to compute output h; and updated cell state c;.
The hidden and cell states are recurrently connected back to the block input.
All of the gates are controlled by the hidden state of the past cycle and input
X¢. The equations for a standard LSTM block are shown in Tab. 1.

The RD-LSTM blocks employ dilation mechanism proposed in [22]. It is to
solve three main problems related to RNN learning on long sequences: complex
dependencies, vanishing and exploding gradients, and efficient parallelization. It
is characterized by multi-resolution dilated recurrent skip connections. To com-
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pute the current states of the LSTM block, the last d — 1 states are skipped,
i.e. a dilated LSTM block receives as input states ¢;_4 and h;_g4, where d > 1
is a dilation. Usually multiple dilated recurrent layers are stacked with hierar-
chical dilations to construct a system, which learns the temporal dependencies
of different scales at different layers. In [22], it was shown that this solution can
reliably improve the ability of recurrent models to learn long-term dependency.
Dilated RNN can be particularly useful for seasonal TS. In this case dilations
can be related to seasonality. In our case we use d = 3, 6 and 12.

A residual LSTM was proposed in [23] to enable effective training of deep
networks with multiple LSTM layers by avoiding vanishing or exploding gradi-
ents in the temporal domain. Residual LSTM provides a shortcut path between
adjacent layer outputs. The shortcut paths are used to allow gradients to flow
through a network directly, without passing through non-linear activation func-
tions. In our implementation, we introduced shortcut paths extending equation
for the hidden state (note additional component, hffl, for a hidden state in the
right column of Table 1, where the RD-LSTM computation process is shown).

A linear unit, LU, transforms the output of the last layer, hf, into the forecast
of the output x-vector:

%" = W,h{ + b, (7)

Note that RD-LSTM works on 12-component x-vectors. It produces the fore-
casts for the whole yearly period receiving the previous yearly period as input.
The parameters of RD-LSTM, i.e. input weights W, recurrent weights V, and
biases b, are learned using SGD in the cross-learning mode simultaneously with
the ETSd parameters. The length of the cell and hidden states, m, the same for
all layers, was selected on the training set to ensure the highest performance.

3 Results

The proposed forecasting model is applied for monthly electricity demand fore-
casting for 35 European countries. The real-world data are taken from the
ENTSO-E repository (www.entsoe.eu). The TS lengths vary from 5 to 24 years.
The forecasting problem is to produce the forecasts for the twelve months of
2014 (last year of data) using data from the previous period for training. For
hyperparameter selection the model learned on the TS fragments up to 2012,
and then it was validated on 2013. The selected hyperparameters were used to
build the model for 2014: number of epochs 10, learning rate 10~3, length of the
cell and hidden states m = 40, asymmetry parameter in pinball loss 7 = 0.4,
ensembling parameters: L = 5, K = 4, R = 3. RD-LSTM was implemented in
C++ relying on the DyNet library and run in parallel on an 8-core CPU. We
employ R implementation of ETS (function ets from package forecast).

The proposed model was compared with its predecessor, ETS+RD-LSTM
[1], and other state-of-the-art models based on ML as well as classical statistical
models. They include: k-nearest neighbor weighted regression model, k-NNw,
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fuzzy neighborhood model, FNM, general regression NN model, GRNN, multi-
layer perceptron, MLP, adaptive neuro-fuzzy inference system, ANFIS, LSTM
model, ARIMA model, and ETS model. All ML models were used also in +ETS
versions, where the TS were initially normalized and the yearly mean and dis-
persion were forecasted using ETS (just like in this study). Details of the com-
parative models can be found in [18,24, 25, 19].

Table 2 shows the forecast results averaged over 35 countries, i.e. median
of absolute percentage error (APE), mean APE (MAPE), interquartile range of
APE as a measure of the forecast dispersion, root mean square error (RMSE),
and mean PE (MPE). The proposed model is denoted by 3ETS+RD-LSTM. As
can be seen from this table, all error measures indicate that 3ETS+RD-LSTM
is the most accurate model comparing with its competitors. It outperforms its
predecessor, ETS+RD-LSTM, by 8.7% in MAPE and 9.5% in RMSE.

Table 2. Results comparison among proposed and comparative models

Model Median APE MAPE IQR RMSE MPE
k-NNw 2.89 4.99 3.85 368.79 -1.87
FNM 2.88 4.88 4.26 354.33 -2.03
N-WE 2.84 5.00 3.97 352.01 -1.91
GRNN 2.87 5.01 4.02 350.61 -1.87
k-NNw+ETS 2.71 4.47 3.52 327.94 -1.25
FNM+ETS 2.64 4.40 3.46 321.98 -1.26
N-WE+ETS 2.68 4.37 3.36 320.51 -1.26
GRNN+ETS 2.64 4.38 3.51 324.91 -1.26
MLP 2.97 5.27 3.84 378.81 -1.37
MLP+ETS 3.11 4.80 4.12 358.07 -1.71
ANFIS 3.56 6.18 4.87 488.75 -2.51
ANFIS+ETS 3.54 6.32 4.26 464.29 -1.30
LSTM 3.73 6.11 4.50 431.83 -3.12
LSTM+ETS 3.08 5.19 4.54 366.45 -1.41
ARIMA 3.32 5.65 5.24 463.07 -2.35
ETS 3.50 5.05 4.80 374.52 -1.04
ETS+RD-LSTM 2.74 4.48 3.55 347.24 -1.11
3ETS+RD-LSTM 2.64 4.09 3.13 314.01 -0.32

MPE provides information on potential forecast bias. All the models pro-
duced negatively biased forecasts, i.e. overpredicted. But for 3ETS+RD-LSTM,
the t-test did not reject the null hypothesis that PE comes from a normal dis-
tribution with mean equal to zero (p-value = 0.44). All other models did not
pass this test. So it can be concluded that 3ETS+RD-LSTM, as the only model,
produced unbiased forecasts. Note that 3ETS+RD-LSTM has the mechanism to
deal with bias. The loss function (1) asymmetry is controlled by parameter 7. It
was selected as 0.4, which allowed the model to reduce the negative bias.

Fig. 4 depicts more detailed results, MAPE for each country. As can be seen,
in most cases 3ETS+RD-LSTM is one of the most accurate models. Fig. 5 depicts
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Fig. 5. Rankings of the models

the model rankings based on MAPE and RMSE. They show average ranks of
the models in the rankings for individual countries. Note the first position of
3ETS+RD-LSTM in both rankings.

Examples of forecasts produced by the selected models are shown in Fig. 6.
For PL and DE data, MAPE is on the low level around 2% while for GB data
the forecasts are strongly underestimated, over 5%. This is because the demand
for GB went up unexpectedly in 2014 despite the downward trend observed in
the previous period.

Summarizing experimental research, it should be noted that the forecasting
model performance depends significantly on the appropriate TS preprocessing.
Although LSTM deals with raw data, without preprocessing [19], introducing
initial normalization and dynamic deseasonalization in 3ETS+RD-LSTM im-
proved significantly LSTM performance.

It should be noted that LSTM based models are more complex than other
comparative models. Due to the huge number of parameters and complicated
learning procedure using backpropagation through time, the learning time of
LSTM is much longer than for other comparative models.



3ETS+RD-LSTM: A New Hybrid Model for MTLF 11

M PL + DE 4
x10 g 10 3.4 210 GB

FNM ui 4.4
N-WE+ETS
MLP+ETS
LSTM+ETS
ETS s i
. . T . | ETS+RD-LSTM 4 i 22
3ETS+RD-LSTM 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Months ~ [==ss=ee Real Months Months

Fig. 6. Examples of forecasts produced by selected models

4 Conclusion

In this work, we proposed an extended hybrid RD-LSTM and ETS model for
MTLF. It combines initial TS decomposition into three components (normalized
TS, trend, and dispersion), ETS modules for trend and dispersion forecasting,
ETS for deseasonalization, advanced LSTM, and ensembling. The model has a
hierarchical structure composed of a global part learned across many TS (LSTM)
and a TS specific part (normalization and deseasonalization). Deseasonalization
and LSTM are combined in a simultaneous learning process using SGD which
leads to learning TS representations and mapping at the same time.

We used residual dilated LSTM, which can capture better long-term seasonal
relationships and ensure more efficient training. This is because of dilated recur-
rent skip connections and a spatial shortcut path from lower layers. To deal with
a forecast bias, an asymmetric pinball loss function was applied. Three-level en-
sembling provides regularization reducing the model variance, which has sources
in the stochastic nature of SGD, and also in data and parameter uncertainty.

An experimental study, monthly electricity demand forecasting for 35 Euro-
pean countries, demonstrated the state-of-the-art performance of the proposed
model. It generated more accurate forecasts than its predecessor (ETS+RD-
LSTM), classical models such as ARIMA and ETS as well as state-of-the-art
models based on ML.
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