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Abstract. Medium-term electric energy demand forecasting is becoming an es-
sential tool for energy management, maintenance scheduling, power system plan-
ning and operation. In this work we propose Generalized Regression Neural Net-
work as a model for monthly electricity demand forecasting. This is a memory-
based, fast learned and easy tuned type of neural network which is able to gener-
ate forecasts for many subsequent time-points in the same time. Time series pre-
processing applied in this study filters out a trend and unifies input and output 
variables. Output variables are encoded using coding variables describing the 
process. The coding variables are determined on historical data or predicted. In 
application examples the proposed model is applied to forecasting monthly en-
ergy demand for four European countries. The model performance is compared 
to performance of alternative models such as ARIMA, exponential smoothing, 
Nadaraya-Watson regression and neuro-fuzzy system. The results show high ac-
curacy of the model and its competitiveness to other forecasting models.  

Keywords: Generalized Regression Neural Network, Medium-term Load Fore-
casting, Pattern-based Forecasting. 

1 Introduction 

Medium-term load forecasting (MTLF) provides useful information for energy man-
agement, maintenance scheduling, power system planning and operation. It includes 
forecasts from one month to several years. In competitive markets, where energy is 
traded, the accurate forecast of monthly, quarterly and yearly energy demands can pro-
vide an advantage in negotiations and concluding contracts for medium term genera-
tion, transmission and distribution.  
 The mid-term electric load as a function of time has a complex nonlinear behavior. 
It  expresses a trend following the economic and technological development of a coun-
try, yearly seasonality corresponding to climatic factors and weather variations and ran-
dom component disturbing the time series.  

In literature MTLF methods can be categorized into two general groups [1]. The first 
one includes the conditional modeling approach and focuses on economic analysis, 
management and long term planning energy load and energy policies. As input infor-
mation are considered: historical load data, weather factors, economic indicators and 
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electrical infrastructure measures. A MTLF model of this type can be found in [2], 
where macroeconomic indicators, such as the consumer price index, average salary 
earning and currency exchange rate are taken into account as inputs. 

The second group includes the autonomous modeling approach, which requires a 
smaller set of inputs: primarily past loads and weather variables. This approach is more 
suited for stable economies. The forecasting methods applied in this approach are clas-
sical methods such as ARIMA or linear regression [3], and computational intelligence 
methods, such as neural networks [4]. 

Neural networks have many attractive features, such as: universal approximation 
property, learning capabilities, massive parallelism, robustness in the presence of noise, 
and fault tolerance. They are often use to modeling of complex, nonlinear problems 
such as MTLF [1], [2]. In this work we propose MTLF model based on Generalized 
Regression Neural Network (GRNN). This is a memory-based, fast learned and easy 
tuned type of neural network which is able to generate forecasts for many subsequent 
time-points in the same time. Time series preprocessing applied in this study filters out 
the trend and unifies input and output variables. Output variables are encoded using 
coding variables describing the process. ARIMA and exponential smoothing models 
are applied for prediction of coding variables. 

The rest of this paper is organized as follows. In Section 2 we define a forecasting 
model based on GRNN describing network architecture and learning, and data prepro-
cessing methods. In Section 3 we test the model on real load data. We compare results 
of the proposed methods to other MTLF methods. Finally, Section 4 concludes the pa-
per. 

2 Forecasting Model based on GRNN 

2.1 GRNN 

GRNN is a type of supervised neural network with radial basis activation functions. It 
was introduced by Specht in 1991 [5] as a memory-based network that provides esti-
mates of continuous variables. In comparison of other NN types, where data are prop-
agated forward and backward many times until an acceptable error is found, in GRNN 
data only needs to propagate forward once. Thus, the training of GRNN is very fast. 
Other advantages of GRNN are: easy tuning, highly parallel structure and smooth ap-
proximation of a target function even with sparse data in a multidimensional space.    

The GRNN architecture in Fig. 1 is shown. The network is composed of four layers: 
input, pattern (radial basis layer), summation and output. The input layer distributes 
inputs xj without processing to the next layer. In the pattern layer nonlinear transfor-
mation is applied to the inputs. Each neuron of this layer uses a radial basis function 
which is commonly taken to be Gaussian: 
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where: xi is the i-th learning sample which is a center vector of the Gaussian function, 
si is a smoothing parameter and ||.|| is a Euclidean norm. 

 

 

Fig. 1. GRNN architecture. 

Each neuron represents individual training vector. Its output expresses the similarity 
between the input vector x and the i-th training vector. So the pattern layer maps the n-
dimensional input space into N-dimensional space of similarity, where N is the number 
of training vectors.  

The summation layer contains two neurons. The first one calculates the sum Σ1 of 
the target patterns yi weighted by the neuron outputs, whiles the second one calculates 
the arithmetic sum Σ2 of the pattern layer outputs.  

The GRNN output calculated by the output layer neuron expresses the weighted sum 
of the target patterns yi: 
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Note that the lower distance between x and xi entails the higher i-th neuron output 
and consequently the higher contribution of the target pattern yi to the sum (2). 

A smoothing parameter s is the only parameter to estimate. It determines the smooth-
ness of the fitted function and generalization performance of the model. When s be-
comes larger, the neuron output increases (weights for yi in (2) are bigger), with the 
result that the fitted function becomes smoother. Smoothing parameter s can be the 
same for all neurons or individually adjusted for each neuron. Finding the optimal 
smoothing parameter value is a key issue in GRNN learning. In [6] for adjusting s, the 
same for all neurons, simple enumerative method was used. In [7] for searching N-
dimensional space of smoothing parameters a differential evolution algorithm was ap-
plied. In this study we assume the same s for all neurons calculated as  
s = 0.02⋅l⋅median(x), where median(x) is the median of pairwise distances between 
learning x-patterns and l is tuned by enumerating.  
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2.2 Time Series Preprocessing 

Vector x called an input pattern represents predictors, and vector y called an output 
pattern represents the forecasted time series fragment. The input pattern is an n-com-
ponent vector representing a time series fragment preceding the forecasted fragment. 
Let us denote the forecasted fragment by Yi = {Ei+1 Ei+2 … Ei+m}, and the preceding 
fragment by Xi = {Ei–n+1 Ei–n+2 … Ei}, where Ek is the monthly energy consumption and 
k is the time index. An input pattern xi = [xi,1 xi,2 … xi,n]T represents the fragment Xi. 
Components of this vector are preprocessed points of the sequence Xi. Different pre-
processing methods are considered [8]:   

 tniti Ex +−=,  (3) 
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where t = 1, 2, ..., n, iE  is the mean value of the sequence Xi, and 
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Pattern components defined using (3) are the same as elements of the sequence Xi. 
Pattern components defined using (4) are the points of the sequence Xi divided by the 
mean value of this sequence. Patterns (5) are composed of the differences between 
points and the mean sequence value. Pattern (6) is the normalized vector [Ei–n+1 Ei–n+2 
… Ei]T. All patterns defined using (6) have the unity length, mean value equal to zero 
and the same variance.  

Similarly to input patterns, output patterns yi = [yi,1 yi,2 … yi,m]T representing the 
forecasted sequence Yi, are defined as follows:  

 titi Ey +=,  (7) 
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To calculate the forecast of the monthly energy consumption Ei+t on the basis of the 
forecasted y-pattern generated by the GRNN model we use transformed equations (7)-
(10). For example, in the case of (10) the forecasted energy consumption for the horizon 
t is calculated as follows: 

 iititi EDyE +=+ ,

))

 (11) 

where tiy ,

)
 is the t-th component of  the pattern y

)
 predicted by GRNN (2). 

In the above formulas (7)-(11), the coding variables iE  and Di are determined in 
three ways [9]:  
C1.  In the first approach they are calculated from the sequence Xi. So, iE  and Di for 

Yi are the same as for Xi. This enables us to calculate the forecast substituting in 
(11) coding variables for Yi, which are unknown at the moment of forecasting,  by 
known coding variables determined for Xi. 

C2.  In the second approach iE  and Di  in (7)-(10) are determined from the sequence 
Yi. Note, that in this case coding variables are not available for the forecasted se-
quence Yi at the time of making the forecast. Thus, they should be forecasted. We 
use ARIMA and exponential smoothing (ETS) for this purpose. The forecasted 
coding variables are inserted into (11) to calculate the forecasted energy consump-
tion. 

C3.  In the third approach, which is used only for one-step ahead forecasts (variant B 
in the experimental part of the work), the coding variables iE  and Di are deter-
mined from the annual period including time series fragments {Ei–n+2, Ei–n+3, …, 
Ei+1}. In this case when using (11) the coding variables cannot be calculated from 
time series elements because the value of Ei+1 is not known. Thus, iE  and Di 
should be predicted. Just like in the case of C2, we use for this ARIMA and ETS. 

3 Application Examples 

In this section the proposed GRNN model is applied to model and forecast the electric-
ity load demand for four European countries: Poland (PL), Germany (DE), Spain (ES) 
and France (FR). The data including monthly electricity demand time series were ob-
tained from the ENTSO-E repository (www.entsoe.eu). Data for PL cover the period 
from 1998 to 2014 and data for the other countries cover the period from 1991 to 2014. 
The forecasts are made for data from 2014, using data from previous years to GRNN 
learning. The forecasts were prepared in two variants:  
A. for all 12 months 2014 simultaneously (GRNN generates output pattern y repre-

senting the sequence Yi = {Ei+1 Ei+2 … Ei+12}),  
B. individually for 12 consecutive months of 2014 (12 GRNN models are created 

each of which generates a forecast for one month from the period January 2014 – 
December 2014). 

In variant A the training set contains pairs (xi, yi), which are historical for the fore-
casted sequence. The y-pattern having 12 components (m = 12) represents 12 months 
from January to December. The x-pattern represents n months directly preceding the 
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forecasted sequence. In variant B y-pattern having only one component (m = 1) repre-
sents one month of the year. The x-pattern represents n months directly preceding the 
forecasted month. In variant A the y-patterns are encoded using C1 or C2 approach, 
whilst in variant B they are encoded using C1 or C3 approach. In variants C2 and C3 
the coding variables are predicted using ARIMA and ETS.  In Fig. 2 results of forecast-
ing the coding variables in variant C2 are shown.   

 

  

Fig. 2. Forecasts of coding variables in variant C2. 

There are two parameters to estimate in GRNN model: the input pattern length n and 
the smoothing parameter s which is tuned by enumerating variable l (see Section 2.1). 
The model parameters were selected using grid search in leave-one-out procedure, 
where n was searched in the range from 3 to 24, and l was searched in the range from 
1 to 10.   

Figures 3 and 4 show forecast errors for 2014 depending on the model variant and 
definition of patterns. In most cases the best results were achieved for C1 variant, which 
does not need additional forecasting of the coding variables. Only for DE data in B 
variant a little better results were obtained when using C3-ETS. In five out of eight 
considered variants the lowest errors were achieved when patterns were defined by nor-
malization (6)-(10). In two cases definitions (5)-(9) gave better results, and in one case, 
for FR data and variant A, the model without time series preprocessing turned out to be 
the most accurate. 

 

 
Fig. 3. Errors for different variants of coding variables determination and pattern definitions, 

variant A.  
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Fig. 4. Errors for different variants of coding variables determination and pattern definitions, 
variant B. 

The real and forecasted monthly demand are presented in Figs. 5 and 6, and errors 
for each month of 2014 in Figs. 7 and 8. Forecast errors for validation and test samples 
for best variants of pattern definitions in Tables 1 and 2 are presented. In these tables 
the results of comparative models are also shown: ARIMA, ETS, Nadaraya-Watson 
estimator (N-WE) [8] and neuro-fuzzy system (N-FS) [9]. Best results are shown in 
bold. As you can see from these tables the proposed GRNN model looks quite good 
against the comparative models. In all cases it outperformed the classical models such 
as ARIMA and ETS and was competitive in accuracy with state-of-the-art models.    

Variant B which generates one-step ahead forecasts, usually provides better results 
than variant A. An exception is DE, where higher errors in variant B are observed. It is 
difficult to draw conclusions from Figs. 7 and 8, where errors for successive months 
are very diverse and there is no regularity here.  

 

 

 
Fig. 5. Real and forecasted monthly demand for 2014, variant A. 
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Fig. 6. Real and forecasted monthly demand for 2014, variant B. 

 

  

  
Fig. 7. Errors for consecutive months of 2014, variant A. 

 

  

  
Fig. 8. Errors for consecutive months of 2014, variant B. 
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Table 1. Forecast errors, variant A. 

 PL DE ES FR 

 MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst 

A-C1 2.95 1.52 3.25 1.85 2.90 1.34 3.20 4.73 

A-C2-ARIMA 1.61 1.60 2.03 1.86 2.47 3.16 2.50 7.36 

A-C2-ES 1.61 1.78 2.03 1.89 2.47 1.86 2.50 5.37 

ARIMA - 3.25 - 4.36 - 1.93 - 10.76 

ETS - 6.42 - 2.82 - 2.36 - 6.77 

N-WE - 1.53 - 1.80 - 1.49 - 4.71 

N-FS - 1.57 - 4.94 - 1.67 - 3.34 

Table 2. Forecast errors, variant B. 

 PL DE ES FR 

 MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst 

B-C1 2.04 1.34 2.52 2.41 2.44 1.24 3.05 2.86 

B-C3-ARIMA 1.97 1.73 2.33 2.18 2.10 1.92 3.01 4.04 

B-C3-ES 1.97 1.71 2.33 2.11 2.10 1.62 2.80 3.90 

ARIMA - 1.75 - 2.33 - 1.43 - 4.10 

ETS - 2.28 - 2.64 - 2.85 - 3.66 

N-WE - 1.30 - 2.47 - 1.16 - 2.83 

N-FS - 1.06 - 2.87 - 0.95 - 5.85 

4 Conclusion 

In this work we present GRNN model for medium-term load forecasting. In this ap-
proach the forecast is derived from the neighborhood of the query pattern using locally 
weighted regression. The model works on preprocessed time series sequences to filter 
out a trend and unify input and output patterns. Four methods of preprocessing are con-
sidered. Output variables are encoded using coding variables calculated from historical 
data or forecasted using classical methods: ARIMA or ETS. In most cases forecasting 
the coding variables does not improve model accuracy compared to calculating them 
from history.  

The model has only two parameters: the smoothing parameter of radial activation 
functions and the input pattern length. They are searched in a simple grid search proce-
dure. Fast one pass learning and easy tuning are the biggest advantages of the GRNN. 
In the light of the experimental study, it can be concluded that GRNN has been proven 
to be useful in medium-term load forecasting. It outperformed the classical models such 
as ARIMA and ETS and was competitive in accuracy with state-of-the-art models.    
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