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a b s t r a c t 

Neural networks with random hidden nodes have gained increasing interest from re- 

searchers and practical applications. This is due to their unique features such as very fast 

training and universal approximation property. In these networks the weights and biases 

of hidden nodes determining the nonlinear feature mapping are set randomly and are not 

learned. Appropriate selection of the intervals from which weights and biases are selected 

is extremely important. This topic has not yet been sufficiently explored in the literature. 

In this work a method of generating random weights and biases is proposed. This method 

generates the parameters of the hidden nodes in such a way that nonlinear fragments of 

the activation functions are located in the input space regions with data and can be used 

to construct the surface approximating a nonlinear target function. The weights and biases 

are dependent on the input data range and activation function type. The proposed methods 

allows us to control the generalization degree of the model. These all lead to improvement 

in approximation performance of the network. Several experiments show very promising 

results. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Feedforward neural networks (FNN) are extensively used in regression and classification applications due to their adap-

tive nature and universal approximation property. FNNs are able to learn from observed data and generalize well in unseen

examples. The FNN inner parameters, i.e. weights and biases, are adjustable in the learning process. But due to the layered

structure of the network this process is complicated, inefficient and requires the activation functions (AFs) of neurons to

be differentiable. The training algorithms which involves the optimization of non-convex objective function, usually employ

some form of gradient descent method which are known to be time consuming, sensitive to initial values of parameters and

converging to local minima. Moreover some parameters, such as number of hidden nodes or learning algorithm parameters,

have to be tuned manually. 

In recent years, alternative learning methods have been developed, in which the network parameters are selected ran-

domly, so that the resulting optimization task becomes convex and can be formulated as a linear least-squares problem [11] .

Such methods are applied in three broad families of NNs: FNNs, recurrent NNs, and randomized kernel approximations [12] .

Many simulation studies reported in the literature show high performance of the randomized models which is compared

to fully adaptable ones. Randomization which is cheaper than optimization provides for simplicity in implementation and

faster training. 
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In feedforward neural networks with random hidden nodes (FNNRHN), the learning process does not require iterative

tuning of weights. The weights and biases of hidden neurons need not to be adjusted. They are randomly selected from

some intervals according to any continuous sampling distribution and remain fixed. The only parameters that are learned

are the output weights, linking the hidden and output nodes. Thus, FNNRHN can be considered as a linear system in which

the output weights are analytically determined through simple generalized inverse operation of the hidden layer output

matrices. For this reason, the learning speed can be thousands of times faster than classical gradient descent-based learning.

As theoretical studies have shown [5] , when the parameters of the hidden nodes are randomly generated from a uniform

distribution within a proper range, the resulting neural network is a universal approximator for a continuous function on

a bounded finite dimensional set with efficient convergence rate. Husmeier in [4] proved that the universal approximation

property also holds for symmetric interval setting of the random parameter scope if the function to be approximated meets

Lipschitz condition. However, how to select the range for the random parameters remains an open question. This issue

is considered to be one of the most important research gaps in the field of randomized algorithms for training NNs. In

applications of FNNRHNs to classification or regression problems the ranges for random parameters of hidden nodes are

selected without scientific justification and could not ensure the universal approximation property of the network. Usually

these intervals are assigned as fixed, typically [ −1 , 1 ] , regardless of the data and the AF type. Independency of hidden

neurons on data is seen as an asset. 

In some papers we can find some suggestions on how to generate random parameters of hidden neurons. In the early

work on FNNs with randomization [9] , the parameters of hidden nodes were set to be uniform random values in [ −1 , 1 ] , but

authors suggest to optimize this range in a more appropriate range for the specified application. In [4] the author suggests to

use symmetric and “large enough” boundaries for the hidden node parameters and advices to optimize them in the training

process. More details on generating random parameters of hidden nodes in [1] are given. The weights are chosen from

a normal distribution with zero mean and some specified variance that can be adjusted to obtain input-to-node values that

do not saturate the sigmoids. The biases are computed to center each sigmoid at one of the training points. This distributes

the sigmoids across the input space, as is suggested by the Nguyen–Widrow weight initialization algorithm [8] . 

The problem with selection of appropriate ranges for random parameters of the hidden nodes is not solved until today.

The authors of new solutions in NNs with randomization do not give any hints on the ranges for random parameters [15] .

However, in many works concerning FNNRHNs attention is drawn to the significance of the intervals from which random

weights and biases are selected. In conclusion of [2] it is rightly pointed out that when network nodes are chosen at random

and not subsequently trained, they are usually not placed in accordance with the density of the input data. In such a case

training of linear parameters becomes ineffective at reducing errors. 

Moreover, the number of nodes needed to approximate a nonlinear map grows exponentially, and the model is very sen-

sitive to the random parameters. To improve effectiveness of the network the authors of [2] advice combining unsupervised

placement of network nodes according to the input data density with subsequent supervised or reinforcement learning val-

ues of the linear parameters of the approximator. This work motivated the authors of [7] to highlight some risky aspects

caused by the randomness in FNNRHN, such as the illogical way of simply selecting a trivial range [ −1 , 1 ] for random as-

signment of the input weights and biases. They analyze some impacts of the scope of random parameters on the model

performance, and empirically show that a widely used setting for this scope is misleading. Although, they observe that for

some specific scopes the network performs better in both learning and generalization than in other scopes, they do not give

tips on how to select appropriate scopes. There is no such tips also in [13] , where authors investigate the range for random

parameters by introducing a scaling factor to control this range. The work is concluded that scaling down the randomization

range to avoid saturating the neurons may risk at degenerating the discrimination power of the random features. Scaling

this range up to enhance the discrimination power of the random features may risk saturating the neurons. 

Lately, Wang and Li proposed a supervisory mechanism of assigning the input weights and biases of the hidden nodes in

their learner model generated incrementally by stochastic configuration algorithms [14] . The random parameters are gener-

ated with an inequality constraint adaptively selecting the scope for them, ensuring the universal approximation property

of the model. The authors adopt from [4] the symmetric interval setting for the random parameters. The scope [ −λ, λ] is

searched in the iterative procedure, from λ = λmin to λ = λmax . The input weights and biases are generated both from the

same symmetric interval. A method proposed in this work generate them separately depending on the data (its scope and

complexity) and activation function type. In the experimental part of the work we compare the results of the proposed

method and the stochastic configuration network [14] . 

In this paper, we look inside FNNRHN and study how the AFs of neurons compose the fitting curve and how the ranges

from which weights and biases are randomly generated affect the approximation ability of the network. First we analyze

simple one-dimensional cases and then we focus on multidimensional cases. A method of randomly generating FNNRHN

parameters to set nonlinear fragments of AFs in the input space regions containing data points is proposed. This method

allows us to control the flatness and steepness of AFs in the input hypercube and hence the degree of generalization of the

network. 

The remainder of the paper is organized as follows. Section 2 briefly presents FNNRHN learning algorithm. In

Section 3 the intervals for random parameters are determined on the basis of theoretical analysis for one-dimensional case.

The analysis were performed for four popular AFs: sigmoidal, Gaussian, softplus and sine/cosine. Similar analysis were per-

formed for multidimensional case in Section 4 . Section 5 reports the simulation study and compare results of the proposed

method with the newest results from the literature. Section 6 concludes the paper. 



G. Dudek / Information Sciences 481 (2019) 33–56 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. FNNRHN learning algorithm 

The architecture of FNNRHN is the same as for single-hidden-layer feedforward neural network. One output is considered,

m hidden neurons and n inputs. The training set is � = { (x l , y l ) | x l ∈ R 

n , y l ∈ R , l = 1 , 2 , . . . , N } and the AF of hidden nodes

is h ( x ). The learning algorithm consists of three steps. 

1. Randomly generate hidden node parameters: weights a i = 

[
a i, 1 , a i, 2 , . . . , a i,n 

]T 
and biases b i , i = 1 , 2 , . . . , m, according to

any continuous sampling distribution. Usually a i, j ∼ U(a min , a max ) and b i ∼ U(b min , b max ). 

2. Calculate the hidden layer output matrix H : 

H = 

⎡ 

⎣ 

h (x 1 ) 
. . . 

h (x N ) 

⎤ 

⎦ = 

⎡ 

⎣ 

h 1 (x 1 ) . . . h m 

(x 1 ) 
. . . 

. . . 
. . . 

h 1 (x N ) . . . h m 

(x N ) 

⎤ 

⎦ (1)

where h i ( x ) is an AF of the i th node, which is nonlinear piecewise continuous function, e.g. a sigmoid: 

h i (x ) = 

1 

1 + exp 

(
−
(
a T 

i 
x + b i 

)) (2)

The i th column of H is the i th hidden node output vector with respect to inputs x 1 , x 2 , . . . , x N . Hidden neurons map

the data from n -dimensional input space to m -dimensional feature space, and thus, h (x ) = [ h 1 (x ) , h 2 (x ) , . . . , h m 

(x ) ] is

a nonlinear feature mapping. The output matrix H remains unchanged because parameters of the AFs, a i and b i , are

fixed. 

3. Calculate the output weights β i : 

β = H 

+ Y (3)

where β = [ β1 , β2 , . . . , βm 

] T is a vector of output weights, Y = [ y 1 , y 2 , . . . , y N ] 
T is a vector of target outputs, and H 

+ is

the Moore–Penrose generalized inverse of matrix H . 

The above equation for β results from the following criterion for minimizing the approximation error: 

min 

∥∥H β − Y 

∥∥ (4)

The function expressed by FNN is a linear combination of the AFs h i ( x ). In the one output case it is of the form: 

ϕ(x ) = 

m ∑ 

i =1 

f i (x ) = 

m ∑ 

i =1 

βi h i (x ) = h (x ) β (5)

where f i (x ) = βi h i (x ) is the weighted output of the i th hidden node. 

The presented network is the most popular solution of FNNRHN. But it should be mentioned, that the prototype of NN

with randomization, i.e. Random Vector Functional Link (RVFL) network proposed by Pao and Takefji [10] , has direct links

from the input layer to the output one. 

3. Generating random weights and biases – one-dimensional case 

For brevity, we use the following acronyms: 

• TF: target function g ( x ), 

• FC: fitted curve ϕ( x ), 

• II: input interval, i.e. the interval to which inputs are normalized. 

To illustrate results the single-variable TF is used of the form: 

g(x ) = sin ( 20 · exp (x ) ) · x 2 (6)

where x ∈ [0, 1]. A variation of this function increases along the II [0, 1] (see top chart in Fig. 2 ). The TF is flat at the left

border of the II, while towards the right border it expresses increasing oscillations. 

The training set contains 50 0 0 points ( x l , y l ), where x l are uniformly randomly distributed on [0, 1] and y i are distorted

by adding the uniform noise distributed in [ −0 . 2 , 0 . 2] . The testing set of the same size is created similarly but without noise.

The outputs are normalized into the range [ −1 , 1] . 
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Fig. 1. A sigmoid with different parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Sigmoid AFs 

Let us look inside NN and analyze how the FC is constructed. Let a sigmoid be an AF of hidden neurons: 

h (x ) = 

1 

1 + exp (−(a · x + b)) 
(7) 

The weight a decides about a slope of the sigmoid and the bias b shifts the function along the x -axis (see Fig. 1 ). For

positive a the slope of the sigmoid (d h /d x ) is positive, and for negative a the slope is negative. The set of hidden neurons

represents a set of AFs which are combined linearly to produce FC. 

Results of curve (6) fitting when using single-hidden layer FNN with 9 hidden neurons in Fig. 2 are shown. FNN was

trained using Levenberg–Marquardt algorithm [3] . The middle chart shows AFs of 9 hidden neurons with optimized param-

eters a i and b i . These parameters are determined in the learning process, as well as the output weights β i . The bottom chart

shows AFs multiplied by the output weights β i . The sum of these curves gives FC, which is drawn with a solid line in the

upper chart. Note that AFs have their nonlinear, steep fragments inside the II (shown as a gray field). These fragments are

used to compose a FC. When the TF expresses complex behavior, such as function (6), AFs should be distributed in the II in

such a way that their steep fragments correspond to the steep fragments of the TF. 

Now, let us use FNNRHN with 100 hidden neurons for fitting curve (6) . Let us generate randomly weights and biases

over the interval [ −1 , 1] , which is typical for FNNRHN [9] . As we can see from Fig. 3 the AF fragments in the II are too flat

and cannot be combined to get our TF. Another example in Fig. 4 is shown. Here weights are generated from [ −10 , 10] and

biases from [ −1 , 1] . As we can see from this figure the steep fragments of AFs are at the left border, where the TF is flat.

On the other hand, at the right border, where the TF requires steep fragments, there are the flat AF fragments. This results

in poor fitting. The above examples show that the problem is in definition of appropriate intervals for random weights and

biases. 

To determine the interval for a , let us set a sigmoid S in the II in such a way that its inflection point (which is for

h (x ) = 0 . 5 ) is in x = 0 and the sigmoid value in x = 1 is r ∈ (0, 0.5) (see top, left chart in Fig. 5 ). Note that in such case the

most nonlinear and steepest fragment of a sigmoid, which is around the inflection point, is inside the II. The parameter r

should be lower than 0.5 (sigmoid value for the inflection point). For r = 0 .5 we have completely flat function. If r decreases

toward 0, the sigmoid S is more and more steep in the II. Thus r controls the flatness of S in the II. 

When according to our requirements, the inflection point of S in x = 0 , and the sigmoid value for x = 1 is r , then the

shift parameter b = 0 and we get: 

1 

1 + exp (−(a · 1 + 0)) 
= r (8) 

After transformations we obtain from (8) a slope parameter for S : 

a = − ln 

(
1 − r 

r 

)
= a lim 1 (9) 

(Note that for r ∈ (0, 0.5) a lim 1 is negative.) 

Let us assume that the AFs building the FC are not flatter than the sigmoid S . Thus, their slope parameters satisfy the

condition: 

a ≤ −| a lim 1 | or a ≥ | a lim 1 | (10) 

Parameter a lim 1 defines the flattest AF possible in the set of m AFs. Let: 

a = s · a (11) 
lim 2 lim 1 
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Fig. 2. Results of fitting for FNN with 9 hidden sigmoid nodes learned using Levenberg–Marquardt algorithm. 

 

 

 

 

where s > 1 defines the steepest AF possible. So, the slope parameter of the i -th AF can be generated from the ranges: 

a i ∈ [ −| a lim 2 | , −| a lim 1 | ] ∪ [ | a lim 1 | , | a lim 2 | ] (12)

After substituting (9) and (11) in (12) and simplifying notation we obtain: 

| a i | ∈ 

[ 
ln 

(
1 − r 

r 

)
, s · ln 

(
1 − r 

r 

)] 
(13)

Parameter s decides about the maximal steepness of AFs, and should correspond to the steepness of the TF. 

When AF satisfies condition (13) , it lies between two boundary AFs, with slope parameters a lim 1 and a lim 2 , respectively.

These boundary AFs allow us to control the steepness of hidden neuron AFs to avoid their saturation fragments in the input

interval. This is because saturation fragments are not suitable for nonlinear function fitting. 
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Fig. 3. Results of fitting for FNNRHN with 100 hidden sigmoid nodes, a, b ∈ [ −1 , 1] . 

 

 

 

Now, let us set the shift parameter b in such a way that the sigmoid inflection point is inside the II. So, for some x ∈ [0, 1]

we get: 

1 

1 + exp (−(a · x + b)) 
= 0 . 5 (14) 

After transformations we obtain: 

b = −a · x (15) 

For x = 0 we get a border of the interval for b : b lim 1 = 0 , and for x = 1 , we get the second border of this interval:

b lim 2 = −a . Note, that the interval for the AF shift parameter b is dependent on the value of the slope parameter a of this

AF. Thus, the biases should be generated individually for each i th AF from the interval: 

b i ∈ 

{
[ 0 , a i ] for a i ≤ 0 

[ −a i , 0 ] for a i > 0 

(16) 
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Fig. 4. Results of fitting for FNNRHN with 100 hidden sigmoid nodes, a ∈ [ −10 , 10] and b ∈ [ −1 , 1] . 

 

 

 

 

 

 

In Fig. 6 results of fitting are shown, where FNNRHN has 100 hidden nodes and the above described approach is used for

generating random weights and biases. For r = 0 . 1 and s = 3 from (13) we get: | a i | ∈ [2.20, 6.56]. Too small value of s leads

to underfitting and too high value leads to overfitting. So it is recommended to select this parameter experimentally, e.g. in

the cross-validation procedure, as well as parameter r . 

3.2. Gaussian AFs 

Now, let us consider Gaussian AF of the form: 

h (x ) = exp 

(
−( a · x + b ) 

2 
)

(17)

Similarly to a sigmoid, weight a decides about a slope or width of the Gaussian function and the bias b shifts the function

along the x-axis. To determine the interval for a , let us set a Gaussian function G in the II in such a way that its maximum
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Fig. 5. The flattest fragments of AFs in the II. 

 

 

 

 

 

 

 

 

(h (x ) = 1) is in x = 0 and its value in x = 1 is r ∈ (0, 1) (see Fig. 5 ). In such case b = 0 and: 

exp 

(
−( a · 1 + 0 ) 

2 
)

= r (18) 

From (18) we get a slope parameter for G : 

a = 

√ 

− ln (r) = a lim 1 (19) 

Let us assume that the Gaussian AFs building the FC are not flatter than G . Thus, their slope parameters satisfy condition

(10) . Let (11) defines the steepest Gaussian AF in the set of m AFs. Thus, the slope parameter of the i th AF can be generated

from ranges (12) . After substituting (19) and (18) in (12) and simplifying notation we obtain: 

| a i | ∈ 

[ √ 

− ln (r) , s ·
√ 

− ln (r) 
] 

(20) 

Let us set the shift parameter b in such a way that the maximum of the Gaussian AF is inside the II. So, for some x ∈ [0, 1]

we get: 

exp 

(
−( a · x + b ) 

2 
)

= 1 (21) 

From (21) we get the same equation for the shift parameter as for a sigmoid (15) and, consequently, the same interval

from which the bias should be generated: (16) . 

Results of fitting when using Gaussian AFs, 100 hidden nodes and the above described approach for generating random

weights and biases in Fig. 7 are shown. It was assumed: r = 0 . 6 and s = 10 . For such value of parameters from (20) we get:

| a i | ∈ [0.71, 7.15]. 

3.3. Softplus AFs 

Similar considerations are performed for the softplus function: 

h (x ) = ln ( 1 + exp ( a · x + b ) ) (22) 

Parameters a and b play the same role as for sigmoid and Gaussian AFs. To determine the interval for a , let us assume

b = 0 (no shift). In such case for any a a softplus function value in x = 0 is h (0) = ln (2) . Now, let us assume that the value

of the softplus function P in x = 1 is r ∈ (0, ln (2)) (see Fig. 5 ). Thus: 

ln ( 1 + exp ( a · 1 + 0 ) ) = r (23) 

From (23) we get a slope parameter for P : 

a = ln ( exp (r) − 1) = a (24) 
lim 1 
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Fig. 6. Results of fitting for FNNRHN with 100 hidden sigmoid nodes, proposed algorithm with r = 0 . 1 and s = 3 . 

 

 

 

 

 

 

Let us assume that AFs are not flatter than P . It means that their slope parameters satisfy condition (10) . As in the case

of sigmoid and Gaussian AFs, we assume the slope parameter for the steepest AF in the set of hidden nodes as (11) . This

leads to the following interval for the slope parameter of the i th softplus AF: 

| a i | ∈ [ − ln ( exp (r) − 1 ) , −s · ln ( exp (r) − 1 ) ] (25)

Now, let us set a softplus function so that their most curved fragment, which is around h (x ) = ln (2) , is in the II. So, for

some x ∈ [0, 1] we get: 

ln ( 1 + exp ( a · x + b ) ) = ln (2) (26)

Again we obtain the same equation for b (15) and the same interval for i th AF bias (16) . 

In Fig. 8 results of fitting using 100 hidden nodes with softplus AFs are shown. It was assumed: r = 0 . 3 and s = 10 . For

such value of parameters from (25) we get: | a | ∈ [1.05, 10.50]. 
i 
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Fig. 7. Results of fitting for FNNRHN with 100 hidden Gaussian nodes, proposed algorithm with r = 0 . 6 and s = 10 . 

 

3.4. Sine and cosine AFs 

Let us consider cosine as a AF: 

h (x ) = cos ( a · x + b ) (27) 

As before parameters a and b decide about slope and shift, respectively. For b = 0 and any a the cosine function value in

x = 0 is h (0) = 1 . Let us assume that in x = 1 the value of the cosine function C is r ∈ [ −1 , 1) (see Fig. 5 ). Thus: 

cos ( a · 1 + 0 ) = r (28) 

and the slope parameter for C is: 

a = arccos (r) = a (29) 
lim 1 
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Fig. 8. Results of fitting for FNNRHN with 100 hidden softpuls nodes, proposed algorithm with r = 0 . 3 and s = 10 . 

 

 

 

 

 

As before let us assume that AFs are not flatter than C , and not steeper than the cosine function with a slope parameter

defined as (11) . This leads to the following interval for a i : 

| a i | ∈ [ arccos (r) , s · arccos (r) ] (30)

Let us set the cosine function in the II so that for some x ∈ [0, 1]: 

cos ( a · x + b ) = 1 (31)

From (31) we obtain equation for b (15) and the interval for i th AF bias (16) . 

For sine AF exactly the same equations for weight interval (30) and biases interval (16) can be used. This is because sine

function is shifted version of the cosine function, Fig. 9 . 

In Fig. 10 results of fitting using 100 hidden nodes with cosine AFs are shown. It was assumed: r = 0 . 2 and s = 20 . For

such value of parameters from (30) we get: | a | ∈ [1.37, 27.38]. 
i 
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Fig. 9. Results of fitting for FNNRHN with 100 hidden cosine nodes, proposed algorithm with r = 0 . 2 and s = 20 . 

 

 

 

4. Generating random weights and biases - multidimensional case 

Let input vectors x be normalized so that they belong to the n -dimensional unit hypercube H = [0 , 1] n ⊂ R 

n . In the

multidimensional case, similarly to the one-dimensional case, weights a decide about slopes of the AF (in different directions

in n -dimensional space) and the bias b shifts AF along the x-axes. Our goal is to find a method of generating random weights

and biases, to ensure that inside the hypercube H there are nonlinear, steep fragments of AFs. 

In this Section for brevity, we use the following acronyms: 

• TF: target function g ( x ), 

• FS: fitted surface ϕ( x ). 

To illustrate results two-variable TF is used of the form (see Fig. 10 ): 

g(x ) = sin ( 20 · exp ( x 1 ) ) · x 2 1 + sin ( 20 · exp ( x 2 ) ) · x 2 2 (32) 

where x , x ∈ [0, 1]. 
1 2 
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Fig. 10. Target function and training points. 

 

 

 

 

 

 

 

 

 

 

A variation of function (32) is the lowest at the corner [0, 0] and increases towards the corner [1, 1]. The training set

contains 50 0 0 points ( x l , y l ), where components of x l : x l , 1 and x l , 2 , are independently uniformly randomly distributed on

[0, 1] and y l are distorted by adding the uniform noise distributed in [ −0 . 2 , 0 . 2] . The testing set of the same size is created

similarly but without noise. The outputs are normalized into the range [ −1 , 1] . 

4.1. Sigmoid AFs 

Let us set a sigmoid S : 

h (x ) = 

1 

1 + exp 

(
−
(
a T x + b 

)) (33)

inside the hypercube H in such a way that an inflection point (which is for h (x ) = 0 . 5 ) is located in the corner c 0 =
[0 , 0 , . . . , 0] and the sigmoid value in the opposite corner c 1 = [1 , 1 , . . . , 1] is r ∈ (0, 0.5) (see top, left chart in Fig. 11 for

two-dimensional example). In such a case the shift parameter b = 0 and the function value in the corner c 1 is: 

1 

1 + exp 

(
−
(

n ∑ 

k =1 

a k · 1 + 0 

)) = r (34)

From (34) after transformations we get: 

n ∑ 

k =1 

a k = ln 

(
1 − r 

r 

)
= �lim 1 (35)

Let us assume that the AFs building the FS are not flatter in the direction 

−→ 

c 0 c 1 than the function S , and are not steeper

in this direction than the sigmoid S ′ for which the sum of the slope parameters is: 

n ∑ 

k =1 

a k = �lim 2 = s · �lim 1 (36)

where s > 1. 
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Fig. 11. Examples of AFs considered as the flattest in H in the direction 
−→ 

c 0 c 1 . 

 

 

 

 

To keep the steepness in the direction 

−→ 

c 0 c 1 of the i th AF between the assumed boundaries, the sum of its slope param-

eters should be from the interval: 

�i ∈ [ −| �lim 2 | , −| �lim 1 | ] ∪ [ | �lim 1 | , | �lim 2 | ] (37) 

After substituting (35) and (36) in (37) the interval for �i takes the form: 

| �i | ∈ 

[ 
ln 

(
1 − r 

r 

)
, s · ln 

(
1 − r 

r 

)] 
(38) 

The set of weights a 1 , a 2 , . . . , a n for a given AF is generated as follows. First, the sum �i is randomly selected from the in-

terval (38) . Then, the set of n i.i.d. numbers is generated randomly: ζ1 , ζ2 , . . . , ζn ∼ U(−1 , 1) . These numbers are recalculated

such that their sum is �i . After recalculation we get our weights for the i th AF: 

a i,k = ζk 

�i 

n ∑ 

j=1 

ζ j 

(39) 

Now, having weights a i, k the bias for i th AF is determined in such a way that the inflection point of AF located in c 0 
for b = 0 , is shifted to some point x randomly generated inside the hypercube H . So, for some x : x 1 , x 2 , . . . , x n ∼ U(0 , 1) we

get: 

1 

1 + exp 

(
−
(
a T 

i 
x + b i 

)) = 0 . 5 (40) 

From (40) we obtain the general rule for generating randomly the bias for the i th AF in the case of H = [0 , 1] n : 

b i = −
n ∑ 

k =1 

a i,k x k (41) 
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Fig. 12. Results of fitting for FNNRHN with 500 hidden sigmoid nodes, proposed algorithm with r = 0 . 1 and s = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

where x k ∼ U (0, 1). 

In Fig. 12 the FS is shown when using FNNRHN with 500 sigmoid nodes. For r = 0 . 1 and s = 5 from (38) we get:

| �i | ∈ [2.20, 10.99]. 

4.2. Gaussian AFs 

Let us set a Gaussian function G: 

h (x ) = exp 

(
−
(
a T x + b 

)2 
)

(42)

in the hypercube H in such a way that a maximum point (which is for h (x ) = 1 ) is located in the corner c 0 = [0 , 0 , . . . , 0]

and the function G value in the opposite corner c 1 = [1 , 1 , . . . , 1] is r ∈ (0, 1) (see Fig. 11 for two-dimensional example). In

such a case the shift parameter b = 0 and the function value in the corner c 1 is: 

exp 

⎛ 

⎝ −
( 

n ∑ 

k =1 

a k · 1 + 0 

) 2 
⎞ 

⎠ = r (43)

From (43) we get a condition for the slope parameters of G : 

n ∑ 

k =1 

a k = 

√ 

− ln (r) = �lim 1 (44)

As for a sigmoid, let us assume that the Gaussian AFs of the hidden nodes are not flatter in the direction 

−→ 

c 0 c 1 
than the

function G , and are not steeper in this direction than the Gaussian function G 

′ for which the sum of the slope parameters is

(36) . Thus, the sum of the slope parameters of the i th Gaussian AF should be from interval (37) . After substituting (44) and

(36) in (37) , this can be written as: 

| �i | ∈ 

[ √ 

− ln (r) , s ·
√ 

− ln (r) 
] 

(45)

The weights a i, 1 , a i, 2 , . . . , a i,n are generated in the same way as for sigmoid AFs from (39) . 

The bias of the i th AF is determined in such a way that the maximum point located in c 0 for b = 0 is shifted to some

randomly generated point x inside the hypercube H . For this x we get: 

exp 

(
−
(
a T i x + b i 

)2 
)

= 1 (46)



48 G. Dudek / Information Sciences 481 (2019) 33–56 

 

 

 

 

 

 

 

 

 

 

 

 

 

From (46) we obtain formulas for b i : (41) . 

The FS when using FNNRHN with 500 Gaussian nodes, r = 0 . 6 and s = 10 is very similar to that one shown in Fig. 12 .

The RMSE is 0.02879. For these values of parameters from (45) we get: | �i | ∈ [0.71, 7.15]. 

4.3. Softplus AFs 

When in the softplus function P : 

h (x ) = ln 

(
1 + exp 

(
a T i x + b 

))
(47) 

we set b = 0 , its value in c 0 = [0 , 0 , . . . , 0] is ln (2). Let us assume that in c 1 = [1 , 1 , . . . , 1] the value of P is r ∈ (0, ln (2)) (see

Fig. 11 ). In such case: 

ln 

( 

1 + exp 

( 

n ∑ 

k =1 

a k · 1 + 0 

) ) 

= r (48) 

From (47) we get a condition for the slope parameters of P : 

n ∑ 

k =1 

a k = ln ( exp (r) − 1 ) = �lim 1 (49) 

As for the sigmoid and Gaussian AFs let us assume that the softplus AFs are not flatter in the direction 

−→ 

c 0 c 1 than the

function P , and are not steeper in this direction than the function P ′ for which the sum of the slope parameters is (36) . It

means that the sum of the slope parameters for the i th AF should be from interval (37) . This can be written as: 

| �i | ∈ [ − ln ( exp (r) − 1 ) , −s · ln ( exp (r) − 1 ) ] (50) 

As for sigmoid and Gaussian AFs, the set of weights a i, 1 , a i, 2 , . . . , a i,n for a given softplus AF is generated from (39) .

To determine the bias b i of the softplus AF, we shift the softplus function with slopes parameters a i and b = 0 , in such

a way that the point located in c 0 is shifted to some randomly generated point x inside the hypercube H . So, for some

x : x 1 , x 2 , . . . , x n ∼ U(0 , 1) we get: 

ln 

(
1 + exp 

(
a T i x + b i 

))
= ln (2) (51) 

From (51) we obtain formulas for b i : (41) . 

The FS when using FNNRHN with 500 softplus nodes, r = 0 . 1 and s = 10 is similar to the FS for sigmoid nodes which is

shown in Fig. 12 . The RMSE is 0.03099. From (45) we get: | �i | ∈ [2.25, 22.52]. 

4.4. Sine and Cosine AFs 

The value of cosine function C : 

h (x ) = cos 
(
a T i x + b 

)
(52) 

in c 0 = [0 , 0 , . . . , 0] for b = 0 is 1. Let us assume that in c 1 = [1 , 1 , . . . , 1] the value of C is r ∈ [ −1 , 1) (see Fig. 11 ). Thus: 

cos 

( 

n ∑ 

k =1 

a k · 1 + 0 

) 

= r (53) 

A condition for the slope parameters of C derived from (53) is: 

n ∑ 

k =1 

a k = arccos (r) = �lim 1 (54) 

Let us assume that the cosine AFs are not flatter in the direction 

−→ 

c 0 c 1 than the function C , and are not steeper in this

direction than the function C ′ for which the sum of the slope parameters is (36) . Thus, the sum of the slope parameters for

the i th cosine AF should be from interval (37) , which can be written as: 

| �i | = [ arccos (r) , s · arccos (r) ] (55) 

Having the sum | �i |, the set of weights a i, 1 , a i, 2 , . . . , a i,n for the i th cosine AF is generated from (39) . 

To determine the bias b i , we shift the cosine function with slopes parameters a i and b = 0 , in such a way that the point

located in c 0 is shifted to some randomly generated point x ∼ U (0, 1) n inside the hypercube H . Thus: 

cos 
(
a T i x + b i 

)
= 1 (56) 

From (56) we obtain formulas for b i : (41) . The same intervals for weights (55) and biases (41) can be assumed for sine AFs.

The FS when using FNNRHN with 500 cosine nodes, r = −0 . 9 and s = 20 is similar to that one for sigmoid nodes ( Fig. 12 ).

The RMSE is 0.03439. From (55) we get: | � | ∈ [2.21, 44.29]. 
i 
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Table 1 

Generation of the FNNRHN hidden node parameters. 

Activation Condition for the Interval Weights of i th Bias of i th 

function sum of input weights �i for r hidden node hidden node 

1 

1 + exp 
(
−
(
a T x + b 

)) | �i | ∈ 
[
ln 

(
1 −r 

r 

)
, s · ln 

(
1 −r 

r 

)]
r ∈ (0, 0.5) 

exp 

(
−
(
a T x + b 

)2 
)

| �i | ∈ 
[ √ 

− ln (r) , s ·
√ 

− ln (r) 
] 

r ∈ (0, 1) a i,k = ζk 
�i 
n ∑ 

j=1 

ζ j 

b i = −
n ∑ 

k =1 

a i,k x k 

ln 
(
1 + exp 

(
a T x + b 

)) | �i | ∈ [ − ln ( exp (r) − 1 ) , −s · ln ( exp (r) − 1 ) ] r ∈ (0, ln (2)) 

cos 
(
a T x + b 

)
, sin 

(
a T x + b 

) | �i | = [ arccos (r) , s · arccos (r) ] r ∈ ( −1 , 1 ] 

where: x ∈ [0, 1] n ; s > 1; k = 1 , 2 , . . . , n ; ζ1 , ζ2 , . . . , ζn are i.i.d U(−1 , 1) random variables; x k ∼ U (0, 1) or x k = x ζ ,k , 

where x ζ ∈ �, ζ ∼ U { 1 , 2 , . . . , N } or x k = p i,k , where p i is a prototype of the i th cluster of x ∈ �. 

 

 

 

 

 

 

 

 

 

 

 

4.5. Discussion 

In the above analysis we quietly assumed that input points are evenly distributed in the unit hypercube H . In many (or

even mostly) cases they are not. In such a case it is reasonably to shift the AFs in the bias determination step from c 0 not

to some randomly selected point x but to one of the training point. This ensures that all AFs have their nonlinear fragments

in the regions containing data. The only modification of the above method is that for generating biases in (41) we use:

[ x 1 , x 2 , . . . , x n ] = x ζ ∈ �, where ζ is a random integer uniformly distributed between 1 and N . Alternative way of choosing

x ζ is to select them in regions of the input space where the TF is the most variable (has steep fragments). Another idea to

calculate biases b i is to group training points into m clusters. The prototypes p of these clusters (e.g. centroids) can be taken

as the points to which the AFs are shifted from c 0 . 

The above analysis for multidimensional case in Table 1 are summarized. The proposed process of generating random

weights and biases for FNNRHN is shown in Algorithm 1 . It requires the inputs to be normalized: x ∈ H = [0 , 1] n . 

Algorithm 1 Generation of the hidden node weights and biases for FNNRHN. 

Input 

Activation function h (x ) 

Number of hidden nodes m 

Number of inputs n 

Training set � (optionally) 

Set of prototypes { p i } i =1 , 2 , ... ,m (optionally) 

Output 

Weights A = 

⎡ 

⎢ ⎣ 

a 1 , 1 . . . a m, 1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

a 1 ,n . . . a m,n 

⎤ 

⎥ ⎦ 

Biases b = [ b 1 , b 2 , . . . , b m ] 

Procedure 

Set r min = min 
x ∈ R n 

h (x ) 

Set r max = h (x ) for x = c 0 = [ 0 , 0 , . . . , 0 ] , b = 0 

Choose r ∈ R from (r min , r max ) 

Choose s ∈ R > 1 

Transform h (x ) assuming x = c 0 = [ 1 , 1 , . . . , 1 ] and b = 0 to get formula for 
n ∑ 

k =1 

a k 

Assume �lim 1 = 

n ∑ 

k =1 

a k and �lim 2 = s · �lim 1 

for each node i = 1 , 2 , . . . , m do 

Choose randomly �i from [ −| �lim 2 | , −| �lim 1 | ] ∪ [ | �lim 1 | , | �lim 2 | ] 
Choose randomly i.i.d. ζ1 , ζ2 , . . . , ζn ∼ U(−1 , 1) 

for k = 1 , 2 , . . . , n do 

Calculate a i,k = ζk 
�i 
n ∑ 

j=1 

ζ j 

end for 

Choose randomly i.i.d x 1 , x 2 , . . . , x n ∼ U(0 , 1) 

or set [ x 1 , x 2 , . . . , x n ] = x ζ ∈ �, where ζ ∼ U{ 1 , 2 , . . . , N} 
or set [ x 1 , x 2 , . . . , x n ] = p i , where p i is a prototype of the i -th cluster of x ∈ �
Calculate b i = −

n ∑ 

k =1 

a i,k x k 

end for 

Return A, b 

Besides the number of hidden neurons m , there are two parameters in the proposed method of generating random

nodes: r defining the flattest AF in the direction 

−→ 

c 0 c 1 and s defining the steepest AF in this direction. All AFs of hidden

neurons are generated randomly between these boundary AFs. There is no theoretical guideline for choosing the values of r
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Fig. 13. Impact of r on the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and s as well as m . Because the parameters are strictly dependent on the target function, it is recommended to select them

experimentally, e.g. in the cross-validation procedure. 

Figs. 13 –15 show the impact of the parameters on the results for the fitting task considered in this section (TF (32) ). As

we can see from Fig. 13 , small r brings better results. But it should be remembered that these results are for given values of

s and m . For other values of these parameters we can achieve different charts. The same can be said about the other charts

presented in Figs. 14 and 15 . As we might expect, an increase in the number of hidden nodes should lead to a reduction in

fitting error. However, the charts in Fig. 15 contradict this expectation. Too large number of neurons leads to deterioration

of results and increase in error variance. This is the most apparent for cosine AFs. In summary, it should be noted that the

parameters are dependent on each other as well as on the target function. Their selection will be the subject of the future

work. 

5. Simulation study 

In this section the proposed method of FNNRHN random parameters generation are illustrated on several examples. The

first example concerns real-world application: short-term load forecasting. The task is to forecast the hourly load of the

Polish power system for the next day (24 hourly loads). The input data are 24 hourly loads for the previous day. The data

containing hourly loads of the Polish power systems in the period 2012–2015 are from www.entsoe.eu. The test period

covers successive days of 2015. For each forecasting task, i.e. the forecast for i th day of the test period, separate model is

learned on the training data from history including the same days of the week as the forecasted day. So, when the forecasted

day is Monday, the training set contains 24-component load profiles for Sundays as inputs and 24-component load profiles

for Mon-days as outputs. Atypical days such as public holidays are excluded from the training and test sets (about a dozen

days in a year). 

The FNNRHN with sigmoid AFs is used in MIMO variant: 24 inputs and 24 outputs. Because data are strongly correlated,

they are not evenly distributed in the input hypercube H . So, in the bias determination step the AFs are shifted to the

randomly selected training points. To select the model parameters ( r and s ; m = 50 is assumed to be constant), the network

is learned on ten forecasting tasks from history that are the most similar to the current forecasting task. The history from

which these ten tasks are selected is limited to the period covering year 2014 and the period of 2015 preceding the current
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Fig. 14. Impact of s on the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

forecasting task. By similar forecasting tasks we mean the tasks for the same day of the week as the current task and having

input load profile similar to the current one (Euclidean distance is used for similarity measure). 

The model parameters are optimized in grid search over the parameter grid: from 0.05 to 0.45 with step 0.05 for r , and

from 1 to 10 with step 1 for s . The error measure applied in this study is mean absolute percentage error, MAPE, which is

traditionally used as an error measure in short-term load forecasting. The forecasting error for the testing set was equal to

1.21. 

For comparison FNNRHN with weights and biases randomly selected from the range [ −1 , 1] was used. In this case the

MAPE was equal to 4.41 for 50 hidden neurons. The relatively high error results from the mismatch of the random parame-

ters range to the input data range, which is [9761, 23728]. In this range neurons are saturated. When increasing the number

of hidden neurons the probability of appearing not saturated neurons in the input interval increases as well. This is evident

in the results: for 100 neurons the MAPE reduces to 3.70, for 200 neurons to 3.43, and for 500 neurons to 2.97. But we

should remember that most of the neurons are saturated and therefore unusable in the modeling of the nonlinear target

function. 

Fig. 16 shows a sample result of forecasting for a week period in January 2015. For this period the proposed FNNRHN

gave MAPE = 1.22, while FNNRHN with [ −1 , 1] scope for random parameters gave MAPE = 2.90 for 500 nodes and MAPE

= 9.18 for 50 nodes. 

Next examples, taken from [14] , concern regression problems and include a function approximation and three real-world

modeling tasks: 

• Approximation of the single-variable TF: 

g(x ) = 0 . 2 e −( 10 x −4 ) 
2 + 0 . 5 e −( 80 x −40 ) 

2 + 0 . 3 e −( 80 x −20 ) 
2 

(57)

The training set contains 10 0 0 points ( x l , y l ), where x l are uniformly randomly distributed on [0, 1]. The test set of size

300 is generated from a regularly spaced grid on [0, 1]. 

• Stock – daily stock prices from January 1988 through October 1991, for ten aerospace companies. The task is to approxi-

mate the price of the 10th company given the prices of the rest. There are 950 samples composed of nine input variables

and one output variable. The whole data set was divided into training set containing 75% samples selected randomly, and

the test set containing the remaining samples. 
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Fig. 15. Impact of m on the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Concrete – the dataset contains the concrete compressive strength, age, and ingredients: cement, blast furnace slag,

fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The task is to approximate the highly nonlinear

relationship between concrete compressive strength and the ingredients and age. There are 1020 samples composed of

eight input variables and one output variable. The whole data set was divided into training and test parts in the same

manner as Stock data set. 

• Compactiv – the Computer Activity dataset is a collection of computer systems activity measures. The data was collected

from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user university department. The task

is to predict the portion of time that CPUs run in user mode. There are 8192 samples composed of 21 input variables

(activity measures) and one output variable. The whole data set was divided into training and test parts in the same

manner as Stock data set. 

The datasets Stock, Concrete and Compactiv were downloaded from KEEL (Knowledge Extraction based on Evolutionary

Learning) dataset repository ( http://www.keel.es/ ). The input and output variables are normalized into [0, 1]. All results

reported in this work take averages over 100 independent trials. Root Mean Squares Error (RMSE) was used as a measure of

modeling accuracy. 

Results are compared with the state-of-the-art method proposed recently in [14] as well as with Modified Quickprop and

Incremental Random Vector Functional Link (IRVFL) network. The comparative models adopted from [14] are: 

• MQ – Modified Quickprop algorithm proposed in [6] that iteratively finds the appropriate parameters for the new hidden

node added in the incremental procedure. The parameters of MQ were set by authors [14] as follows: learning rate =
0.05, maximum iterative number = 200. 

• IRVFL – Incremental Random Vector Functional Link network where the model is built incrementally with random as-

signment of the input weights and biases, and constructive evaluation of its output weights using the least squares

method [7] . The random parameters were taken by authors of [14] from the uniform distribution over [ −1 , 1] . 

• SCN – Stochastic Configuration Network proposed in [14] . This is a randomized model constructed incrementally us-

ing stochastic configuration algorithm where random parameters are generated with an inequality constraint from the

adaptively selected scope [ −λ, λ] , ensuring the universal approximation property of the built randomized learner model.

Among three algorithmic implementations of SCN, the most accurate one was chosen, signed SC-III in [14] , where the

http://www.keel.es/
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Fig. 16. Sample weekly fragment of the load time series and its forecasts. 

Fig. 17. Fitting error for different number of hidden neurons. 

 

 

 

 

output weights are recalculated all together through solving a global least squares problem each time while a new hid-

den node is added. Sigmoidal activation function were used for the hidden nodes. The SCN parameters were selected by

authors of [14] to ensure the best performance. 

Table 2 shows the results: errors and their standard deviations for FNNRHN with different AFs which parameters are

generated using the proposed method (FNNRHN-sig, FNNRHN-Gauss, FNNRHN-cos and FNNRHN-soft) as well as for the
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Fig. 18. Results of TF (57) fitting for FNNRHN with different AFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

comparative models (copied from Table I of [14] for 50 neurons). The optimal parameter values of the proposed method,

r and s , are also shown in Table 2 . They are selected in the grid search using 10-fold cross-validation. In these procedure

only the training parts of the datasets were used. The number of hidden neurons for FNNRHN was set to 50 in all cases to

compare results with the comparative models having the same number of neurons. 

As we can see from Table 2 the proposed method allows FNNRHN to achieve results better than IRVFL where the scope

for random parameters is [ −1 , 1] . MQ gives similar results as FNNRHN for Stock and Compactiv datasets, little better for

Concrete dataset, and much worse for function (57) . MQ is fully adaptive for new nodes added in the hidden layer using

gradient-ascent algorithm. Thus, the hidden neurons are optimally deployed in the input space. This is the reason for quite

good results. But it should be remembered that the gradient-ascent algorithm uses also second-order information in opti-

mization of the objective function. It is problematic when one is exploring in the region of a plateau in the error surface,

where the first and second derivatives of the function to be optimized with respect to all the parameters are nearly zero.

Although the MQ algorithm is equipped with an escape mechanism from these regions, it does not always work. Thus,

the optimal solution cannot be guaranteed when the optimization is non-convex, i.e. it is nonlinear in the hidden layer

parameters. 

In the case of the randomized algorithms for training NNs the optimization problem is linear in the parameters, thus the

optimization is convex and has an analytic solution, such as the least squares. But in these algorithms the key issue is to

properly generate the random parameters of the hidden neurons to find the orthogonal projection of y into the input space

[1] . In IRVFL the random parameters are taken from the fixed range [ −1 , 1] , and there is no guarantee that it is appropriate

for the regression problem. So, the results for IRVFL are even worse than for MQ. SCN searches for the random parameter

ranges for each new node added to the hidden layer. Thus, this ranges are optimized for each neuron. This translates into

much better results than for fixed ranges, which are set without any scientific justification. 

SCN-III algorithm outperformed all others including the proposed one. But it should be noticed that in SC-III the random

configuration is generated not once like in FNNRHN but many times. In the experiments reported in Table 2 the maximum

times of random configuration T max was set as 200. This step of the SCN algorithm can be viewed as an optimization

procedure selecting the most appropriate configuration which maximizes the model performance. SCN-III equipped with 

this optimization mechanism brings better results than FNNRHN. It seems that for FNNRHN, where the sets of random
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Table 2 

Results comparison among proposed and comparative models a . 

Algorithm Parameters Training Test 

r / s RMSE RMSE 

Function (58) 

MQ – 0.1030 ± 0.0 0 01 0.1011 ± 0.0 0 03 

IRVFL – 0.1626 ± 0.0 0 05 0.1617 ± 0.0 0 08 

SCN-III – 0.0097 ± 0.0036 0.0100 ± 0.0033 

FNNRHN-sig 0.050/50 0.0356 ± 0.0127 0.0377 ± 0.0137 

FNNRHN-Gauss 0.900/160 0.0364 ± 0.0106 0.0361 ± 0.0097 

FNNRHN-soft 0.150/90 0.0346 ± 0.0117 0.0367 ± 0.0117 

FNNRHN-cos 0.050/90 0.0419 ± 0.0186 0.0428 ± 0.0207 

Stock 

MQ – 0.0410 ± 0.0014 0.0407 ± 0.0017 

IRVFL – 0.1853 ± 0.0248 0.1787 ± 0.0237 

SCN-III – 0.0327 ± 0.0 0 07 0.0347 ± 0.0012 

FNNRHN-sig 0.300/6.5 0.0380 ± 0.0018 0.0406 ± 0.0030 

FNNRHN-Gauss 0.850/3.5 0.0385 ± 0.0019 0.0402 ± 0.0027 

FNNRHN-soft 0.175/2.5 0.0376 ± 0.0015 0.0394 ± 0.0024 

FNNRHN-cos 0.950/4.5 0.0381 ± 0.0015 0.0403 ± 0.0023 

Concrete 

MQ – 0.0910 ± 0.0014 0.0869 ± 0.0021 

IRVFL – 0.1929 ± 0.0135 0.1983 ± 0.0166 

SCN-III – 0.0835 ± 0.0012 0.0850 ± 0.0025 

FNNRHN-sig 0.300/4.5 0.0937 ± 0.0038 0.1098 ± 0.0044 

FNNRHN-Gauss 0.800/1.5 0.0921 ± 0.0036 0.1065 ± 0.0047 

FNNRHN-soft 0.350/2 0.0877 ± 0.0018 0.1022 ± 0.0024 

FNNRHN-cos 0.950/1.5 0.0880 ± 0.0016 0.1026 ± 0.0024 

Compactiv 

MQ – 0.0600 ± 0.0071 0.0624 ± 0.0075 

IRVFL – 0.1924 ± 0.0283 0.1882 ± 0.0281 

SCN-III – 0.0394 ± 0.0016 0.0418 ± 0.0021 

FNNRHN-sig 0.100/3.5 0.0669 ± 0.0064 0.0694 ± 0.0064 

FNNRHN-Gauss 0.850/5 0.0609 ± 0.0057 0.0655 ± 0.0070 

FNNRHN-soft 0.350/8.5 0.0600 ± 0.0051 0.0636 ± 0.0054 

FNNRHN-cos 0.650/2 0.0605 ± 0.0050 0.0666 ± 0.0065 

a Results for MQ, IRVFL and SCN are taken from [14] . 

Table 3 

Results for fnnrhn with optimized m, r and s . 

Algorithm Parameters Training Test 

m / r / s RMSE RMSE 

Function (58) 

FNNRHN-sig 200/0.225/140 2 . 5 · 10 −5 ± 3 . 7 · 10 −5 3 . 1 · 10 −5 ± 4 . 6 · 10 −5 

FNNRHN-Gauss 200/0.75/190 1 . 1 · 10 −5 ± 2 . 4 · 10 −5 1 . 4 · 10 −5 ± 3 . 0 · 10 −5 

FNNRHN-soft 20 0/0.175/10 0 8 . 5 · 10 −5 ± 1 . 3 · 10 −4 1 . 0 · 10 −4 ± 1 . 7 · 10 −4 

FNNRHN-cos 200/-0.95/190 0.0017 ± 0.0142 0.0031 ± 0.0191 

Stock 

FNNRHN-sig 200/0.3/7 0.0208 ± 0.0 0 05 0.0286 ± 0.0014 

FNNRHN-Gauss 180/0.6/2.5 0.0220 ± 0.0 0 06 0.0283 ± 0.0016 

FNNRHN-soft 180/0.05/4.5 0.0220 ± 0.0 0 06 0.0281 ± 0.0015 

FNNRHN-cos 160/0.15/2.5 0.0236 ± 0.0 0 06 0.0287 ± 0.0014 

Concrete 

FNNRHN-sig 180/0.425/2.5 0.0527 ± 0.0011 0.0891 ± 0.0066 

FNNRHN-Gauss 160/0.85/1.5 0.0600 ± 0.0020 0.0925 ± 0.0060 

FNNRHN-soft 160/0.275/5 0.0598 ± 0.0018 0.0918 ± 0.0051 

FNNRHN-cos 160/0.55/4 0.0617 ± 0.0022 0.0938 ± 0.0062 

Compactiv 

FNNRHN-sig 200/0.2/8.5 0.0320 ± 0.0012 0.0395 ± 0.0025 

FNNRHN-Gauss 200/0.85/1.5 0.0274 ± 0.0 0 04 0.0329 ± 0.0018 

FNNRHN-soft 200/0.125/1.5 0.0272 ± 0.0 0 04 0.0325 ± 0.0018 

FNNRHN-cos 200/0.95/3 0.0275 ± 0.0 0 03 0.0335 ± 0.0019 

 

 

 

 

 

parameters are not searched, 50 hidden nodes used in experiments are not enough to get the performance comparable

with SCN-III. In the next experiments, to improve FNNRHN results the number of hidden nodes m , as well as r and s were

selected in the grid search using 10-fold cross-validation. The RMSEs estimated in cross-validation for different number of

neurons in Fig. 17 are shown. More neurons provide to better results. Table 3 shows the results when all three parameters of

FNNRHN are tuned. As we can see from this table the training and testing errors are much lower than in the case presented

in Table 2 , where the number of hidden nodes set as 50 is insufficient. 
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In the light of the considerations carried out in this work, assigning the same fixed ranges for weights and biases is

questionable. There is no problem when the TF is not strongly nonlinear or “flat”, without spikes and sudden jumps. Such

function can be approximated using flat fragments of the AFs, so the ranges for random parameters are not as important.

But the problem arises when we approximate a strongly nonlinear function such as TF (57) . The proposed FNNRHN gives

for this case very good results which are shown in Fig. 18 (compare with Fig. 3 in [14] , where FC for IRVFL and SCN are

shown). 

6. Conclusion 

Randomized algorithms for training NNs suffer from design choices, translated in free parameters, which are difficult to

set optimally and require many trials and cross-validation to find a good projection space [1] . In this work we demonstrate

that the intervals of the random weights and biases in FNNRHN are extremely important due to approximation properties of

the network. Activation functions of the hidden neurons are the basis functions which linear combination forms the surface

fitting data. For non-linear target function the set of AFs should deliver nonlinear fragments to model the target function in

its nonlinear regions with required accuracy. 

The main contribution of this work is to propose a practical method of randomly generating weights and biases in

FNNRHN to set nonlinear fragments of AFs in the input space region containing data points. The analyzes carried out lead

to the conclusion that parameters of hidden nodes are dependent on the input data range and activation function type.

Ranges for weights and biases should be considered separately, because these parameters have different meaning. Moreover,

the range for the bias of the i th hidden node is strictly dependent on the weights of this node. The proposed method

allows us to control the flatness and steepness of the AF set and hence the degree of generalization of the network and

bias-variance tradeoff of the model. 
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