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Abstract. Extreme learning machine is a new scheme for learning the
feedforward neural network, where the input weights and biases deter-
mining the nonlinear feature mapping are initiated randomly and are not
learned. In this work we analyse approximation ability of the extreme
learning machine depending on the activation function type and ranges
from which input weights and biases are randomly generated. The studies
are performed on the example of approximation of one variable function
with varying complexity. The ranges of input weights and biases are de-
termined for ensuring the sufficient flexibility of the set of activation
functions to approximate the target function in the input interval.
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1 Introduction

Feeforward neural networks (FNNs) have been successfully applied to solve many
complex and diverse tasks. They are widely used in regression and classification
problems due to their adaptive nature and excellent approximation properties
(FFN is an universal approximator, i.e. it is capable of approximating any non-
linear function). As a learning machine FNN can learn from observed data and
generalize well in unseen examples. All inner parameters of the networks (weights
and biases) are adjustable. Due to the layered structure of FNN the learning pro-
cess is complicated, inefficient and requires the activation functions of neurons
to be differentiable. The training usually employ some form of gradient descent
method, which is generally time-consuming and converges to local minima. More-
over some parameters, such as number of hidden neurons or learning algorithm
parameters, have to be tuned manually.

The Extreme Learning Machine (ELM) is an alternative learning algorithm
proposed for training single-hidden-layer FNNs [1]. The learning process does
not require iterative tuning of weights. The input weights (linking the inputs
with hidden layer) and biases of hidden neurons need not to be adjusted. They
are randomly initiated according to any continuous sampling distribution with-
out the knowledge of the training data. The only parameters need to be learned



are the output weights (between the hidden and output layers). Thus ELM can
be simply considered as a linear system in which the output weights can be ana-
lytically determined through simple generalized inverse operation of the hidden
layer output matrices. As theoretical studies have shown, even with randomly
generated hidden nodes, ELM with wide type of activation functions can work as
an universal approximator. Numerous experiments and applications have demon-
strated that ELM and its variants are efficient, accurate and easy to implement.
The learning speed of ELM can be thousands of times faster than traditional
gradient descent-based learning.

In this work we analyze approximation ability of ELM depending on the
activation function type and ranges from which input weights and biases are
randomly generated. To visualize results the studies are performed on the ex-
ample of approximation of one variable function with varying complexity. The
ranges of input weights and biases are determined for ensuring the sufficient
flexibility of ELM in the input interval.

2 Basic Extreme Learning Machine

ELM originally proposed by Huang et al. [1] learns in three steps. Given a
training set Φ = {(xk, tk) | (xk ∈ IRn, tk ∈ IR, k = 1, 2, ..., N}, hidden node
activation function type h(x), and the number of hidden nodes L,

1. Randomly initiate according to any continuous sampling distribution hid-
den node parameters, i.e. input weights and biases: ai = [ai,1, ai,2, ..., ai,n]T

and bi, i = 1, 2, ..., L. Usually uniform distribution is used for this: ai,j ∼
U(amin i,j , amax i,j), bi ∼ U(bmin i,j , bmax i,j). (The ranges from which weights
and biases are generated, amin, amax, bmin and bmax, are the main subject of
this work.)

2. Calculate the hidden layer output matrix H:

H =

h(x1)
...

h(xN )

 =

h1(x1) · · · hL(x1)
...

...
...

h1(xN ) · · · hL(xN )

 , (1)

where hi(x) is an activation function of the i-th neuron, which is nonlinear
piecewise continuous function, e.g. the sigmoid:

hi(x) =
1

1 + exp(−(ai · x + bi))
, (2)

ai · x denotes the inner product of ai and x.
The i-th column of H is the i-th hidden neuron output vector with respect
to inputs x1,x2, ...,xN . Hidden neurons maps the data from n-dimensional
input space to the L-dimensional feature space H, and thus, h(x) is a non-
linear feature mapping. The most popular activations functions are: sigmoid,
Gaussian, multiquadric, hard-limit, triangular and sine functions. Different
activation functions can be used in different hidden neurons.



The output matrix H remains unchanged because parameters of the activa-
tion functions, ai and bi, are fixed.

3. Calculate the output weights βi:

β = H+T, (3)

where β = [β1, β2, ..., βL]T is the vector of the output weights, T = [t1, t2, ..., tN ]T

is the training data output matrix, and H+ is the Moore-Penrose generalized
inverse of matrix H.
The above equation for β results from the minimizing the approximation
error:

min ‖Hβ − T‖ . (4)

The output function of ELM is of the form (one output case):

fL(x) =

L∑
i=1

fi(x) =

L∑
i=1

βihi(x) = h(x)β, (5)

where fi(x) = βihi(x) is the weighted output of the i-th hidden node.

The output function fL(x) is a linear combination of the activation func-
tions hi(x). Characteristically for ELM the hidden nodes parameters, ai and
bi, are randomly generated instead of being explicitly trained. This process is
independent of the training data and provide random feature mapping.

To improve generalization performance of ELM its regularized version was
proposed [2]. Recent developments in theoretical studies and applications of ELM
are reported in [3].

3 Approximation Capability of ELM: Simulation Study

In this section we analyze the approximation capability of ELM depending on
the activation function types and the way of initialization of the input weights
and biases. For brevity, we use the following acronyms:

– TF: target function g(x),
– FC: fitted curve fL(x),
– AF: activation function hi(x),
– II: input interval, i.e. the interval to which inputs are normalized.

The simulation tests were performed in MATLAB R2010b environment. We
used Matlab implementation of ELM: function elm created by the authors of
ELM algorithm (downloaded from http://www.ntu.edu.sg/home/egbhuang/

elm\_random\_hidden\_nodes.html). The input weights and biases in this im-
plementation are generated randomly from the uniform distribution: weights
from the range of [−1, 1] and biases form the range of [0, 1]. There are five types
of AFs in elm to choose from. Each AF gets linear combination of ELM inputs:



a · x + b as an argument. The coefficients of this combination are input weights
and bias of the i-th neuron. The types of AFs implemented in elm function are
shown in Table 1 in the single input version.

In [4] we analyse the impact of ranges from which the input weights and
biases are randomly generated on the fitted curve complexity when sigmoid AFs
are used. In this work we consider ELM with other AFs. To illustrate results the
single variable TF is used of the form:

g(x) = sin(20 · ex) · x2, (6)

where x ∈ [0, 1].
The complexity of function (6) increases along the interval [0, 1]. TF is flat

at the left border of the interval, while at the right border its variability is the
highest. To express TF variability we use the percentage slope function [4]:

sg%(x) = 100 ·
∣∣∣∣dg(x)

dx

∣∣∣∣ · (max
x∈II

∣∣∣∣dg(x)

dx

∣∣∣∣)−1 . (7)

The training set includes 5000 points (xk, yk), where xk are uniformly ran-
domly distributed on [0, 1] and yi are distorted by adding the uniform noise
distributed in [−0.2, 0.2]. The testing set is created similarly but without noise.
The outputs are normalized into the range [−1, 1]. These settings are the same as
in [1], where ELM performance was evaluated on the SinC function benchmark.

In Fig. 1 the results of approximation using ELM with 20 hidden neurons
with Gaussian AFs are shown. As can be seen from this figure the FC fluctuates
in the flat part of TF and is underfitted in the complex part. More neurons in the
hidden layer (up to 1000) does not improve the result. If we look at the fragments
of AFs, hi(x), in the input window (II), we notice their low variability, which does
not correspond to the variability of TF. The AF fragments in II compose the set
of basis functions from which the FC is constructed by their linear combination.
The components of this combination, fi(x), i.e. AFs weighted by the output
weights βi, are also shown in Fig. 1. To measure the variability of the set of AFs
we use the percentage slope functions of AFs, sh%(x), and the weighted AFs,
sf%(x), defined as follows [4]:

sh%(x) =
100 · sh(x)

maxx∈II sh(x)
, where sh(x) =

1

L

L∑
i=1

∣∣∣∣dhi(x)

dx

∣∣∣∣ , (8)

sf%(x) =
100 · sf (x)

maxx∈II sf (x)
, where sf (x) =

1

L

L∑
i=1

∣∣∣∣dfi(x)

dx

∣∣∣∣ =
1

L

L∑
i=1

∣∣∣∣βi dhi(x)

dx

∣∣∣∣ (9)

The plots of these functions, expressing the AF set variability along II, in Fig.
1 are shown, together with function (7) expressing TF variability. Note that the
highest variability of the AF set is at the left border of II, whereas the highest
variability of TF is at the right border.

To improve approximation capability of ELM let us increase the AF set
variability in the II of [0, 1]. This will be reached in two ways:
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Fig. 1. Results of approximation using ELM with 20 Gaussian neurons generated from
the default intervals

– by increasing the input weights determining the slopes of the Gaussian AFs
and

– by adjusting the biases to the II so that the maxima of AFs are inside the
II.

The first requirement is not very important because the AF slopes are regulated
by output weights (see (9)). But to avoid large output weights necessary for
providing steep weighted AFs to model the steep TF fragments, let us assume
that ai ∈ [0, 10]. (For one input case ai can be limited to the positive values.)

According to the second requirement the maximum of AF should be for
x ∈ [0, 1]. When the maximum is in the left border of our II we get:

hi(0) = exp(−(ai · 0 + bi)
2) = 1 → bi = 0, (10)

and when it is in the right border we get:

hi(1) = exp(−(ai · 1 + bi)
2) = 1 → bi = −ai. (11)

Thus the bias of the i-th neuron should be randomly generated within the
range:

bi ∈ [−ai, 0],where ai ≥ 0. (12)

For the lowest value of the input weight ai = 0, bi = 0 and AF is a constant
function: hi(x) = 1. The higher the value of ai, the steeper the AF is.

The results of approximation for weights and biases randomly generated in
the intervals proposed above in Fig. 2 are presented. Here 100 Gaussian neurons
are used in the hidden layer (RMSE for 20 neurons was 0.088). Note higher
variability of AFs in the II than outside this interval. The slope function sf%(x)



corresponds better to the variability of TF than in the previous example. Similar
results were achieved when input weights were all set to constant values ai = 5,
and biases were uniformly distributed in the interval [−ai, 0]. This is illustrated
in Fig. 3.
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Fig. 2. Results of approximation using ELM with 100 Gaussian neurons generated
from the proposed intervals

In the next experiment we replace Gaussian AFs by triangular AFs. When
using default intervals for random generation of input weights and biases ([−1, 1]
and [0, 1], respectively) the results are not satisfactory. The problem of underfit-
ting appears. To improve approximation capability in this case we use the same
approach as for Gaussian AFs. First we increase the input weight values defining
their range as [0, 10]. Then we assume that the maxima of AFs are in II. This
leads to the same range for biases (12) as in the case of Gaussian AFs. Results
of approximation in Fig. 4 are shown. Note that FC is piecewise linear and un-
smooth. Combining triangular basis functions results in the ”jagged” FC. When
instead of random weights and biases constant input weights were used (ai = 5)
and biases were uniformly distributed in [−ai, 0], the results were similar (RMSE
= 0.016).

In the case of hard-limit AFs the FC is a linear combination of unit step
functions. When the step position (jump from 0 to 1 or vice versa) is outside
the II we get constant fragment of AF in the II. Such fragments are useless for
modeling TF fragments of nonzero slopes. When using default settings for ranges
of input weights and biases, many AFs have their jumps outside the II of [0, 1].
The jump positions can be calculated from: x = −b/a. For b randomly generated
from the uniform distribution on the interval [0, 1] and a generated similarly on
[−1, 1] about 75% of AFs have jumps outside our II. To bring the jumps into II
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Fig. 3. Results of approximation using ELM with 100 Gaussian neurons evenly dis-
tributed in the II
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Fig. 4. Results of approximation using ELM with 100 triangular neurons generated
from the proposed intervals



the biases should be randomly generated from the intervals: [−ai, 0], if ai ≥ 0
or [0,−ai], if ai < 0. The value of ai is not important in this case. (In other
types of AFs presented in Table 1, ai regulates the slope of AF, but not in hard-
limit function). Only its sign deciding about the hard-limit function direction,
i.e. from 0 to 1 or from 1 to 0, is important. So we can assume ai ∈ {−1, 1}, and
draw its value with the same probability. In Fig. 5 the results of approximation
using ELM composed of 100 hidden neurons with hard-limit AFs are presented.
Note that FS is a step function. When we use constant input weights ai = +1 for
even-numbered neurons and ai = −1 for odd-numbered ones, and biases evenly
distributed in [−1, 0], for ai = +1 or in [0, 1], for ai = −1, the results were
similar (RMSE = 0.046).
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Fig. 5. Results of approximation using ELM with 100 hard-limit neurons generated
from the proposed intervals

Now we test ELM with sine functions as AFs. For default ranges for input
weights and biases the results of approximations look similar to results for Gaus-
sian AFs presented in Fig. 1. To increase variability of AFs in the II we change
the bounds of the interval from which input weights are generated to [0, 30]. The
biases are generated from the range [0, 2π]. This range for bi ensures uniform
distribution of a single sine AF in II. In such a case, at each point x from II,
each value of the AF from its codomain is achievable. The results of approxi-
mation for ELM with 100 sine AFs with parameters randomly generated from
the above intervals in Fig. 6 are shown. Note that due to the periodicity of AFs
their variability is the same inside and outside the II. When instead of random
weights and biases we use constant input weights and biases evenly distributed
in [0, 2π], the resulting FC does not fit to TF. It has a form of a sine function
with changing amplitude, and with decreasing period with ai.



The ranges from which input weights and biases should be randomly gen-
erated for a single variable function approximation in Table 1 are summarized.
Sigmoid AF was analyzed in [4]. The border value A of the interval for input
weights depends on the AF type and variability of the TF. When TF is flat,
lower border values can be used. This prevents overfitting. For TF with high
variability, higher values of A are needed to prevent underfitting. Generally, pa-
rameter A controls bias-variance tradeoff of the ELM. In all cases except sine AF
the intervals for biases are dependent on the input weights. So for each neuron
first input weight is randomly chosen, and next bias is randomly generated from
the appropriate interval.
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Fig. 6. Results of approximation using ELM with 100 sine neurons generated from the
proposed intervals

4 Conclusions

The fitted curve in ELM is a linear combination of the basis functions, i.e. the
activation functions of the hidden neurons. The basis function is a simple non-
linear piecewise continuous function which parameters are randomly generated
in ELM. The set of basis functions should have the sufficient flexibility to en-
sure the best fitting to the target function in the input interval. In the classical
learning scheme, such as gradient descent-based learning, the input weights and
biases are adjusted during learning. This results in the modifications of the basis
functions: they change their slopes and slide along the x-axis. So the flexibility
of the set of basis functions is adapted to the complexity of the target function.
In ELM such a mechanism does not work. Therefore, the ELM designer should
ensure the flexibility of the basis function set in the input interval.



Table 1. Activation functions and ranges for their parameters

Activation function Weights Biases
ai ∈ bi ∈

Sigmoid [−A,A]
[
− ln

(
q

1−q

)
− ai,− ln

(
1−q
q

)]
, if ai ≥ 0

[1 + exp(−(aix+ bi))]
−1

[
− ln

(
q

1−q

)
,− ln

(
1−q
q

)
− ai

]
, if ai < 0

Gaussian [0, A] [−ai, 0]
exp(−(aix+ bi)

2)

Triangular [0, A] [−ai, 0]{
1− |aix+ bi|, if |aix+ bi| ≤ 1

0, otherwise

Hard-limit {−1, 1} [−1, 0], if ai = 1{
1, if aix+ bi ≤ 0

0, otherwise
[0, 1], if ai = −1

Sine function [0, A] [0, 2π]
sin(aix+ bi)

where: A > 0, q ∈ [0.5, 1] (see [4]).

The aim of this work is to find the ranges from which basis function pa-
rameters should be randomly generated. These ranges are dependent on the
basis function type, moreover, the ranges for biases are dependent on the input
weights. In the future work the results achieved here for approximation of the
single argument function we will try to generalize for multiple argument func-
tions. It is worth examining also the ability of ELM generalization depending on
the input weight ranges determining the slopes of the activation functions.
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