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Abstract. Many time series exhibit seasonal variations related to the daily, 
weekly or annual activity. In this paper a new immune inspired univariate me-
thod for forecasting time series with multiple seasonal periods is proposed. This 
method is based on the patterns of time series seasonal sequences: input ones 
representing sequences preceding the forecast and forecast ones representing 
the forecasted sequences. The immune system includes two populations of im-
mune memory cells – antibodies, which recognize both types of patterns 
represented by antigens. The empirical probabilities that the forecast pattern is 
detected by the kth antibody from the second population while the correspond-
ing input pattern is detected by the jth antibody from the first population, are 
computed and applied to the forecast construction. The empirical study of the 
model including sensitivity analysis to changes in parameter values and the ro-
bustness to noisy and missing data is performed. The suitability of the proposed 
approach is illustrated through applications to electrical load forecasting and 
compared with ARIMA and exponential smoothing approaches. 

Keywords: artificial immune system, seasonal time series forecasting, similari-
ty-based methods. 

1 Introduction 

In general, a time series can be thought of as consisting of four different components: 
trend, seasonal variations, cyclical variations, and irregular component. The specific 
functional relationship between these components can assume different forms. Usual-
ly they combine in an additive or a multiplicative fashion. Seasonality is defined to be 
the tendency of time series data to exhibit behavior that repeats itself every n periods. 
The difference between a cyclical and a seasonal component is that the latter occurs at 
regular (seasonal) intervals, while cyclical factors have usually a longer duration that 
varies from cycle to cycle. The presence of the cyclical and multiple seasonal cycles 
hampers the construction of forecasting models. In this article we concentrate on the 
seasonal cycles. Seasonal patterns of time series can be examined via correlograms or 
periodograms based on a Fourier decomposition.  

Many economical, business and industrial time series exhibit seasonal behavior. 
Examples of data with recurrent patterns are: retail sales, industrial production, traffic, 
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weather phenomena, electricity load, calls to call center, gas and water consumption. 
The recurrent patterns in these cases can be observed within daily, weekly and/or 
annual periods. Seasonality is often connected with the rhythm of life of the popula-
tion and its relationship to the variability of the seasons, professional activity, tradi-
tions and habits. 

A variety of methods have been proposed for seasonal time series forecasting. 
These include [1]: seasonal ARIMA, exponential smoothing, artificial neural net-
works, dynamic harmonic regression, vector autoregression, random effect models, 
and many others. The first three approaches are the most commonly employed to 
modeling seasonal patterns.  

According to Box et al. [2] we can extend the base ARIMA model with just one 
seasonal pattern for the case of multiple seasonalities. Such an extension we can find 
in [3]. The inconvenience in the time series modeling using multiple seasonal ARIMA 
is a combinatorial problem of selecting appropriate model orders.      

The basic Holt-Winters exponential smoothing was adapted by Taylor so that it can 
accommodate two seasonalities [3]. Empirical comparison showed that the resulting 
forecasts for the new double seasonal Holt-Winters method outperformed those from 
standard Holt-Winters and also those from a double seasonal ARIMA model. An 
advantage of the exponential smoothing models is, besides their relative simplicity, 
that they can be nonlinear. On the other hand it can be viewed as being of high di-
mension, as it involves initialization and updating of a large number of terms (level, 
periods of the intraday and intraweek cycles). More parsimonious formulation is pro-
posed in [1]. Recently five new exponentially weighted methods for forecasting time 
series that consist of both intraweek and intraday seasonal cycles were proposed in 
[4]. 

Gould et al. described a state space model developed for the series using the inno-
vation approach which enables to develop explicit models for both additive and mul-
tiplicative seasonality [5]. The innovation state space approach provides a theoretical 
foundation for exponential smoothing methods. This procedure improves on the cur-
rent approaches by providing a common sense structure to the models, flexibility in 
modeling seasonal patterns, a potential reduction in the number of parameters to be 
estimated, and model based prediction intervals. 

Artificial neural networks (ANNs),  being nonlinear and data-driven in nature, may 
be well suited to the seasonal time series modeling. One of the major advantage of 
ANNs, that makes they are so often used in practice, is their great capacity to extract 
unknown and general information from a given data set even in high-dimensional 
task. The automated ANN learning releases a designer from the cumbersome proce-
dures of a priori model selection. Although there is another problem: the selection of 
network architecture as well as the learning algorithm. The most popular ANN type 
used in forecasting task is multilayer perceptron, which has a property of universal 
approximation. ANNs are able to directly model seasonality, without the prior sea-
sonal adjustment. An example we can find in [6] where authors conduct a compara-
tive study between ANN and ARIMA models. However Nelson et al. [7] conclude 
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that ANNs trained on deseasonalized data perform significantly better than those with 
raw data. Zhang and Qi [8] notice that not only deseasonality is important but also 
detrending. They study the effectiveness of data preprocessing on ANN modeling and 
forecasting performance. In a large-scale empirical study [9] Zhang and Kline fit a 
linear trend for detrending and then subtract the estimated trend component from the 
raw data. For deseasonalizing they employ the method of seasonal index based on 
centered moving averages. 

Decomposition of the time series to cope with seasonalities and trend, is a proce-
dure used not only in ANNs, but also in other models, e.g. ARIMA and exponential 
smoothing. The components showing less complexity than the original time series can 
be predicted independently and more accurate. A frequently used approach is to de-
compose the time series on seasonal, trend and stochastic components (e.g. using STL 
filtering procedure based on LOESS smoother [10]). Other methods of decomposi-
tions apply the Fourier transform [11] or the wavelet transform [12]. The simple way 
to remove seasonality is to define the separate time series for each observation in a 
cycle, i.e. in the case of cycle of length n, n time series is defined including observa-
tions in the same positions in a cycle.  

In this paper we propose an approach based on the patterns of the time series sea-
sonal sequences. Using patterns we do not need to decompose a time series. A trend 
and many seasonal cycles as well as the nonstationarity and heteroscedasticity is not a 
problem here when using proper pattern definitions. The proposed approach belongs 
to the class of similarity-based methods [13] and is dedicated to forecasting time se-
ries with multiple seasonal periods. The forecast here is constructed using analogies 
between sequences of the time series with periodicities. An artificial immune system 
(AIS) is used for detection of similar patterns of sequences. The clusters of patterns 
are represented by antibodies (AB). Two population of ABs are created which recog-
nize two populations of patterns (antigens) – input ones and forecast ones. The empir-
ical probabilities that the pattern of forecasted sequence is detected by the kth AB 
from the second population while the corresponding pattern of input sequence is de-
tected by the jth AB from the first population are computed and applied to the forecast 
construction. This idea is taken from [14], where the Kohonen net was used as a clus-
tering method.  

The merits of AIS lie in its pattern recognition and memorization capabilities. The 
application areas for AIS can be summarized as [15]: learning (clustering, classifica-
tion, recognition, robotic and control applications), anomaly detection (fault detection, 
computer and network security applications), and optimization (continuous and com-
binatorial). Antigen recognition, self-organizing memory, immune response shaping, 
learning from examples, and generalization capability are valuable properties of im-
mune systems which can be brought to potential forecasting models. The first AIS 
model dedicated to the time series forecasting was proposed by Dudek [16]. The no-
velty of the AIS proposed in this paper in the comparison with [16] is that the immune 
memory is composed of two AB populations and the cross-reactivity thresholds are 
adapted to learning data during the immune memory creation process. 
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2 Similarity-Based Forecasting Methods 

The similarity-based (SB) methods use analogies between sequences of the time se-
ries with seasonal cycles. A course of a time series can be deduced from the behavior 
of this time series in similar conditions in the past or from the behavior of other time 
series with similar changes in time. In the first stage of this approach the time series is 
divided into sequences of length n, which usually contain one seasonal cycle. Fig. 1 
shows a periodical time series, where we can observe annual, weekly and daily varia-
tions. This series represents hourly electrical loads of the Polish power system. Our 
task is to forecast the time series elements in the daily period, so the sequences in-
clude 24 successive elements of the daily periods.  
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Fig. 1. The load time series of the Polish power system in three-year (a) and three-week (b) 
intervals 

In order to eliminate trend and seasonal variations of periods longer than n (weekly 
and annual variations in our example), the sequence elements are preprocessed to 
obtain their patterns. The pattern is a vector with components that are functions of 
actual time series elements. The input and output (forecast) patterns are defined: x = 
[x1 x2 … xn]

T and y = [y1 y2 … yn]
T, respectively. The patterns are paired (xi, yi), where 

yi is a pattern of the time series sequence succeeding the sequence represented by xi 
and the interval between these sequences (forecast horizon τ) is constant. The SB 
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methods are based on the following assumption: if the process pattern xa in a period 
preceding the forecast moment is similar to the pattern xb from the history of this 
process, then the forecast pattern ya is similar to the forecast pattern yb.  

Patterns xa, xb and yb are determined from the history of the process. Pairs xa–xb 
and ya–yb are defined in the same way and are shifted in time by the same number of 
series elements. 

The way of how the x and y patterns are defined depends on the time series nature 
(seasonal variations, trend), the forecast period and the forecast horizon. Functions 
transforming series elements into patterns should be defined so that patterns carry 
most information about the process. Moreover, functions transforming forecast se-
quences into patterns y should ensure the opposite transformation: from the forecasted 
pattern y to the forecasted time series sequence.    

The forecast pattern yi = [yi,1 yi,2 … yi,n] encodes the following actual time series 
elements z in the forecast period i+τ: zi+τ = [zi+τ,1 z i+τ,2 … zi+τ,n], and the input pattern 
xi = [xi,1 xi,2 … xi,n] maps the time series elements in the period i preceding the fore-
cast period: zi = [zi,1 zi,2 … zi,n]. In general, the input pattern can be defined on the 
basis of a sequence longer than one period, and the time series elements contained in 
this sequence can be selected in order to ensure the best quality of the model. Vectors 
y are encoded using actual process parameters Ψi (from the nearest past), which al-
lows to take into consideration current variability of the process and ensures possibili-
ty of decoding.  

For series with daily, weekly and annual seasons we define some functions map-
ping the original feature space Z into the pattern spaces X and Y, i.e. fx : Z → X and fy : 
Z → Y: 
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where: i = 1, 2, …, N – the period number, t = 1, 2, …, n – the time series element 
number in the period i, τ – the forecast horizon, zi,t – the tth time series element in the 
period i, iz  – the mean value of elements in period i, z' ∈ { iz , zi-1,t, zi-7,t, zi,t-1}, z" ∈ 

{ iz , zi,t, zi+τ-7,t}, Ψi – the set of coding parameters such as iz , z' and z". 

The function fx defined using (1) expresses normalization of the vectors zi. After 
normalization these vectors have the unity length, zero mean and the same variance. 
When we use the standard deviation of the vector zi components in the denominator 
of equation (1), we receive vector xi with the unity variance and zero mean. Note that 
the nonstationary and heteroscedastic time series is represented by patterns having the 
same mean and variance. 
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The components of the x-patterns defined using equations (2) and (3) express, re-
spectively, indices and differences of zi,t  and z' or z". 

Forecast patterns are defined using analogous functions to input pattern functions 
fx, but they are encoded using the time series elements or characteristics determined 
from the process history, what enables decoding of the forecasted vector zi+τ after the 
forecast of pattern y is determined. To calculate the time series element values on the 

basis of their patterns we use the inverse functions: ),( ,
1

itix xf Ψ−  or ),( ,
1

itiy yf Ψ− . For 

example the inverse functions for (1) are: 
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As a similarity measure between two patterns (real-valued vectors) we can use [17]: 
the inner product (when the vectors are normalized) or closely related to it cosine 
similarity measure, Pearson’s correlation coefficient or Tanimoto measure. It is useful 
to define the similarity measures on the base of the distance measures, e.g using linear 
mapping: s(xa,xb) = c – d(xa,xb) or nonlinear mapping: s(xa,xb) = 1/(1+ d(xa,xb)), 
where: s(.,.) is a similarity, d(.,.) is a distance and c is a constant greater than the high-
est value of the distance. The popular distance measures are: Euclidean, Manhatan or 
Canberra distances. If the components of the vectors are expressed in different units 
or change in different ranges, in order to offset their impact on the distance, their 
weighing is recommended. 

If for a given time series the statistical analysis confirms the hypothesis that the 
dependence between similarities of input patterns and similarities between forecast 
patterns paired with them are not caused by random character of the sample, it justi-
fies the sense of building and using models based on the similarities of patterns of this 
time series. The statistical analysis of pattern similarities is described in [13]. 

The forecasting procedure in the case of SB methods can be summarized as  
follows:  

1. Elimination of the trend and seasonal variations of periods longer than n using pat-
tern functions fx and fy. 

2. Forecasting the pattern y using similarities between patterns.  
3. Reconstruction the time series elements from the forecasted pattern y using the in-

verse function 1−
yf .        

3 Immune Inspired Forecasting Model 

The proposed AIS contains immune memory consisting of two populations of ABs. 
The population of x-antibodies (ABx) detects antigens representing patterns x = [x1, 
x2, ..., xn]

T – AGx, while the population of y-antibodies (ABy) detects antigens repre-
senting patterns y = [y1, y2, ..., yn]

T – AGy. The vectors x and y form the epitopes of 
AGs and paratopes of ABs. ABx has the cross-reactivity threshold r defining the AB 
recognition region. This recognition region is represented by the n-dimensional 
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hypersphere of radius r with center at the point x. Similarly ABy has the recognition 
region of radius s with center at the point y. The cross-reactivity thresholds are ad-
justed individually during training. The recognition regions contain AGs with similar 
epitopes. 

AG can be bound to many different ABs of the same type (x or y). The strength of 
binding (affinity) is dependent on the distance between an epitope and a paratope. AB 
represents a cluster of similar AGs in the pattern space X or Y. The clusters are over-
lapped and their sizes depend on the similarity between AGs belonging to them, 
measured in the both pattern spaces X and Y. The kth ABx can be written as a pair 
{pk, rk}, where pk = xk, and the kth ABy as {qk, sk}, where qk = yk.  

After the two population of immune memory have been created, the empirical con-
ditional probabilities P(AByk | ABxj), j, k = 1, 2, …, N, that the ith AGy stimulates (is 
recognized by) the kth ABy, when the corresponding ith AGx stimulates the jth ABx, 
are determined. These probabilities are calculated for each pair of ABx and ABy on 
the basis of recognition of the training population of AGs.  

In the forecasting phase the new AGx, representing pattern x*, is presented to the 
trained immune memory. The forecasted pattern y paired with x* is calculated as the 
mean of ABy paratopes weighted by the conditional probabilities and affinities.    

The detailed algorithm of the immune system to forecasting seasonal time series is 
described below. 

Training (immune memory creation) 
1. Loading of the training populations of antigens. 
2. Generation of the antibody populations. 
3. Calculation of the cross-reactivity thresholds of  

x-antibodies. 
4. Calculation of the cross-reactivity thresholds of  

y-antibodies. 
5. Calculation of the empirical conditional probabilities 

P(AByk|ABxj). 
Test 
6. Forecast determination using y-antibodies, probabili-

ties P(AByk|ABxj) and affinities. 

Fig. 2. Pseudocode of the AIS for the seasonal time series forecasting 

Step 1. Loading of the training populations of antigens. An AGx represents a sin-
gle x pattern, and AGy represents a single y pattern. Both populations of AGx and 
AGy are divided into training and test parts in the same way. Immune memory is 
trained using the training populations, and after learning the model is tested using the 
test populations.   

 
Step 2. Generation of the antibody populations. The AB populations are created by 
copying the training populations of AGs (ABs and AGs have the same structure). 
Thus the paratopes take the form: pk = xk, qk = yk, k = 1, 2, …, N. The number of AGs 
and ABs of both types is the same as the number of learning patterns. 
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Step 3. Calculation of the cross-reactivity thresholds of x-antibodies. The recogni-
tion region of the kth ABx should be as large as possible and cover only the AGx that 
satisfy two conditions: 

(i) their epitops x are similar to the paratope pk, and  
(ii) the AGy paired with them have epitopes y similar to the kth ABy paratope – 

qk. 
    The measure of similarity of the ith AGx to the kth ABx is an affinity:  
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where d(pk, xi) is the distance between vectors pk and xi, a(pk, xi) ∈ [0, 1]. 
Affinity a(pk, xi) informs about the degree of membership of the ith AGx to the clus-
ter represented by the kth ABx.  

The similarity of the ith AGy to the kth ABy mentioned in (ii) is measured using 
the forecast error of the time series elements encoded in the paratope of the kth ABy. 
These elements are forecasted using the epitope of the ith AGy. The forecast error is: 
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where:  zk+τ,t – the tth time series element of the period k+τ which is encoded in the 

paratope of the kth ABy: ),( ,, ktkytk zfq Ψ= +τ , ),( ,
1

ktiy yf Ψ−  – the inverse function of 

the pattern y returning the forecast of time series element zk+τ,t using the epitope of the 
ith AGy. 

If the condition δk,i ≤ δy is satisfied, whereδy is the error threshold value, it is as-
sumed that the ith AGy is similar to the kth ABy, and ith AGx, paired with this AGy, 
is classified to class 1. When the above condition is not met the ith AGx is classified 
to class 2. Thus class 1 indicates the high similarity between ABy and AGy. The clas-
sification procedure is performed for each ABx.  

The cross-reactivity threshold of kth ABx is defined as follows:   

 )],(),([),( AkBkAkk ddcdr xpxpxp −+= , (7) 

where B denotes the nearest AGx of class 2 to the kth ABx, and A denotes the furthest 
AGx of class 1 satisfying the condition d(pk, xA) < d(pk, xB). The parameter c ∈ [0, 1) 
allows to adjust the cross-reactivity threshold value from rkmin =  d(pk, xA) to rkmax =  
d(pk, xB).  
 
Step 4. Calculation of the cross-reactivity thresholds of y-antibodies. The cross-
reactivity threshold of kth ABy is calculated similarly to the above: 

 )],(),([),( AkBkAkk ddbds yqyqyq −+= , (8) 
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where B denotes the nearest AGy of class 2 to the kth ABy, and A denotes the furthest 
AGy of class 1 satisfying the condition d(qk, yA) < d(qk, yB). The parameter b ∈ [0, 1) 
plays the same role as the parameter c. 

The ith AGy is classified to class 1, if for the ith AGx paired with it, there is εk,i ≤ 
εx, where εx is the threshold value and εk,i is the forecast error of the time series ele-
ments encoded in the paratope of the kth ABx. These elements are forecasted using 
the epitope of the ith AGx. The forecast error is: 

 
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where: zk,t – the tth time series element of the period k which is encoded in the para-

tope of the kth ABx: ),( ,, ktkxtk zfp Ψ= , ),( ,
1

ktix xf Ψ−  – the inverse function of pat-

tern x returning the forecast of time series element zk,t using the epitope of the ith 
AGx. 

The ith AGy is recognized by kth ABy if affinity a(qk, yi) > 0, where:   
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a(qk, yi) ∈ [0, 1] expresses the degree of membership of pattern yi to the cluster 
represented by the kth ABy. 

Procedure for determining the threshold sk is thus analogous to the procedure for 
determining the threshold rk. The recognition region of kth ABy is as large as possible 
and covers AGy that satisfy two conditions:  

(i) their epitops y are similar to the paratope qk, and  
(ii) the AGx paired with them have epitopes x similar to the kth ABx paratope – 

pk. 
This way of forming clusters in pattern space X (Y) makes that their sizes are de-

pendent on the dispersion of y-patterns (x-patterns) paired with patterns belonging to 
these clusters. Another pattern xi (yi) is appended to the cluster ABxk (AByk) (this is 
achieved by increasing the cross-reactivity threshold of AB representing this cluster), 
if the pattern paired with xi (yi) is sufficiently similar to the paratope of the kth AByk 
(ABxk). The pattern is considered sufficiently similar to the paratope, if it allows to 
forecast the time series encoded in the paratope with an error no greater than the thre-
shold value. This ensures that the forecast error for the pattern x (y) has a value not 
greater than εx (δy). Lower error thresholds imply smaller clusters, lower bias and 
greater variance of the model. Mean absolute percentage error (MAPE) here is used 
as an error measure ((6) and (9)) but other error measures can be applied.  
 
Step 5. Calculation of the empirical conditional probabilities P(AByk|ABxj). After 
the clustering of both spaces is ready, the successive pairs of antigens (AGxi, AGyi), i 
= 1, 2, …, N, are presented to the trained immune memory. The stimulated ABx and 
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ABy are counted and the empirical frequencies of AByk given ABxj, estimating condi-
tional probabilities P(AByk|ABxj), are determined. 

 
Step 6. Forecast procedure. In the forecast procedure new AGx, representing the 
pattern x*, is presented to the immune memory. Let Ω be a set of ABx stimulated by 
this AGx. The forecasted pattern y corresponding to x* is estimated as follows: 
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The forecast is calculated as the weighted mean of paratopes qk. The weights w ex-
press the sum of products of the affinities of stimulated memory cells ABx to the AGx 
and probabilities P(AByk | ABxj). 

The clusters represented by ABs have spherical shapes, they overlap and their sizes 
are limited by cross-reactivity thresholds. The number of clusters is here equal to the 
number of learning patterns, and the means of clusters in the pattern spaces X and Y 
(paratopes ABx and ABy) are fixed – they lie on the learning patterns. 

The cross-reactivity thresholds, determining the cluster sizes, are tuned to the train-
ing data in the immune memory learning process. In results the clusters in the space X 
correspond to compact clusters in the space Y, and vice versa.  It leads to more accu-
rate mapping X → Y. The model has four parameters: the error thresholds (δy and εx) 
and the parameters tuning the cross-reactivity thresholds (b and c). Increasing the 
value of these parameters imply an increase in size of clusters, an increase in the 
model bias and reduction in its variance.  

The training routine is deterministic, which means the fast learning process. The 
immune memory learning needs only one pass of the training data. The runtime com-
plexity of the training routine is O(N2n). The most costly operation is the distance 
calculation between each ABs and AGs. The runtime complexity of the forecasting 
procedure is also O(N2n). 

4 Empirical Study 

The described above AIS was applied to the next day electrical load curve forecasting 
(τ = 1). Short-term load forecasting plays a key role in control and scheduling of 
power systems and is extremely important for energy suppliers, system operators, 
financial institutions, and other participants in electric energy generation,  
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transmission, distribution, and markets. Precise load forecasts are necessary for elec-
tric companies to make important decisions connected with electric power production 
and transmission planning, such as unit commitment, generation dispatch, hydro 
scheduling, hydro-thermal coordination, spinning reserve allocation and interchange 
evaluation. 

The series studied in this section represents the hourly electrical load of the Polish 
power system from the period 2002-2004. This series is shown in Fig. 1. The time 
series were divided into training and test parts. The test set contained 30 pairs of pat-
terns from January 2004 (from January 2 to 31) and 31 pairs of patterns from July 
2004. The training set contained patterns from the period from  January 1, 2002 to the 
day preceding the day of forecast.  

For each day from the test part the separate immune memory was created using the 
training subset containing AGy representing days of the same type (Monday, …, 
Sunday) as the day of forecast and paired with them AGx representing the preceding 
days (e.g. for forecasting the Sunday load curve, model learns from AGx representing 
the Saturday patterns and AGy representing the Sunday patterns). This routine of 
model learning provides fine-tuning its parameters to the changes observed in the 
current behavior of the time series.  

The distance between ABs and AGs was calculated using Euclidean metric. The 
patterns were defined using (1). MAPE, which is traditionally used in short-term load 
forecasting, was a forecast error measure. 

The model parameters were determined using the grid search method on the train-
ing subsets in the local version of the leave-one-out procedure. In this procedure not 
all patterns are successively removed from the training set to estimate the generaliza-
tion error but only the k-nearest neighbors of the test x-pattern (k was arbitrarily set to 
5). As a result, the model is optimized locally in the neighborhood of the test pattern. 
It leads to a reduction in learning time. 

In the grid search procedure the parameters were changed as follows:  
(i) δy = 1.00, 1.25, …, 3.00, εx = 1.00, 1.25, …, δy, at the constant values of b = 

c = 1, and  
(ii) b = c = 0, 0.2, …, 1.0, at the optimal values of δy and εx determined in (i).  

It was observed that at lower values of δy and c many x-patterns are unrecognized. 
If δy ≥ 2.25 and c = 1 approximately 99% of the x-patterns are detected by ABx. In-
creasing δy above 2.25 results in increasing the error. Minimum error (MAPE) was 
observed for δy = 2.25, εx = 1.75 and b = c = 1.  

The forecast test MAPE for January was 1.37 and for July was 0.92. Fig. 3 illu-
strates the empirical conditional probabilities P(AByk|ABxj) estimated on the training 
set for July 1, 2004. You can observe a specific pattern that indicates which ABs in 
both populations are activated simultaneously (e.g. the activation of x-antibodies #19–
31 corresponds the stronger activation of y-antibodies #19–32, 69–80 and 118–122). 
These are ABs representing daily cycles lying in the same period of the year. Higher 
probabilities imply a stronger relationship X → Y and greater confidence to the fore-
cast. The weights of activated ABs for this forecasting task are shown in Fig. 4. Here 
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we also can see that the input pattern stimulates ABs representing patterns from the 
same period of the year as the input pattern. The reconstructed forecast pattern on the 
background of patterns represented by activated ABs is shown in Fig. 5. 
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Fig. 3. The empirical conditional probabilities P(AByk|ABxj) estimated on the training set for 
July 1, 2004 
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Fig. 4. The weights of activated ABs estimated on the training set for July 1, 2004 

4.1 Model Sensitivity to Changes in Parameter Values 

The aim of this analysis is to evaluate the influence of the parameter values on the 
forecasts generated by the model. Fig. 6 shows the test sample forecast errors depend-
ing on the parameter values which were changed individually in the ranges: εx ∈ 
[0.5εx*, 1.5εx*], δy ∈ [0.5δy*, 1.5δy*] and b = [0.5b*, min(1.5b*, 1)], where asterisk 
denotes the optimal value of the parameter estimated on the training set. It was as-
sumed c = b.  
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Fig. 5. The activated ABs (gray lines), the reconstructed forecast pattern (dashed line) and the 
actual forecast pattern (black continuous line) –  load forecasting for July 1, 2004 

To avoid the situations when for the smaller parameter values many test AGx are 
unrecognized, it was assumed that an unrecognized AGx is included to the group 
represented by the nearest ABx, although the recognition region of this ABx does not 
include the AGx. The same assumption is made for analyses described in Sections 
4.2, 4.3 and 5.  

Fig. 7 shows the relative percentage difference between the forecasts generated by 
the optimal model ( *)(, pz ti τ+


) and the model with non-optimal parameter value 

( )(, pz ti τ+


): 
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where p denotes the parameter.  
The change of the parameter value can cause a step change in the model response 

which makes the lines in Fig. 6 and 7 are not smooth. From Fig. 6 we can see that 
overestimation of εx and δy results in more rapidly increase in the forecast error than 
underestimation. The values of εx and δy for the minimum training and test errors are 
not the same. Smaller values are observed for the test set. RPD achieves 0.3–0.4% for 
the border values of εx and δy and only 0.074% for b and c. 

The model sensitivity to changes in parameters is defined by the sensitivity index: 

 100
min

minmax ⋅
−

=
tst

tsttst
p MAPE

MAPEMAPE
SI . (14) 

Index (14) informs what is the relative percentage difference between the maximum 
and minimum errors MAPEtst when the parameter varies in a given range. Its values 
were: 10.10% for εx, 7.42% for δy and 2.27% for b and c. Thus the sensitivity to the 
error thresholds are much greater than for b and c.  
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Fig. 6. The forecast error depending on the parameter values 
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Fig. 7. Relative percentage difference (13) depending on the parameter values 

4.2 Model Robustness to Noisy Data 

The aim of this analysis is to determine the model robustness to noisy data resulting 
from the measurement or estimation errors of the time series terms. The noisy patterns 
are located in the space differently relative to each other than the original patterns. 
This affects the distances between them, and thus, the probabilities P(AByk|ABxj), 
affinities and the forecasted pattern.  

It is assumed that the actual time series elements are disturbed by random errors: 

 lll zz ξ=' , (15) 

where ξl ~ N(1,σ). 
The standard deviation σ was changing in the range from 0 to 0.1. It corresponds to a 
share of noise in the data (100 | z'–z | / z) from 0 to 8%. For each σ value 30 training 
sessions were performed and then mean forecast error was recorded (Fig. 8). 

The sensitivity index to noisy data is defined as follows: 
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This index expresses the ratio of the change in forecast error due to the noisy data to 
the intensity of the noise. The mean value of SIn for all σ, which corresponds to the 
slope of the straight line approximating the characteristics presented in Fig. 8, was 
equal to 65.96%.       
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Fig. 8. The forecast error depending on the σ value 

4.3 Model Robustness to Missing Data 

In this study the robustness to missing input information is analyzed. We assume that 
some components of the input pattern x* are missing. It corresponds to the missing 
terms of the time series (missing components of vector z*). In many models (e.g. 
ARIMA, exponential smoothing, neural networks) this is a serious problem, and the 
missing data reconstruction is needed. One strategy for dealing with the missing com-
ponent value is to assign it the value that is most common among training examples. 
Another strategy is to assign it the values of the corresponding components of the 
most similar patterns. The proposed AIS copes well with missing components of the 
input pattern. In such a case the epitopes of AGx and paratopes of ABx are composed 
of non-missing components. The immune memory creation and test procedures re-
main unchanged.  

When patterns x and y are defined using the mean value of elements iz , the values 

of non-missing components are different from their original values. This is caused by 
different value of iz  which is determined now without the missing components. As in 

the case of noisy data, patterns with missing components locate differently in the 
space than the original ones, which cause the change of the forecast pattern. 

To examine the robustness of the model to missing data we remove m components 
of the vectors z* and  then we redefine patterns x and y. The immune memory is con-
structed on the training set and the test is performed using x* pattern having the same 
components as z*. The m components are chosen by random independently for each 
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z*. The forecast errors depending on the relative number of missing components are 
shown in Fig. 9. When the number of missing components is low the deterioration in 
the model accuracy is not observed. Errors begin to grow rapidly when m exceeds 16. 

As a measure of the model sensitivity to the missing components the index SIm is 
proposed: 

 100
/

)0()(
)( ⋅=−=

nm

mMAPEmMAPE
mSI tsttst

m . (17) 

The SIm value for m = 6 was -3.82%, for m = 12 was 11.82% and for m = 18 was 
41.81%.   
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Fig. 9. The forecast error depending on the relative number of missing components 

5 Empirical Comparison with Other Models 

In this section we compare the proposed AIS with other popular models of the  
seasonal time series forecasting: ARIMA, exponential smoothing (ES) and double 
seasonal Holt-Winters (DSHW) method. These models were tested in the next day 
electrical load curve forecasting problem on three time series of electrical load: 

• TS1: time series of the hourly loads of the Polish power system from the period 
2002-2004 (this time series was used in analyses described in Section 4). The test 
sample includes data from 2004 with the exception of 13 untypical days (e.g. holi-
days).  

• TS2: time series of the hourly loads of the local power system from the period July 
2001-December 2002. The test sample includes data from the period July-
December 2002 except for 8 untypical days. 

• TS3: time series of the hourly loads of the local power system from the period 
1999-2001. The test sample includes data from 2001 except for 13 untypical days. 

Time series TS1 is presented in Fig. 1, TS2 and TS3 in Fig. 10. Time series TS2 
and TS3 are more irregular and harder to forecasting than TS1. The measure of the 
load time series regularity could be the forecast error determined by the naïve method. 
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The forecast rule in this case is as follows: the forecasted daily cycle is the same as 
seven days ago. The mean forecast errors, calculated according to this naïve rule, are 
presented in the last row of Table 1. 
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Fig. 10. The TS2 and TS3 time series (three-week details on the right) 

In ARIMA the time series were decomposed into 24 series, i.e. for each hour of a 
day a separate series is created. In this way the daily seasonality is removed. For the 
independent modeling of these series ARIMA(p, d, q)×(P, D, Q)m model is used: 

 t
m

t
dDmm BBczBBBB ξθφ )()()1()1)(()( Θ+=−−Φ , (18) 

where {zt} is the time series, {ξt} is a white noise process with mean zero and va-
riance σ2, B is the backshift operator, Φ(.), φ(.), Θ(.), and θ(.) are polynomials of or-
der P, p, Q and q respectively, m is the seasonal period (for our data m = 7), d and D 
are orders of nonseasonal and seasonal differencing, respectivelly, and c is a constant. 

To find the best ARIMA model for each time series we use a step-wise procedure 
for traversing the model space which is implemented in the forecast package for the 
R system for statistical computing [18]. This automatic procedure returns the model 
with the lowest Akaike's Information Criterion (AIC) value.  

ARIMA model parameters, as well as the parameters of the ES and DSHW models 
described below, were estimated using 12-week time series fragments immediately 
preceding the forecasted daily period. Untypical days in these fragments were re-
placed with the days from the previous weeks. 
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The ES state space models [19] are classified into 30 types depending on how the 
seasonal, trend and error components are taken into account. These components can 
be expressed additively or multiplicatively, and the trend can be damped or not. 
For example, the ES model with a dumped additive trend, multiplicative seasonality 
and multiplicative errors is of the form: 
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where lt represents the level of the series at time t, bt denotes the growth (or slope) at 
time t, st is the seasonal component of the series at time t, μt is the expected value of 
the forecast at time t, α, β, γ ∈ (0, 1) are the smoothing parameters, and φ ∈ (0, 1) 
denotes a damping parameter. 

The trend component is a combination of a level term l and a growth term b. 
In model (19) there is only one seasonal component. For this reason, as in the case 

of the ARIMA model, time series is decomposed into 24 series, each of which 
represents the load at the same hour of a day. These series were modeled independent-
ly using an automated procedure implemented in the forecast package for the R sys-
tem [18]. In this procedure the initial states of the level, growth and seasonal compo-
nents are estimated as well as the smoothing and damping parameters. AIC was  used 
for selecting the best model for a given time series.  

The DSHW model was proposed by Taylor [3]. This is an exponential smoothing 
formulation that can accommodate more than one seasonal pattern. This approach 
does not require the decomposition of the problem. The trend component is treated 
additively and the seasonal components are treated multiplicatively:  
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where dt and wt are the seasonal components (daily and weekly in our examples) of 
the series at time t, hty +


 is the h step-ahead forecast made from forecast origin t, α, β, 

δ, ω ∈ (0, 1) are the smoothing parameters, m1 and m2 are the seasonal periods (for 
our data m1 = 24 and m2 = 168). 

The term involving the parameter λ in (20) is a simple adjustment for first-order 
autocorrelation. All the parameters: α, β, δ, ω and λ are estimated in a single proce-
dure by minimizing the sum of squared one step-ahead in-sample errors. The initial 
smoothed values for the level, trend and seasonal components are estimated by aver-
aging the early observations. These calculations were performed using dshw function 
from the forecast package for the R system. 
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The model selection and training procedures for AIS were the same as described in 
Section 4. The model was optimized for each test sample, as well as other models.  

In Table 1 results of forecasts are presented: MAPE for the test samples and the in-
terquartile range (IQR) of MAPE. The actual and forecasted fragment of TS1 are 
shown in Fig. 11. 

Table 1. Results of forecasting 

Model 
TS1 TS2 TS3 

MAPEtst IQR MAPEtst IQR MAPEtst IQR 
AIS 1.60 1.56 3.35 2.69 3.23 3.10 

ARIMA 1.82 1.71 3.41 3.25 3.93 3.68 
ES 1.66 1.57 3.16 3.10 3.51 3.23 

DSHW 2.23 2.17 3.62 3.45 4.70 4.04 
Naïve 3.43 3.42 4.96 3.71 6.62 5.87 
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Fig. 11. The actual and forecasted fragment of TS1 

In order to indicate the best model we check if the difference between the accura-
cies of each pair of models is statistically significant using the Wilcoxon rank sum 
test for equality of medians. The 5% significance level is applied in this study. For 
only one case: AIS, ES and TS1 the test failed to reject the null hypothesis that errors 
have the same medians. In all other cases the test indicates the statistically significant 
difference between errors. Thus the best method for TS1 are AIS and ES, for TS2 is 
ES, and for TS3 is AIS. The worst method for all cases was DSHW. This model pro-
duced several completely incorrect forecasts for TS2 (not included in mean error pre-
sented in Table 1). From Table 1 we can see that the naïve method was substantially 
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outperformed by all other methods. It is worth noting as well that the ES model per-
formed better than ARIMA in all cases. It was observed that the ARIMA and ES 
models produced worst forecasts than AIS and DSHW for the first hours of a day. 
The proposed AIS was the best model for TS1 and TS3 but not for TS2. This is prob-
ably because of the insufficient number of learning points for TS2 (TS2 time series is 
twice shorter than TS1 and TS3). In this case there are fewer ABs in the immune 
memory and the local modeling is less accurate.    

In Fig. 12 the density functions of the percentage errors (PE) are shown. For 
ARIMA and ES the shift of the PE densities on the right is observed. It means that 
these models produced underestimated forecasts.  
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Fig. 12. The empirical PDF of PEtst 

6 Conclusions 

In this article we deal with forecasting of the seasonal time series which can be non-
stationary and heteroscedastic using patterns of the time series seasonal periods. The 
proposed forecasting method belongs to the class of similarity-based models. These 
models are based on the assumption that, if patterns of the time series sequences are 
similar to each other, then the patterns of sequences following them are similar to 
each other as well. It means that patterns of neighboring sequences are staying in a 
certain relation, which does not change significantly in time. The more stable this 
relation is, the more accurate forecasts are. This relation can be shaped by proper 
pattern definitions and strengthened by elimination of outliers. 
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The idea of using AIS as a forecasting model is a very promising one. The immune 
system has some mechanisms useful in the forecasting tasks, such as an ability to 
recognize and to respond to different patterns, an ability to learn, memorize, encode 
and decode information.  

Unlike other clustering methods used in forecasting models [13], [14], the pro-
posed AIS forms clusters taking into account the forecast error. The cluster sizes are 
tuned to the data in such a way to minimize the forecast error. Due to the determinis-
tic nature of the model the results are stable and the learning process is rapid. The AIS 
model also offers robustness to missing data. 

The disadvantage of the proposed immune system is limited ability to extrapola-
tion. Regions without the antigens are not represented in the immune memory. How-
ever, a lot of models, e.g. neural networks, have problems with extrapolation. 
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