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Abstract. This paper proposes a novel model, based on the artificial immune 
system, to solve the problem of short-term load forecasting. An artificial 
immune system is trained to recognize antigens which encode sequences of load 
time series. The created immune memory is a representation of these sequences. 
In the forecast procedure a new incomplete antigen, containing only the first 
part of the sequence, is presented to the model. The second forecasted part of 
the sequence is reconstructed from activated antibodies. The model was verified 
using several real data examples of the short-term load forecast.   

Keywords: artificial immune system, short-term electric load forecasting, 
similarity-based method. 

1   Introduction 

The load demand on an electrical power system varies depending on such factors as 
seasonal effects, work cycles of industrial plants, meteorological conditions, legal and 
religious holidays, failures of networks and devices etc. Some of these factors are 
random. A basic requirement in the operation of power systems is to balance the 
system load by the system generation at all times. Load forecasting is a very 
important task for electricity companies in order to manage the production, 
transmission and distribution of electricity in a secure and efficient way. Accurate 
load forecasts are essential to optimize unit commitment, economic dispatch, hydro 
scheduling, hydro-thermal coordination, spinning reserve allocation and interchange 
evaluation. Moreover, the electricity markets could not function without load 
forecasts. An accurate load forecast allow a lot of money to be saved, e.g. an increase 
of only 1% in forecast error caused an increase of 10 million pounds in operating cost 
per year for one electric utility in United Kingdom [1].  

Short-term load forecasting (STLF) is defined as forecasting system load demand 
from one hour to one week ahead. Many techniques have been investigated to solve 
the STLF problem in the last tree decades. Conventional STLF methods use 
smoothing techniques, regression methods and statistical analysis. Regression 
methods are usually used to model the relationship of load consumption and other 
factors (weather, day type, customer class) [2]. ARMA and related models are very 
popular (also known as Box-Jenkins, time series, or transfer function models) [3], 
where the load is modeled by an autoregressive moving average difference equation. 
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These models are based on the assumption that the data have an internal structure, 
such as autocorrelation, trend and seasonal variation.  

In recent years, artificial intelligence methods (AI) have been widely applied to 
STLF [4]. AI methods for forecasting have shown an ability to give better 
performance in dealing with non-linearity and other difficulties in modeling the time 
series. They do not require any complex mathematical formulations or quantitative 
correlation between inputs and outputs. The AI methods most often used to STLF can 
be divided as follows: 

• Neural networks (NN) – multilayer perceptron [5], RBF NN [6], Kohonen NN [7], 
counterpropagation NN [8], recurrent NN [9]; 

• Fuzzy systems [10], [11]; 
• Expert systems [12], [13]. 

Expert systems are heuristics models, which are usually able to take both 
quantitative and qualitative factors into account. A typical approach is to try to imitate 
the reasoning of a human operator. The idea is to reduce the analogical thinking 
behind the intuitive forecasting to formal steps of logic. Neural networks, on the other 
hand, do not rely on human experience but attempt to learn by themselves the 
functional relationship between system inputs and outputs. Fuzzy logic models map a 
set of input variables to a set of output variables. These variables need not be 
numerical and may be expressed in natural language. Most commonly, a fuzzy logic 
model includes the mapping of input values to output values using IF-THEN logic 
statements.  

In order to overcome some of the limitations of individual methods, hybrid AI 
models have been constructed, such as neural networks combined with fuzzy systems 
[14], [15] or neural network-fuzzy expert systems [16], [17]. 

New STLF methods are still being created. Some of them are based on machine 
learning and pattern recognition techniques, e.g. regression trees [18], cluster analysis 
methods [19] and support vector machines [20]. Other original approaches have also 
been developed, such as a method using fractal geometry [21], the point function 
method [22] and a canonical distribution of the random vector method [23]. 

This paper presents an artificial immune system (AIS) as a way of modeling to 
STLF. The merits of AIS lie in its pattern recognition and memorization capabilities. 
AIS are being used in many applications such as [24], [25], [26] anomaly detection, 
pattern recognition, data mining, computer security, adaptive control, and fault 
detection. Antigen recognition, self-organizing memory, immune response shaping, 
learning from examples, and generalization capability are valuable properties of 
immune systems which can be brought to potential forecasting models. In AIS 
learning occurs through modification of the number and affinities of the antibodies. 
The cross-reactivity threshold is the parameter which determines the model 
generalization level. In the proposed method, sequences of the load time series are 
encoded in antigens. Immune memory after learning is a representation of a set of 
antigens. When a new incomplete, composed only of the first part of time series 
sequence, antigen is presented, it is recognized by some antibodies. The second 
(forecasted) part of the sequence is reconstructed from these antibodies. 
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2   Forecasting Model Based on the Artificial Immune System 

The problem of STLF, considered in this work, is the one-day ahead power system 
daily load curve forecasting. The daily load curve is represented by the 24-component 
vector P, whose components are the following hourly loads. The input variables are 
24 hourly loads of the day preceding the day of forecast. It is assumed that the 
information about the future realization of the load time series is included in the time 
series preceding the forecast moment. This assumption for the load time series, which 
are characterized by annual, weekly and daily cycles due to the changes in industrial 
activities and climatic conditions, was confirmed by statistical tests [27]. Other factors 
influencing load (atmospheric temperature, humidity, wind speed, precipitation and 
cloud cover) are not employed in the proposed model. They are important in the 
power systems in which electrical heating and air-conditioning are common.     

Let Px be a vector of hourly power system loads in the following hours of the day 
preceding the day of forecast Px = [Px(1), Px(2), …, Px(24)], and let Py be a vector of 
hourly loads of the day of forecast Py = [Py(1), Py(2), …, Py(24)]. These vectors are 
preprocessed in order to get rid of the time series trend and seasonality, and simplify 
the model. The load patterns are introduced: input x = [x(1), x(2), …, x(24)] and 
output y = [y(1), y(2), …, y(24)], which are vectors with components defined as 
follows: 

24,...,2,1
)(

)( == i
P

iP
ix

x

x  (1) 

24,...,2,1
)(

)( == i
P

iP
iy

x

y  (2) 

where xP  is the daily mean load for the day preceding the day of forecast.  

The model learns to map x → y. After learning the input pattern x is presented to 
the model and the pattern y is obtained as a model output. Formula (2) is used to 
receive the forecasted load curve Py.   

The model is based on the artificial immune system. Concatenated patterns x and y 
form antigens. Thus each antigen is composed of 48 amino acids (Fig. 1) which are 
real numbers. It is assumed that the only components of the immune system are 
antibodies built analogously to antigens. Each antibody has two chains – x to detect 
the x-chain of the antigens and y to memorize the y-chain of detected antigens. 

The task of the immune system is to learn to map the set of antigens into the set of 
antibodies. The immune memory is an effect of learning. For each day of the week 
(Monday, …, Sunday) the separate immune memory is created using antigens 
representing only this day (e.g. for forecasting the Sunday load curve, system learns 
from antigens which x-chain represents the Saturday pattern and y-chain represents 
the Sunday pattern). The quality criterion of the immune memory is the forecast error. 
The forecasting procedure applying the learned immune memory runs in the 
following order. The new antigen consisting only of the x-chain is presented. It is 
detected by the antibodies with similar x-chains and the y-chain of the antigen is 
reconstructed from y-chains of these antibodies. 
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Fig. 1. The antigen and antibody structure 

The detailed algorithm of the immune memory creation in the proposed STLF 
model is described below. 

The immune memory creation algorithm in the STLF model 

1. Loading of the training set of antigens 
2. Generation of the initial antibody population 
3. Calculation of the affinity of antibodies for antigens 
4. Activated antibody detection and evaluation 
5. Do until the stop criterion is reached 

5.1. Clonal selection 
5.2. Clone hypermutation 
5.3. Antibody affinity calculation 
5.4. Activated antibody detection and evaluation 
5.5. Selection of the best antibodies 

 
Ad. 1. The whole dataset is divided into two subsets – training one and test one. The 
first sequences of the time series (typically two thirds of the whole time series) are 
included in the training set and the latest sequences are included in the test set. 
Immune memory is trained using the training set, and after learning the model is 
tested using the test set. 
 
Ad. 2. An initial antibody population is created by copping all the antigens from the 
training set (antibodies and antigens have the same structure). This way of 
initialization prevents inserting antibodies in empty regions without antigens.   
 
Ad. 3 and 5.3. The affinity measure is based on the distance between x-chains of 
antigens and antibodies. The Euclidean distance is used: 
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where xAb and xAg are the x-chains of the antibody and antigen, respectively. 
 
Ad. 4 and  5.4. If the affinity of the antibody for the antigen is smaller than or equal 
to the cross-reactivity threshold r, it means that the antigen lies in the antibody 
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recognition region (the antibody is activated by the antigen). For this antibody the 
forecast error (MAPE, which is traditionally used in STLF models) is calculated: 
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where yAb and yAg are the y-chains of the antibody and antigen activating this antibody. 
If several antigens lie in the antibody recognition region, the error is calculated for 

each of them. The mean error δ is applied to evaluate the antibody and is minimized 
in the following iterations of the algorithm.    
 
Ad. 5. The algorithm stops if the maximum number of iteration L is reached.  
 
Ad. 5.1. Each antibody cases secreting as many clones as many antigens are in its 
recognition region. Thus most clones are generated in the dense clusters of antigens.  
 
Ad. 5.2. The main goal of hypermutation is to improve the diversity of the immune 
system in order to effectively recognize new antigens. The hypermutation is realized 
as follows. Each clone of the antibody is shifted towards different antigen lying in the 
recognition region of this antibody. The bigger the error δ  for the given antigen is, 
the bigger shift toward this antigen is. The shift is calculated according to the 
formulae:  
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where η ∈ (0, 1) is a learning coefficient calculated from the hyperbolic tangent 
sigmoid function as follows: 
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where β is the shape parameter and Ni(1, 0.1) are the independent normally distributed 
random numbers with mean 1 and standard deviation 0.1. 

Random factor in formula (7) is introduced to avoid stagnation of the learning 
process caused by getting into local minimum trap of the error function. For the 
shape parameter β = 0.04 and error δ = 1% the value of the learning coefficient is 
minor – η ≅ 0.02, and consequently the shift is minor too. For the higher errors – 
2%, 5%, 10%, 100% the η-value is higher – about 0.04, 0.1, 0.2 and 0.96, 
respectively. This type of hypermutation produces new antibodies only in the regions 
covered by antigens.  
 
Ad. 5.5. For each antigen from the training set, the set of antibodies activated by this 
antigen is determined. Only one antibody from this set, with the best evaluation δ , is 
selected to the next population. So the clonal expansion, unnecessary in this model, is 
halted. The maximum number of antibodies in the next population is equal to the 
number of antigens, but the real number of antibodies is usually smaller because the 
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same antibody could be selected by the several antigens (it depends on the value of 
the cross-reactivity threshold r). Outlier, i.e. antigen lying away from other antigens, 
is represented by the separate antibody.  
 

Forecast procedure. After learning the antibodies represent overlapping clusters of 
similar antigens. In the forecast procedure new antigen having only x-chain is 
presented. The Ω  set of antibodies, activated by this antigen, is determined. The y-
chains of these antibodies storage average y-chains of antigens from the training set 
with similar x-chains. The y-chain of the input antigen is reconstructed from the y-

chains of the antibodies contained in the Ω  set (denoted by j
Aby ):    
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where  wj ∈ (0, 1) is the weight which value is dependent on the distance dj between 
the input antigen and the j-th antibody from the Ω  set: 
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Antibodies, closer to the antigen, have the higher influence on the forecast forming. If 
an antigen is not recognized by antibodies, it means that it represents a new shape of 
the load curve, not contained in the training set. In this case the cross-reactivity 
threshold r is consistently being increased until the antigen is recognized by one or 
more antibodies. The level of confidence in the forecast in such a case is low and the 
forecast should be verified. 

3   Application Examples 

The described above artificial immune system for STLF was implemented in Matlab 
and was applied to five real STLF problems. Data are described in Table 1. Usually 
the smaller power system is, the more irregular and harder to forecasting load time 
series is. The measure of the load time series regularity could be the forecast error 
(MAPE) determined by the naïve method. The forecast rule in this case is as follows: 
the load curve of the day of forecast is the same as seven days ago. The mean forecast 
errors, calculated according to this naïve rule, are presented in Table 1. 

The model parameters – the cross-reactivity threshold r, the shape parameter β and 
the maximum number of iterations L were determined after the preliminary tests. An 
increase in the r-value causes an increase in the training set error, but the test set error 
behavior is rather irregular, especially in the case of irregular time series. So the 
choice of the r-value is not obvious. The β parameter is not critical. The similar 
results were received for different values of this parameter. The L-parameter value 
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Table 1. Description of data used in experiments 

Data 
symbol 

Data description 
Forecast error 
of the naïve 
method, % 

A Time series of the hourly loads of the Polish power system from 
the period 2002-2006, mean load of the system ∼16 GW 

4,25 

B Time series of the hourly loads of the Polish power system from 
the period 1997-2000, mean load of the system ∼15,5 GW 

4,38 

C Time series of the hourly loads of the local power system from 
the period July 2001-January 2003, mean load of the system 
∼1,2 GW 

6,59 

D Time series of the hourly loads of the local power system from 
the period June 1998-July 2002, mean load of the system ∼300 
MW 

7,45 

E Time series of the hourly load demands of the chemical plant 
from the period 1999-2001, mean load demand of the plant ∼80 
MW 

17,46 

 
should ensure stabilization of the training error at the fixed level. However, the test 
error is often not stabilized varying in value up and down. The parameter values used 
in experiments were: β = 0.04, L = 50, r – half of the mean distance between antigens 
and initial population of antibodies. 

Results of forecasting – mean errors for training (MAPEtrn) and test sets – are 
presented in Table 2. Results of test sets include two cases – one where unrecognized 
antigens are not taken into account  (percentage of these antigens is shown in Table 2) 
and second where the cross-reactivity threshold r increases until recognition of these 
antigens. The forecast calculated for these untypical antigens is not very reliable and 
accurate, so the mean errors in the second case (MAPEtst2) are higher than in the first 
case (MAPEtst1).  

More detailed results for the test parts of A (most regular) and E (most irregular) 
time series are presented in figures. Fragments of the A and E time series and their 
forecasts – in Fig. 2, MAPEtst1 for each day type and hour – in Fig. 3 and percentage 
error (PEtst1) histograms – in Fig. 4. 

For comparison, forecast using the simple nearest neighbor method was calculated. 
The method applies the following rule: y-chain paired with the input x-chain is the same 
as the y-chain paired with nearest neighbor (found in the training set) of the input  
 

Table 2. Forecast errors 

Data 
symbol 

MAPEtrn MAPEtst1 
Percent of 

unrecognized 
antigens 

MAPEtst2 MAPEtst3 MAPEtst4 MAPEtst5 

A 1.56 1.77 5.80 1.88 2.05 - - 
B 1.62 1.82 8.90 2.29 2.63 2.24 2.11 
C 2.05 3.16 16.48 4.46 4.76 4.89 4.07 
D 2.79 3.55 8.85 4.00 4.17 3.71 3.52 
E 3.77 6.41 22.74 8.60 9.47 8.32 8.06 
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Fig. 2. Fragments (one week) of the test A (a) and E (b) time series (solid lines) and their 
forecasts (dots) 
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Fig. 3. MAPEtst1 for each day type and hour for A (a) and E (b) time series 

x-chain. The forecast results for this method (MAPEtst3) are presented in Table 2. In this 
table the results (taken from [27]) for two other STLF models are also presented: for 
model based on the neural network (MAPEtst4) and for model based on the fuzzy 
clustering (MAPEtst5). These models are described in [27] and [11]. 

An example of the antibody and antigens, which activated this antibody, is shown 
in Fig. 5. The antigens, recognized by the same antibody, have the similar y-chains in 
case of the regular time series (Fig. 5(a)). Thus forecasts are more accurate. It is 
different in case of irregular series (Fig. 5(b)) – large y-chain dispersion causes high 
errors of forecast. 

 

(a) (b) 

   (a) (b) 
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Fig. 4. PEtst1 histograms for A (solid line) and E (dashed line) time series 
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Fig. 5. A group of similar antigens and activated by them antibody (thick line) for A (a) and E 
(b) time series 

The peak observed in Fig. 3(a) is a result of the drastic change in load in one day, 
possibly caused by a failure (load forecast errors of this day reached 2300%; MAPEtst1 
for the E time series without this day decreased to 5.07%). The prediction of this 
event was impossible because probable lack of information about this event in the 
time series sequence before its existence and it was not represented in the training set. 
For irregular time series, like E series, surely there were many similar situations, e.g. 
in Fig. 2(b) the forecast for Saturday is completely wrong.  

Empirical distributions of errors PEtst1 (Fig. 4) are rather symmetrical (skewness close 
to 0), similar in shape to the normal distribution, but steeper (kurtosis higher than 3). 

The proposed AIS has a lot of interesting properties as the forecasting model, but 
yet it is not developed enough to compete with other AI models such as models using 
neural networks and fuzzy logic (Table 2), which have been finishing up by many 
researchers for many years. 

4   Conclusions 

The proposed STLF model belongs to the class of similarity-based models. These 
models are based on the assumption that, if patterns of the time series sequences are 

(a) (b) 
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similar to each other, then following them patterns of sequences are similar to each 
other as well. It means that patterns of neighboring sequences are staying in a certain 
relation, which does not change significantly in time. The more stable this relation is, 
the more accurate forecasts are. 

The idea of using AIS as a forecasting model is a very promising one. The immune 
system has some mechanisms useful in the forecasting tasks, such as an ability to 
recognize and to respond to different patterns, an ability to learn, memorize, encode 
and decode information. 

The disadvantage of the proposed immune system is limited ability to 
extrapolation. Regions without the antigens are not represented in the immune 
memory. However, a lot of models, e.g. neural networks, have problems with 
extrapolation. But the AIS has a detection mechanism of outliers, i.e. antigens laying 
outside the recognition regions of antibodies. In the proposed approach for such 
antigens the cross-reactivity threshold is increasing, and finally these antigens are 
recognized by antibodies. This solution is not perfect as forecasts in such situation are 
usually inaccurate. Other solution to this case is to use the other, maybe heuristic, 
forecasting method. 

Another problem is an introduction to the system additional input information 
which is not homogeneous with time series elements (loads), e.g. wheatear factors.  

The further work will be concentrated on the determination of the better antibody 
receptor structure and on rebuilding the training sets in order to detect and eliminate 
outliers disrupting the learning process. 
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