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An Artificial Immune System for Classification
with Local Feature Selection

Grzegorz Dudek

Abstract—A new multiclass classifier based on immune system
principles is proposed. The unique feature of this classifier is the
embedded property of local feature selection. This method of
feature selection was inspired by the binding of an antibody to
an antigen, which occurs between amino acid residues forming an
epitope and a paratope. Only certain selected residues (so-called
energetic residues) take part in the binding. Antibody recep-
tors are formed during the clonal selection process. Antibodies
binding (recognizing) with most antigens (instances) create an
immune memory set. This set can be reduced during an optional
apoptosis process. Local feature selection and apoptosis result in
data-reduction capabilities. The amount of data required for clas-
sification was reduced by up to 99%. The classifier has only two
user-settable parameters controlling the global-local properties
of the feature space searching. The performance of the classifier
was tested on several benchmark problems. The comparative
tests were performed using k-NN, support vector machines, and
random forest classifiers. The obtained results indicate good
performance of the proposed classifier in comparison with both
other immune inspired classifiers and other classifiers in general.

Index Terms—Artificial immune system, classification, dimen-
sionality reduction, local feature selection, supervised learning.

I. Introduction

NATURAL IMMUNE systems, as the defense system
of animal organisms against pathogens, were the in-

spiration behind the artificial immune systems (AIS). The
interest of researchers is generated by such immune system
features as: recognition of antigen (AG) characteristics, pattern
memorization capabilities, selforganizing memory, adaptation
ability, immune response shaping, learning from examples,
distributed and parallel data processing, multilayer structure
and generalization capability. The application areas for AIS
can be summarized as follows [1]:

1) learning (clustering, classification, recognition, robotic
and control applications),

2) anomaly detection (fault detection, computer, and net-
work security applications),

3) optimization (continuous and combinatorial).
The most important types of AIS are based on the concepts

of negative selection, clonal selection, and the immune net-
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work. Negative selection AIS was introduced by Forrest et al.
[2]. The idea is to generate change detectors and then remove
those that recognize “self” elements. The remaining detectors
can later be used to detect anomaly. This mechanism has been
applied in network security [3], milling operations [4], fault
detection and diagnosis [5], [6], network intrusion detection
[7], DNA computer [8], and in the detection of changes made
to computer programs by viruses.

Clonal selection describes the basic feature of adaptive
immune response: only those cells that recognize the AG
proliferate. In consequence, they are selected over those that do
not. These clones have mutated from the original cell at a rate
inversely proportional to the match strength. Fukuda, Mori and
Tsukiyama first developed an algorithm that included clonal
selection to solve computational problems [9], [10]: scheduling
and resource-allocation optimization problems. Clonal selec-
tion was popularized by de Castro and Von Zuben, who
developed an algorithm called CLONALG [11], which cur-
rently exists in two versions: for optimization and for pattern
recognition. Another form of the clonal selection algorithm is
artificial immune recognition system (AIRS) [12], which was
developed from the AINE immune network [13]. Typical ap-
plications for clonal selection include the following [14]: uni-
modal, combinatorial, multimodal, and non-stationary function
optimization [15], [16], initializing the centers of radial basis
functions [17], various types of pattern recognition [18], graph
coloring problems [19], multiple character recognition prob-
lems, automated scheduling [20], and document classification
[21]. In [22] and [23], a clonal selection algorithm was applied
to time series forecasting.

The immune (idiotypic) network theory was proposed by
Jerne [24]. In artificial models based on this theory, immune
cells can match other immune cells as well as AGs. This
leads to the creation of a network between the immune cells.
The recognition of an AG results in network activation and
cell proliferation, whilst the recognition of a cell receptor by
another cell receptor results in network suppression. Several
immune network models have been developed [10], [25]–[28].
The CLONALG algorithm mentioned above was extended by
employing the metaphor of the immune network theory and
then applied to data clustering. This led to the development
of the aiNet algorithm [29]. Another immune network theory
inspired by AIS is AINE, which is applied to data clustering. A
model combining the ideas of aiNet and AINE has been also
proposed [30]. Apart from data clustering, immune network
models have been applied to [14]: detecting gene promoter
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sequences [27], data mining [31] and diagnosis [5]. The
idiotypic network theory is no longer widely accepted by
immunologists [32].

Another concept applied in AIS is the controversial im-
munological danger theory proposed by Matzinger [33]. In
this approach, self-nonself dichotomy is replaced by danger-
nondanger dichotomy. The Dendritic Cell Algorithm [34]
inspired by this theory has distinct advantages when applied
to real-time computer security problems, as it has very low
CPU processing requirements and does not require extensive
training periods.

This paper presents a supervised learning algorithm based
on an AIS using clonal selection. Even though some AIS for
classification have been developed, this model has a unique
feature, it includes the local feature selection mechanism. The
aim of feature selection is to reduce the dimension of the input
vector by the selection of a feature (variable) subset which
describes the object in the best manner and ensures the best
quality of the learning model. In this process irrelevant, re-
dundant and unpredictive features are omitted. Popular feature
selection methods are global, i.e., they determine one feature
set for all training data. But one can imagine that different
features are important in different regions of the input vector
space. The proposed approach allows the detection of many
relevant feature sets (a separate relevant feature set is created
for each learning point and its neighborhood). This method of
feature selection is inspired by the binding of an antibody (AB)
to an AG, which occurs between amino acid residues forming
an epitope and a paratope. Only certain selected residues
(so-called energetic residues) take part in the binding. This
approach reduces the curse of dimensionality that affects many
machine learning methods. The new algorithm is Artificial
Immune System with Local Feature Selection (AISLFS).

This paper is organized as follows: in Section II, the
biological inspirations behind AIS are discussed. In Section III
the existing AIS for data classification are described, their
limitations and some new inspirations for AIS are presented.
In Section IV, the proposed classifier algorithm with a local
feature selection procedure is defined. In Section V, we per-
form an empirical analysis study of the proposed classifier
and compare the results to algorithms described in Section III
as well as to other popular classifiers: the k-nearest neighbor
(k-NN), support vector machines (SVM), and random forest
(RF). In Section VI, an overview of the work is given.

II. Biological Inspirations

The immune system is a multifunction defense system
which has evolved to protect animals against infections from
viruses, bacteria, fungi, protozoa, and also worms and tumor
cells. The immune systems of vertebrates consist of many
types of proteins, cells, organs, and tissues which interact in
an elaborate and dynamic network. The first barrier of defense
against pathogens is the innate or non-specific immune system,
which exists in an organism from its birth and does not adapt
during its lifetime. It consists of cells and molecules quickly
reacting to infection (e.g., phagocytes which “eat” bacteria).
The second barrier is the adaptive (specific) immune system,

which, unlike the innate system, demonstrates the ability to
recognize and remember specific pathogens (immunological
memory) and to improve its working in response to infection.
This leads to quicker recognition and elimination of the
pathogen that reinfect the organism.

The immune system operates on two levels: cell-mediated
immunity and humoral immunity. The mechanisms of cell-
mediated responses developed for pathogens that infect cells,
whereas the mechanisms of the humoral responses developed
for pathogens in body fluids. The immune system is able to
distinguish self and nonself molecules (AGs).

The proposed AIS is inspired by the humoral responses and
is able to recognize not only self and nonself AGs but many
different types of AGs (many classes of patterns).

The cells responsible for AG recognition, lymphocytes, are
equipped with surface receptors specific for a given nonself
AG. When lymphocytes identify an invader, they bind to it and
are activated to proliferation, which induces the generation of
clones.

There are two main classes of lymphocytes in the adaptive
immune system: B cells (bone cells) and T cells (thymus cells).
T cells on the AG stimulation are involved in cell-mediated
immunity. B cells in reaction to the AG contact proliferate and
differentiate into effector cells (plasma cells), which generate
and secrete a lot of specific ABs binding to the AGs.

In our algorithm the representatives of the immune system
are ABs, which work as the recognition units. An AB as well
as an AG belongs to one of the classes.

AB molecules have a Y-shaped structure [35], with two vari-
able regions that bind to an AG. Within these variable regions
some polypeptide segments, named hypervariable regions,
show exceptional variability. These hypervariable regions,
located at the tips of the Y, form a unique topography called
a paratope corresponding to the antigenic determinant known
as an epitope. The two variable regions contain identical AG-
binding sites that are specific for only one type of AG. The
amino acid sequences of the variable regions of different ABs
are extremely variable. Therefore, the AB molecules in the
body provide an extremely large repertoire of AG-binding
sites.

In the proposed algorithm each AB is equipped with a
specific receptor (each AB different) which allows recognizing
an AG by its selected features. An AG represents the data
instance (feature vector belonging to one of the classes). An
epitope is formed of those features which are present in a
paratope.

The source of the vast repertoire of AB molecules that can
be synthesized by an individual lies in the way of encoding
the amino acid sequences of the variable domains into DNA
chains as well as the random selection and recombination of
the gene segments. Information for the variable domains is
present in the libraries of the gene segments that recombine
at the level of the DNA. During the development of a B
cell these genes are rearranged (independently of an AG)
and undergo repeated rounds of random mutation (somatic
hypermutation, depending on the AG) to generate B cells
expressing structurally distinct receptors. Some of these B cells
bind to AGs with increased affinity and undergo differentiation
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to generate plasma cells, which secrete large amounts of ABs
of higher affinity (clonal expansion). This process is called
the affinity maturation. As a result of clonal expansion, B
cells operating as memory cells are also generated. Thanks to
these cells the immune response is more effective and rapid if
subsequent reinfection with the same AG occurs (secondary
immune response).

The clonal expansion is used in our AIS to generate new
recognition units which are optimized during training. The
number of clones is the parameter of the algorithm. The affin-
ity maturation leads to the increasing number of recognized
AGs. During training the immune memory is improved and as
a result AGs are recognized with the lower error.

The selective treatment of lymphocytes by AGs and the
activation of only those, which can bind to them, is called
clonal selection. During the creation of the new lymphocytes
the cells of high affinity to self AGs are generated as well.
Further development of these cells will lead to an attack
from the immune system against the self cells. In order to
prevent this, the lymphocytes that recognize the self cells are
eliminated (negative selection).

The clonal selection is used in the algorithm to searching the
paratope space to determine the best recognition units which
form the immune memory. The concept of negative selection
is not used here.

A protein antigenic molecule has parts on its surface (anti-
genic determinants or epitopes) against which a particular im-
mune response is directed. Proteins are built from a repertoire
of 20 amino acids which form chains which do not exist in na-
ture as straight chains (called primary structure), but as folded
whorls with complex loops (tertiary structure). Most ABs
recognize a conformational epitope whose protein structure
has a specific 3-D shape. The AG-AB interaction results from
the formation of multiple non-covalent bonds. These attractive
forces consist of [35]: hydrogen bonds, electrostatic bonds, van
der Waals forces and hydrophobic forces. The strength of a
non-covalent bond depends critically on the distance between
the interacting groups. For a paratope, to combine with its
epitope, the interacting sites must be complementary in shape,
charge distribution, and hydrophobicity, and, in terms of donor
and acceptor groups, capable of forming hydrogen bonds.

In the proposed AIS a paratope should be similar in shape to
an epitope (not complementary, see Fig. 1) to ensure a strong
bond, i.e., the features which form a paratope and an epitope
should have similar values. Amino acid residues, which are on
the surface of the molecule in the tertiary structure and which
take part in the binding, represent the selected features of the
pattern.

The strength of the interaction between an AG and an AB is
loosely referred to as affinity. Because an AG can have many
different epitopes on its surface (if so it is called multivalent), it
can be bound to many different ABs. The combined strength of
multiple bond interactions between an AB and an AG is called
avidity. If similar or identical epitopes occur on different AGs,
the AB generated against one of them will be cross-reactive
with others.

The affinity is a function of the distance between a paratope
and an epitope in the proposed AIS. High affinity (small

Fig. 1. Different antigens and antibodies (n = 5).

distance) between selected AB/AG features indicates that the
AG is recognized by the AB. An AG having many epitopes
can be bound to many ABs. The avidity to an AG, which is
calculated for each class c, is the total binding strength of all
ABs of class c. An AB having the cross-reactivity threshold
can recognize many AGs with similar epitopes.

Antigenic proteins have structural epitopes consisting of
15–22 amino acid residues that constitute the binding face
with an AB which has a similar number of residues taking part
in the binding [36]. Each structural epitope has a functional
epitope of about two to five residues that dominate the strength
and specificity of binding with the AB. The remaining residues
of a structural epitope provide supplementary interactions that
increase the stability of an AG-AB complex. The binding
energy of an AG-AB complex is primarily mediated by a
small subset of contact residues (energetic residues) in the
epitope-paratope interface. Based on the hypothesis, developed
from molecular modeling of crystallized AG-AB complexes,
that functional epitopes are represented by patches of surface-
exposed nonself amino acid residues surrounded by residues
within a 3Å radius, Duquesnoy used the term “eplet” [36],
[37] to describe polymorphic residues within 3.0–3.5Å of
a given sequence position on the molecular surface. Many
eplets represent short linear sequences but others have residues
in discontinuous sequence positions separated in the primary
sequence but clustered together on the molecular surface
by folding of the native protein. Thus, the functional epi-
topes/paratopes can generally be defined by small numbers of
amino acid residues among all amino acid residues forming
an AG/AB.

In our AIS by the energetic residues we mean the selected
features of the patterns. The set of these features, which
form a paratope and an epitope, ensure the best recognition
properties of the recognition unit. The goal of our algorithm
is to construct the immune memory composed of ABs with
suitably shaped receptors that recognize correctly all AGs from
the training set.

Since the mechanisms of cell-mediated responses are not
used in our AIS, they are not described here. It is worth
mentioning only that T cells do not react directly on AGs, like
ABs, but on the complexes composed of a MHC molecule
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(expressed on the surface of antigen presenting cells) and a
short peptide AG. The MHC molecule inside the cell takes a
fragment of the synthesized protein and displays it on the cell
surface. If the T cell recognizes the protein as nonself, it can
kill the infected cell. T cell receptors have a similar structure
to AB receptors and are characterized by a high degree of
variability as well.

III. Artificial Immune Classification Systems:

Review, Criticism, and Some Inspirations

Key features of AIS, such as feature extraction, recognition,
and learning are very useful in classification and clustering
tasks. The focus of early AIS research seems to have been on
the development of unsupervised learning algorithms rather
than the supervised or reinforcement kind. One of the first
works to attempt to apply AIS to supervised learning concerns
a real-world problem: the recognition of promoters in DNA
sequences [27]. The results obtained are consistent with other
approaches such as neural networks and Quinlan’s ID3 and
are better than the nearest neighboring algorithm. The primary
advantages of AIS are that it only requires positive examples,
and the patterns it has learnt can be explicitly examined. In
addition, because it is selforganizing, no effort is required to
optimize the system parameters.

Some of the artificial immune classification systems are
described below. In the experimental part of this paper we
compare results of these AIS to our AISLFS.

Carter proposed a pattern recognition and classification sys-
tem called Immunos-81 [38]. This was created using software
abstractions of T cells, B cells/AB, and their interactions.
Artificial T cells control the creation of B cell populations
(clones), which compete for recognition of “unknowns.” An
AG represents a single data instance and may have multi-
ple epitopes (attributes, variables). An interesting feature of
Immunos-81 is its potential ability to learn “on line,” which
refers to the ability to add new AG-types or classes to the
AIS without having to rebuild the entire system. The learning
process in Immunos-81 is rapid because it needs only one pass
of the training data.

Some researchers have noted that Immunos-81 is highly
complex and the description of this technique in [38] is
somewhat incomplete or lacking in details and not sufficient
to replicate [39], [40]. Given the description of Immunos-81’s
training procedure and the identification of potentially useful
and desirable elements of the system, Brownlee implemented
this method in three variants Immunos-1, Immunos-2, and
Immunos-99 [40] with the goal of repeating the results ob-
served in the original work. The first two are basic and naive
implementations and the third one exploits those elements of
Immunos-81 that appear beneficial and unique to the system,
and integrates cell-proliferation and hypermutation techniques
from other immune-inspired classification systems.

The most popular immune classification system is the AIRS
[41], [42]. The goal of this algorithm is to develop a set
of memory cells that can be used to classify data. Memory
cells are evolved from a population of artificial recognition
balls (ARBs). An ARB represents a number of identical B

cells and is a mechanism employed to reduce duplication and
dictate survival within the population. The AIRS maintains a
population of memory cells and ARBs for each class of AGs.
The first stage of the algorithm is to determine the affinity
(based on the Euclidean distance) of memory cells to each AG
of a certain class. The next stage is to identify the strongest
ARBs, based on affinity to the training instance. They are used
to create the established memory set used for classification.
This is achieved via a resource allocation mechanism. The
stimulation level of an ARB is calculated not only from the
antigenic match, but also from the class of the ARB. This
provides reinforcement for ARBs that are of the same class as
the AG being learnt and that match well the antigenic pattern,
in addition to providing reinforcement for those that do not fall
into that class and do not match well with the pattern. Once
the stimulation of an ARB is calculated, the ARB is allowed
to produce clones which undergo mutation.

The specification of the AIRS algorithm is reasonably
complex at the implementation level. Two versions of this
algorithm were proposed: basic AIRS1 and revised AIRS2,
which is simpler and has greater data reduction capability [42].
The parallel version of AIRS designed for distribution across
a variable number of processes is presented in [43].

Another idea is the multiclass classifier M-NSA based on
negative selection and its new version called multiclass iter-
atively refined negative selection classifier (MINSA) [44]. In
this approach, the self cells are the immune system equivalent
of the training patterns. The classifier solving C-classes classi-
fication problem is built of C-elements. Each of them contains
one receptor set corresponding to one class. Receptors in a
particular set get more stimulated by cells (patterns) belonging
to classes not corresponding to the set and get less stimulated
by self cells. Thus, an element contains an effective receptor
set being the internal representation of a class corresponding to
the element. The pattern is classified to the class corresponding
to the least stimulated receptor set. The stimulation can be
determined by taking into account the number of activated re-
ceptors or their average stimulation. The classification process
with the use of the M-NSA algorithm consists of two phases:
selection and detection (see [44] for details).

The AB-AG representation and affinity metric is a crucial
parameter for developing competitive immune-inspired algo-
rithms. The affinity measure is usually based on the distance
measure between immune cell receptor and AG representing
the feature vector. From a geometrical point of view, receptors
and AGs are represented as points in n-dimensional space,
with a contiguous recognition region surrounding each point
to account for imperfect matching [45]. Such a problem
representation, coming from Perelson’s shape-space formal-
ism [46], dominates all classical immune-inspired algorithms.
Some researchers criticize this representation and show that
the biological validity of this mathematical abstraction is
a controversial issue [45], [47]. The dimensionality of the
biological shape-space is likely orders of magnitude smaller
than typical machine-learning datasets [48].

In [49], several undesirable properties of hyperspheres (as
antibody recognition regions) in high dimensions are shown.
The volume of a hypersphere tends to zero when dimen-
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sionality increases, and the entire volume of a hypersphere
is concentrated immediately below the surface. This means
that the recognition space (covered by ABs) is nearly zero.
This phenomenon induces general fundamental limitations
on the real-valued negative selection for high-dimensional
problems. Another problem with high-dimensionality is that
any metric defined across an increasing volume of the shape-
space becomes increasingly meaningless as data points tend
to become equidistant [45]. The two key assumptions in
instance-based methods based on low-dimensional intuitions:
1) that there are dense regions in the space that can be
generalized, compressed or sparsely represented, and 2) that
the distance between points is a meaningful proxy for compar-
ison, discrimination and localization, cannot be used in high-
dimensional space because their validity is a rapidly decreasing
function of dimensionality [45]. These all are examples of the
curse of dimensionality: procedures that are analytically or
computationally manageable in low-dimensional spaces can
become completely impractical in high-dimensional spaces
[50], [51].

Recently, McEwan and Hart [45] proposed an alternative
representational abstraction in AIS considering both the bio-
logical and machine learning perspectives. They noted that
an epitope is not a predefined object. It is an arbitrary
discontinuous region on the 3-D surface of a molecule. It
comes into being as an epitope by virtue of binding to a
receptor, that is, in the context of a particular interaction.
The epitope is now defined as a subset of surface correlated
peptides, and the immune repertoire is not a population of
centroids, prototypes, or support vectors, but an overcomplete
dictionary of basis functions; an ensemble of weak learners. In
a maximal simplification each cell receptor defines a different
m-dimensional subspace. The system is composed of many
simple classifiers with weak representational capabilities. Each
classifier is represented by a separate immune cell. The search
space for the immune repertoire is enriched to the space of
classifiers, and the regression function becomes a weighted
vote amongst an ensemble of classifiers. As in Boosting, a set
of weak learners can be aggregated into an arbitrarily strong
learning algorithm. An increase in representational power is
achieved through the diversity of single classifiers (defined
in low-dimensional subspaces) and an increase in stability
through their integration.

Cohen et al. [52] noted that specificity is a property of
a collective of cells and not of single clones. They use the
term “degeneracy,” which refers to the capacity of any single
antigen receptor to bind and respond to (recognize) many
different ligands (poly-clonality, poly-recognition). In their
concept specificity is not an intrinsic but emergent property
of the immune system and the functional unit is not an indi-
vidual clone but a clone collective. Emergent properties arise
from collective interactions between individual components
(immune agents). The specificity of the collective meta-
response emerges from the web of mutual interactions that
influences each cell, despite its degenerate receptor.

A number of properties of Cohen’s cognitive immune
model can be useful computationally in AIS. These ideas,
paradigms and processes that describe the functioning and

behavior of the immune system were identified as possible
areas of inspiration for novel AIS [53]. In [54], the authors
began initial investigations into degenerate detectors for AIS.
They presented the conceptual framework approach and built
an abstract computational model in order to understand the
properties of degenerate detectors. To investigate the idea of
degeneracy and following the conceptual framework approach,
in [55] a computational model to facilitate the investigation is
proposed. The authors identified that it is possible to recognize
patterns using such degenerate receptors, and when compared
to a non-degenerate system, recognition appears quicker.

In the AIS described below in the next section the dimen-
sionality of the problem is reduced by local feature selection.
Moreover, the recognition region of each AB (strictly speaking
the number of AGs of the same class in the AB recognition
region) is maximized. This leads to better coverage of the
recognition space. Activated ABs form an ensemble which
is local, i.e., for different input points to be classified the
ensemble created is composed of different ABs, which cover
these points in different subspaces. The idea of many simple,
small sized recognition elements which recognize patterns
independently and affect the output in similar ways is close to
the concept of the Cohen’s degeneracy. The assumed benefit
of an AIS with degenerate detectors will be to provide greater
scalability and generalization over existing AIS [53].

IV. Artificial Immune System for Classification

with Local Feature Selection

A. Outline

The concept of energetic residues described in Section II
was the inspiration behind the AIS for classification with local
feature selection. The algorithm creates the immune memory
composed of ABs with appropriately formed paratopes. A
paratope is composed of such residues that ensure the correct
classification of AGs lying in the AB recognition region. The
resulting population of ABs recognizes correctly the classes of
all training AGs. This algorithm is equipped with a mechanism
for local feature selection. A different feature set is associated
with each element of the classifier (AB), which ensures the
correct classification of all training points (AGs) in the AB
neighborhood.

An AG represents a single data instance. It is a vector
x = [x1, x2, . . . , xn] of standardized features, which correspond
to amino acid residues (Fig. 1). The AG belongs to one of
C classes. The epitope is not fixed, it is formed from the
selected residues and depends on the paratope. The selection
of residues takes place during the creation of the immune
memory. An AG can have many epitopes and can be bound to
many ABs. The population of training/testing AGs is identical
to the training/testing set of points.

The representatives of the immune system are ABs. An
AB, built similarly to an AG, is a vector y = [y1, y2, . . . , yn]
of standardized features and belongs to one of C classes.
The feature values of an AB and its class are determined
during initialization at the start of the algorithm and do not
change during training. The AB population is initialized by
the training points in the same way as the AG population, so
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Fig. 2. Different paratopes of the same antibody (n = 5).

the AG and the AB populations are the same. Similarly to an
epitope, a paratope is a set of selected features. An AB has
only one paratope that is formed during training (Fig. 2). Each
AB is characterized by the cross-reactivity threshold r adjusted
individually during training and defining the AB recognition
region in �-subspace (this is the subspace of the n-dimensional
feature space with coordinates stored in �). This recognition
region is represented by the hypersphere of radius r with center
at the point y = [yi], i ∈ �. Inside this region there are AGs
belonging solely to the same class as the AB. The AB is thus
cross-reactive with AGs of the same class structurally similar
to the AG initializing this AB.

The strength of binding of an AB to an AG (affinity) is
dependent on the distance between vectors x and y mea-
sured using only selected features encoded in the paratope.
The avidity to an AG, which is calculated for each class
c = 1, 2, . . . , C, expresses the strength of binding of all ABs
of class c, which contain the AG in their recognition regions.

Fig. 1 shows three different AGs and ABs. The bar heights
correspond to the feature values. The selected features (gray
bars) form the paratops. AG1 can be bound to all these three
ABs (corresponding bars in the AB epitopes and AG1 have
similar heights), AG2 can be bound to AB2, and AG3 can be
bound to AB1 and AB2. The epitopes are dependent on the
paratopes. AG1 has three epitopes for these ABs: [x1, x3, x5],
[x2, x3] and [x2, x4, x5], AG2 has only one epitope: [x2, x3]
and AG3 has two epitopes: [x1, x3, x5] and [x2, x3].

An AB causes secreting of clones, which inherit the fea-
tures, paratope, and class from the parent AB. The number
of clones is set a priori and is independent of the AB
stimulation. The clones undergo hypermutations which modify
their paratopes (set of features but not the feature values).
The clone binding to the greatest number of AGs replaces the
parent AB. This process is cyclic and leads to the creation
of high quality ABs (memory cells), recognizing a large
number of AGs by their selected features. In this combinatorial
optimization process the number of AGs in the AB recognition
region is maximized and the number of selected features
(the paratope size) is minimized.

Optionally, the redundant memory cells, i.e., ABs which do
not cause a decrease in the classifier efficiency, are eliminated.
This leads to vast data reduction capabilities of the algorithm.

B. Algorithm

The pseudocode of the AISLFS classifier is given in
Algorithm 1.

The symbols that appear in the following description of the
algorithm are listed in Table I.

Step 1. The AG population (the standardized dataset) is
divided into training and test parts in a proportion dependent
on the cross-validation fold.

Algorithm 1 Pseudocode of the AISLFS Algorithm

Training
1. Loading of the training set of

antigens.
2. Generation of the initial antibody

population.
3. Do for each antibody.

3.1. Do until the stop criterion is
reached (clonal selection loop).

3.1.1. Generation of clones.
3.1.2. Clonal hypermutation.
3.1.3. Calculation of the affinity

of clones for antigens.
3.1.4. Evaluation of clones.
3.1.5. Selection of the best clone

and replacing the parent
antibody by it.

4. Apoptosis of the redundant antibodies
(optionally).

Test
5. Antigen presentation and calculation

of the avidity of antibodies for
antigen.

6. Assignment of the highest avidity
class to antigen.

TABLE I

List of Symbols

Symbol Description
� Set of selected features describing the AB paratope
� Set of stimulated ABs

a(yk , xj , �k) Affinity measure of the kth AB for the jth AG
Ac(x*) Avidity of activated ABs from class c for the

presented AG
c = 1, 2, . . . , C Class number
d(yk , xj , �k) Distance measure between the kth AB and jth AG

l Tournament size in the tournament searching al-
gorithm

n Total number of features
N Number of the training points
r Cross-reactivity threshold
t Maximum number of the successive iterations

without result improvement (to stopping criterion
of the clonal selection loop)

v n-element binary vector corresponding to the �-
set used in hypermutation

x = [x1, x2, ..., xn] Feature vector, antigen
y = [y1, y2, ..., yn] Feature vector, antibody

Step 2. The initial AB population is created by copying
all AGs from the training set (ABs and AGs have the same
structure). This method of initialization prevents putting ABs
in empty regions without AGs. The class labels of AGs are
copied as well. The AB number is the same as the AG number.

Step 3.1. In this loop the kth AB paratope is constructed.
This is a combinatorial optimization problem. The goal is to
find the set of selected features �k for which the criterion
function (4) is maximized. To do so, a stochastic search
mechanism called tournament searching is employed [56].
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This simple method explores the solution space starting from
an initial solution and generating new ones by perturbing it
using a mutation operator. This operator switches the value of
one randomly chosen bit (but different for each candidate so-
lution) of the parent solution. When the set of new l candidate
solutions is generated (l represents the tournament size), their
evaluations are calculated. The best candidate solution (the
tournament winner), with the highest value of the criterion
function, is selected and it replaces the parent solution, even
if it is worse than the parent solution. This allows us to escape
from local maxima of the criterion function. If l is equal to 1,
this procedure comes down to a random search process. On the
other hand, when l = n this method becomes a hill climbing
method where there is no escape from the local maxima.

This algorithm turned out to be very promising in the
feature selection problem, better than a genetic algorithm
and simulated annealing, as well as deterministic sequential
forward and backward selection algorithms [56].

The process of cyclic cloning and hypermutations is
stopped when there is no result improvement in t successive
iterations, i.e., the process is stopped after T th iteration when
the evaluation of clones generated in iterations from T − t to
T is not higher than the evaluation of the parent solution in
iteration T − t.

Step. 3.1.1. Each AB generates l clones, where l depends
only on the size of the solution space n. The number of clones
l = 1, 2, . . . , n is the parameter controlling the global-local
search properties of the algorithm. In the experimental part of
this paper, reported in Section V, it is assumed that the number
of clones is equal to round(n/3).

Step 3.1.2. The goal of hypermutation is to improve the AB
paratope, i.e., defining the set of selected features �k which
ensures maximization of function (4). Each clone undergoes
the hypermutation and a different �-set is created for it in
the clonal selection loop of the algorithm. Initial �-sets are
created at random.

Let vk be an n-element binary vector corresponding to the
kth clone. The components of this vector are determined as
follows:

vk,i =

{
1, if i ∈ �k

0, otherwise
i = 1, 2, ..., n (1)

where �k is the set of amino acid residues forming the
paratope of the kth AB, i.e., the set of the selected feature
indices.

The indices of features corresponding to ones in vk are
elements of �k. Hypermutation modifies a clone by switching
the value of one randomly chosen bit of vk, different for each
clone among l generated. As a result, the set �k is changed,
i.e., the clone paratope is somewhat modified at random.

Step 3.1.3. The affinity measure of the kth AB for the jth
AG is evaluated based on the distance measure between them

d(yk, xj, �k) =

(∑
i∈�k

|yk,i − xj,i|p
) 1

p

(2)

where p = 1 for the Manhattan metric and p = 2 for the
Euclidean metric.

Fig. 3. Antibodies (small circles) and their recognition regions (dashed lines)
for (a) �k = {1, 2}, k = 1, 2, 3 and (b) �1 = {1}, �2 = {1, 2} and �3 = {2}.
Antigens from class 1 are marked by triangles and from class 2 by crosses.

The distance is calculated by taking into account only
selected features forming the paratope; the remaining features
are omitted. Instead of (2) any other metric can be used which
allows the features to be left out.

The affinity of AB for AG is inversely proportional to the
distance between them in the feature space

a(yk, xj, �k) =⎧⎪⎨
⎪⎩

0, if d(yk, xj, �k) > rk(�k) or rk(�k) = 0

1 − d(yk, xj, �k)

rk(�k)
, otherwise

(3)

where a(yk, xj , �k) ∈ [0, 1].
AB cross-reactivity threshold rk is adjusted after a new AB

is generated, such that an AB representing class c covers the
region to the greatest extent possible without containing any
AG of a different class. Thus, rk is the distance between kth
AB of class c and the nearest AG belonging to a different class.
The hypersphere-shaped recognition regions of different ABs
are defined in subspaces of different dimensions, determined
by elements of �k.

Fig. 3 presents AB recognition regions of three ABs in 2-D
space where: (a) both features are selected for all ABs (i.e.,
�k = {1, 2}, k = 1, 2, 3), and (b) the first feature is selected
for the first AB, both features are selected for the second AB
and the second feature is selected for the third AB (i.e., �1 =
{1}, �2 = {1, 2}, and �3 = {2}).

Step 3.1.4. After the threshold rk is determined, the number
of AGs contained in the AB recognition region is summed
up. This number, depending on set �k, informs about the AB
representativeness and is used as the AB evaluation F(yk),
which is maximized in the process of clonal selection

F (yk) = |{xj : d(yk, xj, �k) ≤ rk(�k)}| → max . (4)

Step 3.1.5. The clone with the highest value of evaluation
function (4) is selected and it replaces the parent AB, even if
it is worse than the parent AB. If many AB have the same
value of function (4), one of them, the one with the smallest
paratope (the smallest number of selected features), is selected
as the winner. This leads not only to maximization of the AG
number in the AB recognition region but also to minimization
of the selected feature number.

Step 4. This step is optional. In nature, most of the enormous
number of lymphocytes generated during the immune response
process die after the danger passes. But a relatively small
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number of the cells remain in the immune system as memory
cells. The AISLFS immune memory consists of as many ABs
as AGs. The recognition regions of adjacent ABs can overlap
or one may contain another one. Some ABs can be removed
if this does not deteriorate the classifier efficiency. These
redundant ABs are eliminated in the deterministic sequential
backward selection procedure [57], in which ABs are sequen-
tially removed from the immune memory until the removal of
next AB decreases the criterion. In each iteration the procedure
selects one AB for elimination, without which the classifier
accuracy is largest and not lower than the accuracy before this
elimination. If the largest accuracy of the classifier is obtained
for several ABs, the one of them with the smallest number of
AGs in its recognition region is chosen for elimination. As a
result, the final immune memory contains mostly ABs with
large recognition regions, which ensure that the classification
accuracy of the training set is 100%, as in the case of the
original immune memory containing all ABs.

Steps 5 and 6. The test procedure corresponds to the
secondary immune response where a new AG is presented
to the trained immune memory. In the test procedure an
AG of an unknown class, representing feature vector x*, is
presented to the memory cells. Some ABs recognize this AG
using their paratopes shaped in the training process, i.e., their
recognition regions include this AG. Let � be a set of these
stimulated ABs. The set � consists of subsets �c containing
ABs belonging to one of classes c = 1, 2, . . . , C. The avidities
of ABs from the sets �c for the presented AG are determined.
These avidities express the strength of the binding of ABs of
class c to the AG. Three methods of avidity calculation are
proposed. The first one relies on summing up ABs in sets �c

A1
c(x∗) = |�c(x∗)|. (5)

The second method relies on summing up the AB affinities
in sets �c

A2
c(x∗) =

∑
yk∈�c(x∗)

a(yk, x∗, �k). (6)

The third method uses the probabilistic OR operation to the
AB affinities in sets �c

A3
c(x∗) = smc

(x∗) (7)

where mc is the number of ABs in �c, and smc
is the

probabilistic OR (also known as the algebraic sum) defined
recursively as follows:

smc
(x∗)=a(yc

mc
, x∗, �c

mc
) + smc−1(x∗) − a(yc

mc
, x∗, �c

mc
)smc−1(x∗)

(8)
where yc

mc
∈ �c, s1(x∗) = a(yc

1, x∗, �c
1).

The class of the highest avidity is assigned to the AG. If
no AB is stimulated by the AG (� = ∅), the class of the AG
is unrecognized. If for several sets �c the avidity is equal, it
can be assumed that the AG belongs to the most numerous
class in � for avidity definitions (6) and (7), or to the most
numerous class in the set of all memory cells for definition
(5).

C. Discussion

It is worth noticing that ABs mature independently of
each other (loop 3 of Algorithm 1) and the clone evaluation
function (4) is based on the number of AGs of the same
class in the recognition regions of ABs, not on the individual
AB discriminatory abilities (classification accuracy). The final
decision about the class of an AG to be recognized is made
collectively by stimulated ABs after the immune memory
is created. This method of decision making resembles the
concept of combining individual classifiers in ensembles,
to generate more certain, precise and accurate results. The
random subspace method of combining models [58] is a
good reference for AISLFS. The difference between these
two approaches is that in AISLFS the feature subsets are not
created by random and the component models (ABs) with
different feature subsets are local not global.

In comparison to other AIS, in AISLFS the optimization
problem is shifted from the AB location optimization in the
continuous n-dimensional feature space to the optimization
of the feature subspaces, where the search space is binary.
In this optimization problem there are two criterions: 1) the
number of AGs of the same class in the AB recognition region
which is maximized, and 2) the number of features which is
minimized. The maximization of the first criterion is a priority.
Criterion 2) is the secondary one. It concerns solutions which
are equally evaluated using criterion 1). Both criterions lead
to better coverage of the recognition space. The way in which
the feature space is covered is specified below. AB covers the
whole subspace W and the hypersphere defined in the subspace
V where:

1) V and W are complementary subspaces of the
n-dimensional Euclidean space U with Cartesian coor-
dinates � = {1, 2, . . . , n};

2) V is the m-dimensional subspace with coordinates
� ⊆ � (these coordinates form the paratope), W is the
(n–m)-dimensional subspace with coordinates �\�;

3) the hypersphere in V has a radius of r and center at the
point y = [yi], i ∈ �.

The possible AB recognition regions for n = 3 in Fig. 4
are shown. (In this picture the nearest AG of different class
than AB, marked with triangles, is the same AG in all
subspaces. But it can be different in different subspaces.)
The regions are bigger in U for smaller �-subspaces. Bigger
regions, containing more AGs of the same class, are favored
in optimization process. It means that the maximization of the
primary criterion leads to the dimensionality reduction as well
as the minimization of the secondary criterion.

D. Runtime Complexity Analysis

The runtime complexity of the AISFLS algorithm is as
follows.

Step 1: Initialization of the AG population by copying N
n-dimensional datapoints: O(Nn).

Step 2: Initialization of the AB population by copying N
n-dimensional datapoints: O(Nn), initialization of
the AB paratopes by random: O(Nn).

Step 3: Do for each of N ABs: O(N).
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Fig. 4. Antibody (small circle) and its possible recognition regions in R3. Triangle denotes the nearest AG of different class than AB.

Step 3.1: Do until the stop criterion is reached (T times):
O(T ).

Step 3.1.1: Generation of l clones by copying the parent AB:
O(ln).

Step 3.1.2: Hypermutation of each clone: O(ln).
Step 3.1.3: Affinity calculation between clones and AGs:

O(lNn).
Step 3.1.4: Evaluations of clones, i.e., selection of the nearest

AG of different class than the clone and deter-
mination of the clone cross-reactivity thresholds:
O(lN), determination of the number of AGs in the
clone recognition regions: O(lN).

Step 3.1.5: Selection of the best clone and replacing the
parent AB by it: O(l).

Given this, the asymptotic on the training routine without
apoptosis would be O(Nn +

∑N
i=1 Ti (ln + lNn + lN + l)) =

O(
∑N

i=1 TilNn).
The apoptosis process consists of:

Step 4.1: Preparation of an N × N table with affinities of
ABs for AGs: O(N2n).

Step 4.2: Sequential backward selection loops: O(N2).
Step 4.2.1: Determination of the classes and affinities of

stimulated ABs for each AG: O(N2).
Step 4.2.2: Calculation of the avidities of ABs from each

class for each AG and determination of the AG
class: O(N2C).

This gives us a running time of apoptosis process: O(N2n+
N2(N2 + N2C)) = O(N2n + N4C).

The test procedure for M test points and NA ABs (Steps 5
and 6) consists of initialization of the test AG population by
copying M n-dimensional test datapoints: O(Mn), preparation
of an NA×M table with affinities of ABs for AGs: O(NAMn),

TABLE II

Description of Data Used in Experiments

Dataset Size Features Classes
Ionosphere 351 34 2
Glass 214 9 6
Breast Cancer 699 9 2
Iris 150 4 4
Wine 178 13 3
Diabetes 768 8 2
Heart Statlog 270 13 2
Sonar 208 60 2
Cleveland 303 13 2

determination of the classes and affinities of stimulated ABs
for each AG: O(NAM), calculation of the avidities of ABs
from each class for each AG and determination of the AG
classes: O(NAMC). The overall runtime complexity of the
test procedure will be O(Mn + NAMn + NAM + NAMC) =
O(NAM(n+C)). When apoptosis is performed usually NA <<

N, and without apoptosis NA=N.
The runtime complexity of AISLFS is determined by

N, T, l, n, and C. T is not fixed, dependent on several factors:
n, l, t and optimization problem complexity. The apoptosis
process is the most costly of these three procedures. The most
costly, frequently used operation in each of these phases is the
distance calculations between ABs and AGs.

V. Experimental Results

The proposed AIS was verified on several test prob-
lems of data classification. Benchmark datasets, described in
Table II, were taken from the UCI repository [59]. The features
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TABLE III

Classification Results of AISLFS with Euclidean Metric

Dataset Acc A1
c Acc A2

c Acc A3
c σAcc A1

c σAcc A2
c σAcc A3

c AccAp A3
c NUAGAp % NMC CRf % CRAB % CRt %

Ionosphere 93.78 93.89 93.98 0.40 0.55 0.60 92.60 1.43 16.20 23.90 5.13 1.23
Glass 70.79 74.51 73.38 1.38 1.92 2.21 71.08 10.24 39.40 38.07 20.41 7.77
Breast Cancer 96.35 96.42 96.11 0.21 0.26 0.31 94.28 2.86 30.00 45.51 4.76 2.17
Iris 94.67 95.44 94.80 0.58 0.53 0.75 94.67 0.67 8.90 44.92 6.59 2.96
Wine 97.50 97.39 97.33 0.46 0.50 0.49 92.75 2.78 5.40 39.07 3.35 1.31
Diabetes 73.14 74.01 72.84 0.86 0.90 0.89 70.18 6.26 123.50 44.06 17.85 7.86
Heart Statlog 81.67 81.49 80.74 0.86 1.08 1.21 79.63 2.59 32.70 41.23 13.46 5.55
Sonar 82.62 87.79 88.10 1.51 1.16 1.18 80.79 2.40 13.20 25.52 7.02 1.79
Cleveland 81.77 81.92 81.18 0.79 0.95 1.17 77.47 6.30 35.90 40.86 13.15 5.37

where Acc is mean accuracy of the AISLFS classifier with avidity A1
c , A2

c , or A3
c in 30 training sessions, σAcc standard deviation of accuracies in 30 training

sessions, AccAp accuracy of the AISLFS classifier with apoptosis, NUAGAp percentage of AGs unrecognized by the AISLFS classifier with apoptosis, NMC
mean number of memory cells after apoptosis, CRf mean compression ratio of the feature number, CRAB mean compression ratio of AB number after
apoptosis, CRt mean total data compression ratio CRf ·CRAB after apoptosis.

TABLE IV

Classification Results of AISLFS with Manhattan Metric

Dataset Acc A1
c Acc A2

c Acc A3
c σAcc A1

c σAcc A2
c σAcc A3

c AccAp A3
c NUAGAp % NMC CRf % CRAB % CRt %

Ionosphere 94.19 94.16 94.37 0.44 0.45 0.49 92.32 3.42 14.10 28.79 4.46 1.28
Glass 70.56 75.42 74.76 1.72 1.61 1.56 65.41 13.12 37.00 40.45 19.17 7.75
Breast Cancer 96.37 96.17 96.37 0.24 0.23 0.32 94.56 2.58 29.30 47.50 4.65 2.21
Iris 94.58 95.71 94.58 0.45 0.38 1.00 94.67 0.67 9.20 45.85 6.81 3.12
Wine 97.54 97.71 97.76 0.56 0.53 0.58 95.00 1.67 4.60 41.52 2.86 1.19
Diabetes 73.69 74.21 73.20 0.86 0.90 0.94 69.01 7.94 123.00 44.75 17.77 7.95
Heart Statlog 81.57 81.77 80.59 0.92 1.03 1.63 74.81 4.44 32.10 42.74 13.21 5.65
Sonar 83.83 87.76 88.03 1.19 1.09 1.10 78.43 7.19 12.90 29.20 6.86 2.00
Cleveland 81.76 81.97 81.47 0.71 0.96 0.95 77.17 4.00 37.90 42.58 13.88 5.91

in the datasets were standardized to zero-mean and unit-
variance.

The distances between ABs and AGs were measured using
the Euclidean and the Manhattan metrics. 10-fold cross-
validation was used as a validation procedure for performance
estimation. The tests were carried out in two variants:
1) applying the AISLFS classifier without apoptosis and with
three methods of avidity calculation (5), (6), and (7) (in this
variant 30 training sessions were performed), and 2) applying
the AISLFS classifier with apoptosis and avidity calculation
according to (7). The number l of clones generated in loop
3.1 was equal to round(n/3) and the number of cycles in
this loop without the result improvement t was equal to 10.
These values of the AISLFS parameters were adjusted in the
preliminary tests.

The results of classification are presented in Tables III and
IV, where the compression ratio of the feature number CRf ,
the compression ratio of the AB number after apoptosis CRAB

and the total compression ratio CRt are also shown. The
compression ratio is defined as follows:

CR =
SN

TN
100% (9)

where SN is the number of selected features or ABs and TN
is the total number of features or ABs, respectively.

The accuracy of the AISLFS classifier without apoptosis
depends on the method of the individual AB decision aggre-
gation, which in turn depends on the avidity definition, but it
is hard to identify one, best method for the avidity calculation.

In many cases the difference between classifier accuracies for
different avidity calculations is small (1–2 percentage points),
but in the case of the Glass and Sonar datasets the difference
reaches 2.59–5.48 percentage points in favor of the avidity
definitions (6) and (7). For some datasets there were some,
but not many, unrecognized test datapoints (Glass: 1%, Breast
Cancer: 0.006%, Iris: 0.02%, Diabetes: 0.18%, Heart Statlog:
0.04%, Cleveland: 0.02%).

When only maximization of function (4) without minimiza-
tion of the feature number was used as a winner selection
criterion in Step 3.1.5 of Algorithm 1, the similar accuracies
are observed but the compression ratios of the feature number
are higher: from 2.06 to 13.78 percentage points.

An important feature of the AISLFS is the data reduction
capability. As shown in Tables III and IV, AISLFS is able to
reduce the amount of data needed to classify a given data set
by 52–76% without apoptosis and by 92–99% with apoptosis.

When apoptosis is used to reduce the final number of mem-
ory cells, one can observe a decrease in the classifier accuracy
on the test sets up to 9.60 percentage points (on average 3.60
percentage points) of the accuracy without apoptosis, depend-
ing on the dataset. The number of unrecognized AGs increases
in these cases and varies from 0.67 to 13.12%. This is because
the training set is not always representative and after apoptosis
the small number of memory cells does not accurately cover
the regions of the input space in which the test points lie (the
decision surface of the classifier is modeled roughly).

The memory cells after apoptosis for the Iris dataset are
presented in Tables V and VI. In this experiment, the classifier
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TABLE V

Memory Cells After Apoptosis for Iris Dataset Using AISLFS

Classifier with Euclidean Distance

ABNumber F1 F2 F3 F4 Class r NAG
1 0.1892 − 0.7602 − 2 0.0567 1
2 − −0.5858 1.0436 1.3121 3 0.8670 29
3 − 0.3367 0.4202 0.3948 2 0.6294 15
4 − − 0.0801 −0.1293 2 0.8145 47
5 − −1.2777 − 0.6569 3 0.2621 3
6 − − 0.7035 0.3948 3 0.0567 2
7 − − 1.2136 1.1811 3 0.7314 44
8 − − 1.6670 − 3 0.9068 34
9 − − − −1.1776 1 0.9172 50

where F1–F4 are feature values, NAG is the number of AGs detected by AB.

Fig. 5. Accuracy of the AISLFS classifier depending on the number of
clones for (a) ionosphere and (b) Cleveland data.

learnt on the whole dataset, so the accuracy was 100%. As
Tables V and VI show, each point of class 1 is recognized
by only one AB using only one, the fourth feature. Classes 2
and 3 are not separated as easily, so more ABs are needed to
recognize them.

A. Choice of Parameter Values

Theoretically, the higher the value of t, the deeper ex-
ploration of the searching space and, in consequence, the
better results. A lower value of the number of clones l
makes the searching process more stochastic, resistant to local
maximum traps but slower. In practice, the values of the
parameters should be a compromise between computation time
and accuracy of classification. Accurate calculation of the
optimal parameter values, ensuring the maximum accuracy, is
not always a good solution (or even possible) due to the rough
surface of the goal function Acc = f (parameters) (see Figs. 5,
6 where mean accuracies over 30 training sessions depending
on the parameter values are shown). This is caused by the inner
optimization method, tournament searching here, which does
not ensure best results when the goal function is multimodal.
However the stochastic nature of the tournament searching
increases the probability of finding a global optimum, there
is no certainty that it will be found. This problem affects
many machine learning algorithms, e.g., in the case of the
multilayer perceptron where the gradient based, suboptimal
inner optimization methods are applied, the learning results
are sensitive on the starting weight values. Another reason
not to tune the parameters in order to achieve the highest
performance is the fact that optimization on the training set
often does not ensure best results on the test set. This is due
to an insufficient number of learning points in relation to the
number of features.

Fig. 6. Accuracy of the AISLFS classifier depending on the parameter t
(number of cyclical cloning and hypermuations without result improvement)
for (a) ionosphere and (b) Cleveland data.

TABLE VI

Memory Cells After Apoptosis for Iris Dataset Using AISLFS

Classifier with Manhattan Distance

AB number F1 F2 F3 F4 Class r NAG
1 0.1892 − 0.7602 − 2 0.0567 1
2 0.6722 − 1.0436 1.3121 3 1.3575 30
3 − 0.1061 0.3635 0.2638 2 0.9815 23
4 − −1.2777 1.1569 0.7880 3 0.9032 6
5 − − 0.7035 0.3948 3 0.0567 2
6 0.3100 −0.1245 − 0.7880 3 0.5241 5
7 − − −0.0332 −0.2603 2 1.3706 47
8 0.0684 − 0.2501 − 2 0.4608 16
9 − − 1.0436 1.5742 3 1.2396 44
10 − − − −1.1776 1 0.9172 50

TABLE VII

Sensitivity Indices SI and Deterioration of Result Indices DRI

for Model with Avidity (6) and Euclidean Distance

Dataset SIt % SIl % DRIt % DRIl %
Ionosphere 0.15 5.91 0.12 0.19
Glass 0.81 2.08 0.73 0.89
Breast Cancer 0.10 0.22 0.08 0.08
Iris 0.53 0.28 0.28 0.28
Wine 0.50 0.37 0.14 <0.01
Diabetes 0.83 0.95 0.00 0.29
Heart Statlog 1.46 1.28 0.72 0.65
Sonar 0.65 0.74 0.46 0.64
Cleveland 1.06 0.81 0.42 0.43

The influence of the parameter values (l and t) on the
classifier accuracy is limited. This is shown in Table VII where
the values of sensitivity indices are presented. These indices
are calculating using

SI =
Dmax − Dmin

Dmax
100% (10)

where Dmin and Dmax represent the minimum and maximum
output values (accuracies), respectively, resulting from varying
the input (parameter value) over its entire range.

The parameters were changed in this analysis as follows: t =
5, 10, . . . , 50, at the fixed value of l = round(n/3) (sensitivity
index in this case is denoted by SIt), and l = 1, 2, . . . , n, at the
fixed value of t = 10 (sensitivity index in this case is denoted
by SIl).

When in (10) we replace Dmin with the result for t = 10
and l = round(n/3), we can evaluate our choice of parameter
values used in experiments. These new indices (denoted by
DRIt and DRIl in Table VII) inform about the deterioration
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TABLE VIII

Accuracies of Classification Using Different AIS Based Classifiers

Dataset AISLFS 1 Immunos-2 99 AIRS1 AIRS1 AIRS1 AIRS2 AIRS2 Parallel Parallel M-NSA MINSA
[40] [40] [40] [41] [60] 61 [42] [61] AIRS [43] AIRS[61] [44] [44]

Ionosphere 94.37 94.90 87.04 84.44 95.60 85.13 84.44
Glass 75.42
Breast Cancer 96.42 86.14 68.74 82.16 96.84 96.28 96.17 96.47 96.37 96.51
Iris 95.71 97.13 97.00 97.33 96.70 95.26 94.67 96.00 95.00 94.67–96.13 95.60 95.33 96.00
Wine 97.76
Diabetes 74.21 74.10 69.70 71.60 74.20 70.87 72.98–74.49 70.96 70.44 72.00
Heart Statlog 81.77 78.15
Sonar 88.10 67.93 61.64 68.51 84.00 69.81 67.03 84.90 66.01 83.65–85.63 64.71
Cleveland 81.97 80.99 80.53 81.32 80.79 79.14 79.57 <70 <70

Best results are in bold.

TABLE IX

Classification Results of AISLFS, k-NN, SVM, and RF

Classifiers

Dataset AISLFS k-NN SVM RF
Ionosphere 94.37 (0.49) 86.16 (0.85) 95.22 (0.39) 93.45 (0.42)
Glass 75.42 (1.61) 69.63 (1.38) 68.22 (2.03) 78.81 (1.40)
Breast Cancer 96.42 (0.26) 96.74 (0.31) 97.59 (0.27) 96.15 (0.27)
Iris 95.71 (0.38) 95.40 (0.83) 95.07 (0.51) 95.09 (0.71)
Wine 97.76 (0.58) 96.42 (0.61) 98.54 (0.54) 98.10 (0.31)
Diabetes 74.21 (0.90) 75.15 (0.65) 76.70 (0.48) 76.68 (0.53)
Heart Statlog 81.77 (1.03) 82.96 (1.29) 84.26 (0.73) 82.74 (0.88)
Sonar 88.10 (1.18) 85.95 (1.47) 84.44 (1.23) 83.43 (1.16)
Cleveland 81.97 (0.96) 82.56 (0.94) 83.69 (0.56) 82.71 (0.79)

of result caused by the heuristic choice of parameter values.
However the deterioration of results is observed but the DRI
values do not exceed 1%.

Taking this all into account, the heuristic way of setting
the parameter values, based on trial and error method, is
suggested.

B. Comparative Study

In Table VIII the results for other AIS based classifiers,
described in Section III, are shown. Referring to other AIS
classifiers, the results obtained by the AISLFS place it among
the best methods.

The results (accuracies and their standard deviations
in 30 training sessions) for other popular classifiers: the
k-NN, SVM, and RF in Table IX are presented. The ex-
periments were performed in MATLAB 7.11 using func-
tions from the Maltab toolbox for SVM and the MAT-
LAB implementation of Breiman and Cutler’s RF from
http://code.google.com/p/randomforest-matlab/. The Gaussian
radial basis function kernels with the optimized values of their
widths σ were used in SVM, and the quadratic programming
was applied to find the separating hyperplanes. The number of
trees grown was 500 in RF and the number of features sampled
for splitting at each tree node was equal to the square root of
the total number of features. The default function settings were
used except those described above. The algorithm parameters
k in k-NN and σ in SVM were determined using 10-fold cross-
validation procedure. 30 training sessions were performed.

In order to indicate the best classifier we check if the differ-
ence between the classifier accuracies is statistically significant
using the t-test for equality of the means, Wilcoxon rank sum
test for equality of the medians and two-sample Kolmogorov–
Smirnov test for equality of distribution functions. The 5%
significance level is applied. The null hypotheses are that
the most accurate classifier has the same mean accuracy
(median or distribution) as the second most accurate classifier.
Rejection of all null hypotheses indicates the best classifier for
a given dataset. The best results which are significantly better
than others are in bold in Table IX.

In most cases the best classifier is the SVM but the AISLFS
is not much worse (in the worst case its accuracy is lower than
the SVM accuracy by 2.49 percentage points). However for
the Glass dataset the AISLFS outperform SVM in accuracy
by 7.20 percentage points and for the Sonar dataset by 3.66
percentage points.

VI. Conclusion and Further Work

A new immune inspired general purpose classifier based on
the concept of energetic residues was introduced. The classifier
is composed of memory cells (ABs) working as recognition
units. Each AB recognizes an input point (AG) to be classified
by selected features, different for different ABs. Consequently,
the feature selection is local, i.e., only the features which
contain most information about membership to the class rep-
resented by the memory cell, in the region where this memory
cell is located, form its paratope. The final class is determined
by combining answers of stimulated ABs (an ensemble of
ABs). In order to reduce the number of memory cells, the
apoptosis is introduced, but this reduces the classifier effi-
ciency and increases the number of unrecognized test points.
Both local feature selection and apoptosis mean that the clas-
sifier is capable of performing data reduction by up to 99%.

Even though ABs are evaluated independently of each other,
and the evaluation function is based not on the individual
AB discriminatory abilities but on the number of AGs of the
same class in the AB recognition regions, this recognition
mechanism proved to be quite effective in data classification.

The AISLFS algorithm has only two user defined parame-
ters: the number of clones and the number of cyclic cloning
and hypermuations without improvement in results (as the stop
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criterion). Such a small number of parameters is unusual in
AIS and makes AISLFS easy to use. The AISLFS classifier is
rather stable: no drastic changes in classifier accuracy over a
wide range of parameter values were observed. The heuristic
trial and error method is recommended to set the parameter
values.

The AISLFS classifier does quite well in comparison with
both other immune inspired classifiers and other classifiers
in general. The power of AISLFS is in its unique embedded
approach to the local feature selection. The local dimension-
ality reduction property distinguishes it from other classifier
solutions. The data reduction capability of AISLFS is its other
important feature.

The AISLFS algorithm has a parallel structure. The ABs can
be processed in parallel, independently, as well as the popu-
lation of clones. The parallel implementation of the algorithm
will speed up the learning process considerably. The maximum
acceleration through the parallel implementation is the product
of the number of learning points and the tournament size.

Possibly some kind of interaction between ABs (like in
idiotypic networks) should be introduced in further work on
AISLFS development, so as not to generate a new AB in a
region covered by another AB of the same class. This can
prevent the creation a big set of memory cells, especially in
“easy” regions of the feature space with AG of the same class,
and can replace the time consuming apoptosis process. The
strength of the natural immune system lies in generating a huge
number of cells with different receptors, but our goal is not
to replicate all the mechanisms of the natural immune system
but to create an accurate, simple and easy to use artificial
recognition system.

In the presented approach the antibody positions in the
feature space are fixed: one antibody lies on one antigen. The
release of antibodies, i.e., allowing the antibodies to change
their positions across the feature space and locate themselves
in optimal regions, could improve the results and lead to
better data compression. This can be achieved by introducing
an additional mutation that operates on feature values, or by
combining the feature values of points located in the same
region of space. In the latter case, the cluster of points (AGs)
would be represented by their centroid (AB) in a certain
subspace.

The weighted feature selection is the next step in AISLFS
development. In this case, the feature selection is not binary
but weighted: vector vk (1) has real components, which express
the levels of importance of the features (the strength of
individual feature binding).

It is planned to apply the AISLFS to regression problems,
especially to short-term electrical load forecasting. In this
multiinput problem, a regression function can be modeled
not globally but locally using different sets of input variables
(mainly historic loads, but also weather factors) for each day
type, seasons of the year and hour of the forecasted load.

Another idea is to apply AISLFS to unsupervised learning,
where data clusters can be formed based on locally selected
features. In this case one point can belong to many different
clusters, represented by ABs, taking into account different
feature subsets encoded in AB receptors.
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