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Abstract—Load forecasting is an integral problem in the 

power system operation, planning and maintenance. The article 

presents the principles of the pattern similarity-based methods 

for short-term load forecasting. A common feature of these 

methods is learning from the data and using similarities between 

patterns of the seasonal cycles of the load time series. These series 

are non-stationary in mean and variance, contain long run trend, 

many cycles of seasonal fluctuations and random noise. The new 

approach based on the pattern similarity and local 

nonparametric regression simplifies the forecasting problem and 

enables us to develop effective forecasting models. Several 

functions mapping daily cycles of the load time series into input 

and output patterns are defined. The assumption underlying the 

pattern similarity-based methods of forecasting and the way of its 

verification are presented. Some indicators of the strength and 

stability of the relationship between patterns are described. In 

the experimental part of the work pattern definitions and the 

validity of the assumption were verified using Polish power 

system data. The data analysis was performed specific for load 

time series. The results show that pattern similarity-based 

methods can be very useful for forecasting time series with 

multiple seasonal cycles.    

 
Index Terms— Patterns of the Seasonal Cycles, Short-Term 

Load Forecasting, Similarity-based Methods of Forecasting, 

Time Series with Multiple Seasonal Cycles 

 

I. INTRODUCTION 

HORT-term load forecasting (STLF) is an integral part of 

power system control and scheduling. By STLF we 

usually mean forecasts of hourly, half-hourly or quarter-hourly 

load in the range from one hour to seven days ahead. STLF is  

extremely important for energy suppliers, system operators, 

financial institutions, and other participants in electric energy 

generation, transmission, distribution, and markets. Precise 

load forecasts are necessary for electric companies to make 

important decisions connected with electric power production 

and transmission planning, such as unit commitment, 

generation dispatch, hydro scheduling, hydro-thermal 

coordination, spinning reserve allocation and interchange 

evaluation. Load forecasts are also used as inputs to the power 

analysis procedures such as load flow and contingency 

analysis. Short-term load forecasts are essential for the 

functioning of electricity markets because the load behavior is 

the basic driver of electricity prices. Thus the forecast 

accuracy translates to financial performance of energy 

companies and other market participants. A conservative 

estimate is that a 1% reduction in forecasting error for a 10 

GW utility can save up to $1.6 million annually [1]. 

Owing to this importance various STLF models have been 

reported, that includes conventional methods and new 

computational intelligence, machine learning and pattern 

recognition methods. The task is not easy because the load 

time series is non-stationary in mean and variance, with trend 

and multiple seasonal cycles. Several factors affect the load 

behavior. These include weather (temperature, wind speed, 

cloud cover, humidity, precipitation), time, demography, 

economy, electricity prices, and other factors such as 

geographical conditions, consumer types and their habits. 

Fig. 1 shows a periodical time series representing hourly 

electrical loads of the Polish power system, where we can 

observe annual, weekly and daily variations. From this figure 

it can be seen that the daily cycles differ in shape. Usually 

shapes for Tuesday through Friday from the same period of 

the year are similar, and those for Monday, Saturday and 

Sunday are distinct. Moreover the shapes are dependent on the 

year period and can vary over the years. We observe that the 

underlying levels of the daily cycles changes during the year 

according to the annual cycle and may change also from one 

week to the next. The level ratio of the neighboring days may 

change as well even from week to week. In a few year time 

horizon the trend is observed connected to the economic 

activity and economy-wide fluctuations in production and 

trade. The load time series shown in Fig. 1 is analyzed in the 

experimental part of this work (Section V).  

The most commonly employed conventional approaches to 

modeling time series with seasonal cycles are the Holt-Winters 

exponential smoothing and the autoregressive integrated 

moving average (ARIMA) models. In exponential smoothing 

the time series is decomposed into a trend component 

(combination of a level term and growth term) and a seasonal 

component. These components can be combined additively or 

multiplicatively giving a total of 15 variants of exponential 

smoothing models. For each of these variants there are two 

possible state space models, one corresponding to a model 

with additive errors and the other to a model with 

multiplicative errors [2]. The exponential smoothing state 

space models are all non-stationary. One advantage of the 

exponential smoothing models is that they can be nonlinear. 

So time series that exhibit nonlinear characteristics including 

heteroscedasticity may be modeled using exponential 

smoothing state space models. A disadvantage of exponential 

smoothing is that the exogenous variables cannot be 
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introduced into the model. Other important weaknesses are 

overparameterization and a large number of starting values, 

which for the hourly load time series with daily and weekly 

cycles is 724 = 168. Taylor generalized basic Holt-Winters 

model by introducing two seasonal components [3]. STLF 

application examples showed that the double seasonal Holt-

Winters model outperforms one seasonal Holt-Winters models 

as well as double seasonal ARIMA model. Five recently 

developed exponentially weighted methods in application to 

STLF were presented in [4]. A new exponential smoothing 

formulation [5], useful for modeling load time series with 

daily and weekly cycles, involves smoothing a different 

intraday cycle for each distinct type of day of a week. Similar 

days are allocated identical intraday cycles. Improved version 

of this approach, called parsimonious seasonal exponential 

smoothing, that has the flexibility to allow parts of different 

days of a week to be treated as identical was proposed in [6]. 

For electricity load data this new method compares well with a 

range of alternatives such as double seasonal Holt-Winters 

model, double seasonal ARMA model and artificial neural 

network. More flexible parsimonious approach with the 

trigonometric representation of the seasonal components based 

on Fourier series was lately proposed in [7].   

The stochastic nature of load demand as a function of time 

has been frequently modeled with seasonal ARIMA models. 

An attractive feature of these approaches is that ARIMA 

processes are a very rich class of possible models and we can 

find a process which describes accurately enough our data. 

Introducing exogenous variables is not a problem in ARIMA 

models as well as modeling multiple seasonal cycles. A 

disadvantage of ARIMA models is that they can represent only 

linear relationships which entails their limited accuracy when 

the variables are related in the nonlinear manner such as 

weather factors and load. A common obstacle in using ARIMA 

models is that the order selection process is usually considered 

subjective and difficult to apply. Due to the combinatorial 

problem of selecting orders of model, which takes 

considerable size for models with multiple seasonal cycles, the 

time series is often decomposed and components, showing less 

complexity than the original series, are predicted 

independently. Such an approach is used for example in [8], 

where the series is decomposed into a trend, seasonal 

components and irregular component using the moving 

average technique and smoothing. The deseasonalized series is 

modeled by an ARMA process with hyperbolic noise. Another 

type of decomposition using the lifting scheme is proposed in 

[9]. Based on the results of wavelet multi-resolution analysis, 

the lifting scheme decomposes the time series into subseries at 

different resolution levels. The subseries are then forecasted 

using ARIMA models. Finally, forecasting results at different 

levels are reconstructed to generate an original load prediction 

by the inverse lifting scheme.   

Another classical approach to the multiple seasonal time 

series forecasting are the structural time series models 

formulated in terms of unobserved components [10]. Within 

these models the time series is seen as the sum of unobserved 

components: trend, seasonal and irregular components. The 

periodic components are expressed as a mixture of sine and 

cosine waves. A model is a regression a time trend and a set of 

seasonal dummies. The explanatory variables are functions of 

time. To achieve the necessary flexibility the regression 

coefficients are allowed to change over time. These models are 

expressed in a state space form with the state representing the 

unobserved components. The model hyperparameters are 

estimated using the Kalman filter. One of the advantages of 

that model is that it allows data irregularities (such as missing 

observations and observations obtained at mixed frequencies) 

to be handled. An example of the unobserved components 

model to the electricity load demand forecasting is presented 

in [11]. This model is based on modulated periodic 

components and its advantages are the ability to exhibit 

several periodic components and less parameters than in a 

standard unobserved components model. 

A typical procedure for the multiple seasonal time series 

forecasting in the case of conventional models described 

above and also in the case of models based on the new 

methods of computational intelligence and machine learning is 

simplifying the problem by the time series deseasonality or 

decomposition. After decomposition the components showing 

less complexity than the original time series can be predicted 

using simpler models. The time series is usually decomposed 

on seasonal, trend and stochastic components. Besides 

decomposition methods mentioned above a useful tool for this 

purpose is STL filtering procedure based on LOESS smoother 

(locally weighted polynomial smoother) [12]. STL consists of 

a sequence of smoothing operations employing the locally 

weighted regression. The method can be robust to outliers. It 

has several parameters which allows to control the smoothness 

and rate of change over time of the seasonal component (this 

is not allowed in the classical decomposition methods, where 

it is assumed that the seasonal component repeats from one 

period to another. In the electrical load time series the seasonal 

 
Fig. 1. The load time series of the Polish power system in three-year (a) and 

one-week (b) intervals. 
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pattern is not fixed but changes over the year, see Fig. 1). 

Another popular technique for seasonal time series 

decomposition is a wavelet transform. Wavelets produce the 

local representation of the load signal in both time and 

frequency domains. The multi-resolution analysis using the 

wavelet transform splits up the load time series into some 

subseries in the wavelet domain. One of them is  low-

frequency representation called an approximation and others 

are high-frequency representations called details. An 

approximation expresses a trend whilst details depict 

components of different higher frequencies. Each subseries is 

predicted independently in the wavelet domain and the final 

forecast is obtained using inverse wavelet transform.  

Maybe the simplest way to deal with multiple seasonal time 

series forecasting is decomposition into as many subseries as 

there are elements in one seasonal cycle of the shortest length. 

In our load time series example 24 subseries are formed. Each 

of them is composed of loads at the same hour of a day. In this 

way a daily seasonality is removed. Each subseries can be 

forecasted independently using simpler model with only 

weekly seasonality (in STLF the annual season can be ignored 

when the model is learned on the period much shorter than one 

year). To eliminate both daily and weekly seasonalities the 

time series can be decomposed into 247 subseries composed 

of loads at the same hour of a week, e.g. loads at hour 12 in 

the successive Mondays. 

In conclusion of the above discussion, it can be seen that 

the forecasting models for multiple seasonal time series 

generally require deseasonality or decomposition. Sometimes 

these procedures are built-in in the model structure like in the 

case of the exponential smoothing. In other cases they are 

independent of the model. Modeling the non-stationary time 

series with trend and multiple seasonal cycles usually requires 

many parameters of the model including decomposition 

method parameters (tens, hundreds or even thousands of 

parameters). Thus the searching of the model space to find the 

globally optimal solution is not a simple task, usually time 

consuming and of high computational complexity. Other 

disadvantages of the complex models are their worse 

generalization ability, unclear structure and uninterpretable 

parameters, which translates into lack of confidence to the 

forecasts.  

The pattern similarity-based univariate STLF methods 

proposed in this work are characterized by simplicity. The 

number of parameters here is small, which implies a simple 

procedure of model optimization. The principles of the model 

operation are also simple and clear. Defining patterns of the 

daily cycles of the load time series we can simplify the 

forecasting problem which is difficult because of many 

seasonal cycles, trend and non-stationarity of the time series. A 

typical procedure for the seasonal time series: deseasonality or 

decomposition is not necessary here. The functions defining 

patterns described in this work filter the time series removing 

the trend and seasonal variations of periods longer than the 

daily one. Non-stationarity of the time series is also not a 

problem when using appropriate pattern definitions.   

This paper is organized as follows: in Section II the 

forecasting methods using pattern similarities are outlined. In 

Section III the patterns of the time series seasonal cycles are 

defined. Pattern similarity is analyzed in Section IV. In 

Section V we perform simulation studies of the proposed 

forecasting approach on the load time series of the Polish 

power system. Finally, the work is concluded in Section VI. 

Models of STLF based on the pattern-similarity approach are 

described in the second part of this work [13]. The study was 

supported by the research habilitation project and presented in 

the book in Polish [14]. In these two-piece work we 

summarize the habilitation thesis.  

II. OUTLINE OF THE PATTERN SIMILARITY-BASED 

FORECASTING METHODS 

Similarity-based  methods are a generalization of the 

minimal distance methods which are the basis of many pattern 

recognition and machine learning algorithms [15]. In the time 

series analysis and forecasting similarity-based  methods use 

analogies between fragments of the time series with seasonal 

cycles. A time series behavior in the future can be deduced 

from the behavior of this time series in similar conditions in 

the past or from the behavior of other time series with similar 

changes in time. In the first stage of this approach the time 

series is divided into sequences of length n, which usually 

contain one seasonal cycle. Our task is to forecast the time 

series elements in the daily period, so we divide the time 

series into sequences including 24 successive hours of the 

daily periods.  

In order to eliminate trend and seasonal variations of 

periods longer than n (weekly and annual variations in our 

case), the sequence elements are preprocessed to obtain their 

patterns. The pattern is a vector with components that are 

functions of actual time series elements. The input and output 

(forecast) patterns are defined: x = [x1 x2 … xn]
T
 and y = [y1 y2 

… yn]
T
, respectively. The patterns are paired (xi, yi), where yi 

is a pattern of the time series sequence succeeding the 

sequence represented by xi and the interval between these 

sequences (forecast horizon ) is constant. The pattern 

similarity-based forecasting methods  (PSBFMs) are based on 

the following assumption:  

Assumption: If the pattern xa representing a period 

preceding the forecasted period is similar to the pattern xb 

from the history of the process, then the forecast pattern ya is 

similar to the forecast pattern yb.  

Patterns xa, xb and yb are determined from the history of the 

process. The above assumption allows us to forecast the ya-

pattern on the basis of known patterns xa, xb and yb. Usually 

we select several patterns xb and aggregate patterns yb paired 

with them to get the forecast pattern ya paired with the query 

pattern xa. 

The idea of PSBFMs in Fig. 2 is presented and summarized 

in the following steps: 

1. Mapping the original time series elements (usually 

seasonal cycles) to patterns x and y. 

2. Selection of similar x-patterns to the query pattern x*. 

3. Aggregation of the y-patterns paired with the similar x-
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patterns to get the forecasted pattern y


 paired with x*. 

4. Decoding the pattern y


 to get the forecast of the 

seasonal cycle z


.    

We assumed above that x- and y-patterns represent the 

seasonal cycles of length n. But in general these patterns can 

represent any fragments of the time series and these fragments 

can be different for x- and y-patterns. They can contain several 

cycles or the part of one cycle. They can be shifted in time, 

e.g. when we need to prepare the forecast at the time t of the 

current day we can define x-patterns representing the system 

load in the period from time t+1 of the previous day to the 

time t of the current day. Moreover the pattern does not have 

to represent the contiguous sequence of the time series. The 

time series elements can be selected to the input pattern. We 

can use also the feature extraction methods to create new 

pattern components from the original time series. In further 

part of the work for the sake of simplicity we focus on patterns 

representing continuous sequences of the time series which 

coincide with the daily cycles. 

The analyzed PSBFMs belong to the class of nonparametric 

regression methods. A general regression model has the form 

[16], [17]: 

 

 )(xmy , (1) 

 

where y is the response (target) variable, x is a vector of 

explanatory variables (predictors),   is a normal distributed 

random error with zero mean and variance 2
, and m(x) = 

E(Y|X = x) is the regression curve. 

In the nonparametric regression case the regression curve 

is not predefined, but constructed on the basis of information 

contained in the data. Regression function is estimated 

directly, instead of estimate its parameters as in the parametric 

approach. Most methods assume that the function m(.) is 

continuous and smooth. The most popular nonparametric 

regression methods include: kernel estimators, local linear and 

polynomial regression, smoothing splines, LOESS and 

LOWESS.  

The forecasting models based on pattern similarities are 

described in the second part of this work [13]. The regression 

curve estimated by them (or the aggregation method 

mentioned above in step 3 of the algorithm) is of the simple 

form: 
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where N is the number of observations and w(.) is the 

weighting function. 

It is worth noting that the variables can be linked in a 

nonlinear way, if the weighting function maps x nonlinearly. 

The function m(.) is a vector-valued function, although we can 

decompose it to n one-valued functions for each component of 

vector yi. 

III. PATTERNS OF THE TIME SERIES SEASONAL CYCLES 

Definitions of the functions transforming the time series 

elements into patterns x and y are dependent on the specificity 

of the series (periodicities, trend, variance), the forecast period 

and horizon. These functions should be defined in such a way 

that the patterns pass on the most important information about 

 

Fig. 2. The PSBFM flowchart. 
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the process and the quality of the forecasting model was the 

highest. In addition, functions mapping the time series 

elements into  patterns y should provide the opposite 

transformation (decoding): from the forecasted pattern y to the 

forecasted actual time series elements. 

The forecast pattern yi = [yi,1 yi,2 … yi,n] represents the 

sequence of the actual time series elements z in the forecast 

period i+: zi+ = [zi+,1 zi+,2 … zi+,n], and the corresponding 

input pattern xi = [xi,1 xi,2 … xi,n] represents the time series 

elements in the period i preceding the forecast period: zi = [zi,1 

zi,2 … zi,n]. Sequences zi+ are mapped to patterns yi using 

variables i describing a process in the nearest past, which 

allows us to take into account current variability of the process 

and ensures possibility of decoding.  

For our load time series with daily, weekly and annual 

seasonal cycles we define some functions mapping the 

original space Z into the pattern spaces X and Y, i.e.  

fx : Z  X and fy : Z  Y. These functions are shown in Table 

I and II. In Fig. 3 examples of daily load curves for different 

days of the week are shown and their x- and y-patterns defined 

using some functions from Table I and II. 

Definition X3.1 expresses normalization of vectors zi. After 

normalization they have the unity length, zero mean and the 

same variance. Using the standard deviation of the zi 

components in the denominator of X3.1, we receive vector xi 

with the unity variance and zero mean. Note that after 

normalization the nonstationary time series is represented by 

patterns x having the same mean and variance. Trend and 

additional seasonal variations are filtered. This is very 

important because now we do not need to decompose the time 

series to built the forecasting model. 

Definitions X1 and X2 express the change between z-value 

and its past values (from the previous moment, day or week) 

or indices/differences of z-value and the mean value of the 

daily or weekly periods. There is the relationship between 

corresponding definitions of X1 and X2: )2(

ix  = i
)1(

ix – i, 

where )1(

ix  is a pattern from the group X1 and )2(

ix  is a 

corresponding pattern from the group X2. 

The components of x-pattern defined using X4 are angles 

between line passing through two neighboring time series 

points and Ox axis. The parameter a allows to control the 

shape of the pattern. For small a the components have only 

two values: /2 for positive angels and –/2 for negative ones. 

For large a the transformation comes down to the 

transformation for X2.5 pattern. 

Definitions of fy are analogous to fx but variables i express 

time series elements or characteristics determined from the 

process history. These parameters have to be known at the 

forecast moment (before the forecast period i+). This allows 

us to calculate the forecast z


 having the forecasted pattern y


. 

To do this we use the inverse function ),( ,

1

itiy yf 
. For 

example the inverse function for Y3.1 is: 

 

i
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We can reduce the number of x-pattern components and 

compress information if in the functions fx we use the mean 

values of several subsequent time series elements instead of 

TABLE I 

FUNCTIONS DEFINING X-PATTERNS 

Pattern symbol ),( , itix zf   i 

X0 tiz ,  – 

X1.1 

i

tiz



,
 

iz  

X1.2 iiz :6  

X1.3 zi–1,t 
X1.4 zi–7,t 
X1.5 zi,t–1 

X2.1 

itiz ,  

iz  

X2.2 iiz :6  

X2.3 zi–1,t 
X2.4 zi–7,t 
X2.5 zi,t–1 

X3.1 








n

j

iji

iti

z

z

1

2

,

,

)( 


 

iz  

X3.2 iiz :6  

X4 






  

a

zz titi 1,,
arctan  – 

 

TABLE II 
FUNCTIONS DEFINING Y-PATTERNS 

Pattern symbol ),( , itiy zf   i 
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Symbols in Table I and II: i = 1, 2, …, N – the daily period number, t = 1, 2, 

…, n – the time series element number in the period i,  – the forecast 

horizon in the daily periods, a > 0 – parameter, zi,t – the t-th time series 

element in the period i, 
iz – the mean value of elements in period i,  

iiz :6
– the mean value of elements in the weekly period: from i–6 to i. 
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the original z-values. In this case the period i is divided into g 

equal intervals (for n = 24, g = 2, 3, 4, 6, 8 or 12). Then the 

mean values of elements in these intervals are calculated and 

substituted to fx in place of z. An example of compression is 

shown in Fig. 3 (pattern X3.1 and its two compressed versions 

for g = 6 and 12 are shown). 

X-patterns can be further transformed: scaled, discretized or 

orthogonalized. Scaling can be linear: 

 

ttitti bxax  ,,' , (4) 

or nonlinear:  
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where at, bt and ct > 0 are parameters. 

The coefficient at and exponent ct determine the degree of 

smoothing (if 0 < at, 0 < ct < 1) or sharpening (if at, ct > 1).  

The patterns of zero mean can be nonlinearly mapped to 

interval [0, 1] using sigmoid function: 

 

)exp(1

1
'

,

,

ti

ti
dx

x


 , (6) 

 

where d is the slope of the sigmoid function.  

Using (6) the x-pattern components which are distant form 0 

are exponential smoothed. 

The discretization consists in dividing the range of 

variability of all x-pattern components for h usually equal 

intervals and assigning to x΄i,t the middle value of the range 

which includes xi,t. The ranges can be specified for each 

component separately. Discretization involves the loss of 

information, but it can reduce model construction time, 

simplify the algorithm and give good results for noisy data. 

The discretized X3.1 patterns are shown in Fig. 3.  

An example of the orthogonalization method is the 

Principal Component Analysis (PCA). This method transform 

linearly correlated x-pattern components into a set of linearly 

uncorrelated principal components which form the x'-patterns. 

The number of principal components is less than or equal to 

the number of original components. The patterns created by 

orthogonalization of X3.1 patterns are shown in Fig. 3.       

In general the x-pattern may represent other variables 

(exogenous) affecting the forecasted variable. In our load 

forecasting example such exogenous variables can include 

weather variables: temperature, wind speed, cloud cover, 

humidity and precipitation. The y-pattern in particular can 

represent only one time series element or a characteristic that 

describes a time series, e.g. the mean, variance or extreme 

value of the time series in a certain period.  

The selection of the best pattern definitions for a given load 

time series requires testing the forecasting model on different 

pairs of x- and y-pattern definitions. This is performed usually 

in cross-validation procedure. 

IV. PATTERN SIMILARITY ANALYSIS 

The most popular similarity measures between two real-valued 

vectors include [18]: the inner product (for normalized 

vectors) or closely related to it cosine similarity measure, 

Pearson’s correlation coefficient or Tanimoto measure. The 

similarity measures are often defined on the base of the 

distance measures, e.g. using linear mapping: s(xa,xb) = c – 

d(xa,xb) or nonlinear mapping: s(xa,xb) = 1/(1+ d(xa,xb)), 

  

  

 
 

    

     
 

Fig. 3. Examples of x- and y-patterns of the daily load curves. 
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where: s(.,.) is a similarity, d(.,.) is a distance and c is a 

constant greater than the highest value of the distance. The 

most often used distance measures are: Euclidean, Manhattan 

or Canberra distances. If the components of the vectors are 

expressed in different units or change in different ranges, in 

order to offset their impact on the distance, their weighting is 

recommended. The Mahalanobis distance allows us to take 

into account the correlations between components. 

To confirm the validity of the assumption underlying the 

PSBFMs, we analyze for a given time series the relationship 

between similarities of x-patterns and paired with them y-

patterns. The analysis is performed on the sample consisting 

of the pattern pairs:  

  

 ((xi, yi), (xj, yj)), (7) 

 

where i, j = 1, 2, ..., N, i ≠ j. 

The distances between xi and xj: d(xi, xj), and between yi and 

yj: d(xi, xj) are random variables. We define the realization set 

of pairs of these random variables of the form: 

  

{[d(xi, xj), d(yi, yj)]} = {[d(x1, x2), d(y1, y2)], [d(x1, x3),  

                              d(y1, y3)], ..., [d(xn, xn-1), d(yn, yn-1)]}, (8) 

 

In order to show the stochastic interdependence of the 

random variables d(xi, xj) and d(yi, yj) we formulate the null 

hypothesis H0: The observed differences in numbers of 

occurrence of the sample elements in the specified categories 

of the values of random variables d(xi, xj) and  

d(yi, yj) are caused by a random nature of the sample. To 

verify this hypothesis the chi-square test is used. This test is 

based on a contingency table which shows joint empirical 

distribution of random variables d(xi, xj) and d(yi, yj). The 

number of categories of d(xi, xj) is g and that of  

d(yi, yj) is h. The boundaries of the categories for d(xi, xj) are 

quantiles of order 0, 1/g, 2/g, …, 1 and that for d(yi, yj) are 

quantiles of order 0, 1/h, 2/h, …, 1. The high value of chi-

square statistic, greater than its critical value for the assumed 

significance level and number of degrees of freedom, justifies 

the rejection of the null hypothesis and entitles us to create and 

use PSBFMs. 

The relationship strength between d(xi, xj) and d(yi, yj) is 

measured using the Cramer’s contingency coefficient V and 

the Pearson’s correlation coefficient : 
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where: m – the number of elements in set (8), yx dd , – the 

mean values of d(xi, xj) and d(yi, yj), respectively, sx, sy – the 

standard deviations of d(xi, xj) and d(yi, yj), respectively. 

The relationship between d(xi, xj) and d(yi, yj) is 

strengthened when analyzing the similarity of pairs 

representing the same days of a week. The statistical sample in 

this case is of the form (7), but now j is the index of pattern 

representing the same day of a week as the pattern i. It is 

recommended to built forecasting models using training data 

representing the same days of weeks as the test data. For 

example when a query pattern x* represents the Monday load 

curve and we forecast next daily cycle for Tuesday ( = 1), the 

training set contains x-patterns representing Mondays and y-

patterns representing Tuesdays.  

In the PSBFMs the analysis of relationship between x- and 

y-pattern similarities or distances can be limited to the nearest 

neighbors of the x-pattern. Now the index j in (7) corresponds 

to the k nearest neighbors of xi. The null hypothesis and the 

way of its verification are the same as above. 

The y-pattern paired with the nearest neighbor of the input 

pattern xi not always is the nearest neighbor of the forecast 

pattern yi paired with xi. We define the ratio of distances: the 

distance between patterns yi and yi* paired with the nearest 

neighbor of xi to the distance between yi and its nearest pattern 

yi΄:      
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, (11) 

 

The forecasting model has the largest accuracy if yi*  and yi΄ 

are the same patterns. Then rd = 0. When yi*  and yi΄ vary 

significantly, it means weak relationship between variables 

and poor model accuracy.  

The similarity of y-patterns is dependent on the relationship 

stability between loads in the periods encoded in the paired x- 

and y-patterns. If the loads of days i and i+ are represented by 

the daily mean loads iz  and iz , respectively, the measure of 

stability of this relationship is the indicator: 

 

 τi

i
s
z

z
r



 . (12) 

 

It is desirable that the indicators rs for the nearest neighbors 

of the query pattern x* were similar, i.e. show the smallest 

dispersion. One way to reduce this dispersion is to searching 

for the nearest neighbors among patterns representing the 

same type of a week day as the query pattern. This eliminates 

for example the cases where the query pattern representing 

Friday has the nearest neighbors among Tuesdays, 

Wednesdays and Thursdays, which have similar x-patterns to 

Friday but y-patterns paired with them are completely 

different from the expected y-pattern of Saturday (for  = 1).  

The second way to reduce the rs dispersion is elimination or 

replacement of outliers. The simplest method is to replace 

untypical daily period i by the averaged daily periods i–7 and 

i+7. Another way to reduce dispersion is to create the 

synthetic training set having the representative features of the 

original set but without outliers, misleading, distorted and 

noisy data. 
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V. SIMULATION STUDIES 

 The simulation studies were carried out using the time 

series of the hourly electrical load of the Polish power system 

from the period of 2002-2004 presented in Fig. 1 (these data 

can be downloaded from the website http://gdudek.el. 

pcz.pl/varia/stlf-data). This time series exhibits trend 

approximated by the linear equation 3.88510
-5

t +15.518 and 

tree seasonal variations: annual, weekly and daily. The 

dispersion of the loads measured using weekly moving 

standard deviation has annual periodic fluctuations following 

the load fluctuations and the trend: 1.22110
-5

t +1.594. The 

time series is non-stationary. The Durbin-Watson statistics is 

equal to 0.054 which is much smaller than the threshold 

indicating no autocorrelation, i.e. the value of 2. The 

autocorrelation and partial autocorrelation functions are shown 

in Fig. 4. The autocorrelation between successive hour loads 

are very strong and are strengthened for the daily, weekly and 

annual periods. The Ljung-Box test indicated the significant 

autocorrelations for all tested lags (the significance level  = 

0.01).  

The seasonal variations can be identified using the 

harmonic analysis. The time series is decomposed into the 

Fourier series. The squares of amplitudes (R
2
) of the 

harmonics are presented in the periodogram (Fig. 5). The 

annual period is dominant. Its amplitude is greater more than 

twice than the second largest amplitude. There is large daily 

amplitude and less 12-hour amplitude which comes from the 

presence of two valleys and two peaks in the daily load curve. 

The variation in load between weekends and workdays is 

expressed by the high weekly and half-weekly amplitudes. 

Based on the Parseval's theorem the variance of a time 

series s
2
 can be expressed by the sum of squares of the 

harmonic amplitudes. The contribution of the i-th harmonic to 

the variance can be expressed by the ratio  

R
2
/(2 s

2
). For the analyzed time series the contributions of the 

most significant harmonics were: 8760 h – 0.43, 24 h – 0.16, 

168 h – 0.06, 12 h – 0.05 and 84 h – 0.04.       

To evaluate the dispersion of the load time series in 

different intervals we use the variation coefficients:  

c = 100s/ z , where z  and s are respectively: 

 mean and standard deviation of a daily load curve for daily 

variation coefficients cd, 

 weekly mean and standard deviation of daily means for 

weekly variation coefficients cw, 

 annual mean and standard deviation of weekly means for 

annual variation coefficients ca. 

The variation coefficients inform about the contribution of 

the standard deviation in mean. Fig. 6a shows the average 

values of the variation coefficients for the Polish power 

system between years 1997-2009. It can be seen the 

decreasing tendency for the annual variation coefficient and 

the increasing tendency for the daily variation coefficient. In 

Fig. 6b the mean annual values of the daily variation 

coefficients are shown for each day of the week. It can be seen 

from this figure the strong differentiation of the daily variation 

depending on the day type. The largest variation for Mondays 

is due to the transition from the low-loaded Sunday to 

workday. Other workdays have similar daily variation to each 

other. The daily variation coefficients is dependent also on the 

season of the year (not shown in the figures). In the early 

months of the year the value of cd has the decreasing tendency, 

while in the following months cd gradually increases. 

 

Fig. 5. The periodogram of the load time series of the Polish power system. 

 

 

 
Fig. 4. The autocorrelation and partial autocorrelation functions of the load 

time series of the Polish power system. 
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Let us analyze the similarity between shapes of the daily 

load profile. It is very important in daily load curve 

forecasting models. The simplest characteristic of the daily 

shape is pattern X1.1. The similarity analysis of the shapes 

shows that the shapes most similar to each other lie in the 

same periods of the year which are limited to several weeks 

(Fig. 7). The points arranged in diagonal lines in Fig. 7 shows 

that the nearest neighbors can also lie symmetrically about the 

middle days of the year. In the case of shapes of Mondays 

their nearest neighbors belong to the same category of day 

type (see Fig. 8). The same applies to Saturdays and Sundays. 

The nearest neighbors of Tuesday, Wednesday, Thursday and 

Friday shapes  form common category, although the Friday 

nearest neighbors represent Fridays more frequently than other 

days of a week (this was confirmed by a statistical test). 

The shapes of the daily curves for the same week day 

category and from the corresponding periods of the year can 

change in time. This change is indicated by the distance 

between shapes increasing with the distance in time. This can 

be seen in Fig. 9, where we can see the average Euclidean 

distance between shapes from the year 2009 and shapes 

representing the same week days from the previous years. The 

shape similarity decreases in time: the average growth rate of 

the distance is 9.6% per year. The greatest similarity in shapes 

in the long-term horizon is for Saturdays, and the smallest 

similarity is for Sundays. The change in shapes can be affected 

by the change in daily load variance (see Fig. 6). This is 

illustrated in Fig. 10.  

The measure of the nonlinearity of the daily load curve can 

be expressed by the smallest degree of polynomial 

approximating this curve with the average error . In Fig. 11 

the polynomial degrees for the daily curves of the Polish 

power system in 2009 are shown, where  = MAPE = 1%. 

Average degrees were: 10.6 for workdays, 9.8 for Saturdays 

and 9.9 for Sundays. The smallest degrees are observed in the 

  

  
Fig. 6. The mean values of the variation coefficients (a) and the daily variation 

depending on the day of a week (b). 

   
 

Fig. 8. The day types of the daily load curves and their nearest neighbors in 

shapes. 

 

  
 

Fig. 7. The distances in time between shapes of the daily load curves and their 

five nearest neighbors (a) and the histogram of these distances (b). 

   
 
Fig. 9. The average distances between shapes form the year 2009 and shapes 

representing the same week days from the previous years. 
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summer and winter seasons, and the highest in the spring 

season.  

 Let us focus now on the assumption underlying the 

PSBFMs presented in Section II. To confirm the validity of 

this assumption we formulated the null hypothesis (see 

Section IV) for sample (7). We use the chi-square test to verify 

H0 for our load time series. The contingency table having g = 

h = 8 categories for the random variables d(xi, xj) and d(yi, yj) 

is created and the values of statistics 2
, V and  are 

calculated. Table III shows these statistic values for three types 

of patterns and two distance measures: Euclidean and 

Manhattan. The critical value of 2
 statistic is 66.34 ( = 0.05) 

and its calculated values lie in all cases in the critical region. 

This results in the rejection of the null hypothesis and means 

that the relationships between the random variables d(xi, xj) 

and d(yi, yj) are not caused by random nature of the sample. 

The values of V and  coefficients indicate significant, 

moderately strong and positive correlation between d(xi, xj) 

and d(yi, yj). The largest values of these coefficients are 

observed for patterns X3.1-Y3.1. Both metrics gave similar 

results.    

Table IV shows the above statistics for the case where we 

limit the analysis to k = 5 nearest neighbors of the x-pattern. 

Two variants are considered: V2, where the nearest neighbors 

represent the same day of a week as xi, and V1, where there is 

not such a restriction. The results for both Euclidean and 

Manhattan metrics were similar. In Table IV the former case is 

presented. In this table the average distances between x-

patterns and their five nearest neighbors nnxd ,  and distances 

between paired with them y-patterns nnyd ,  are also shown. The 

strongest relationship between random variables for variant 

V2 and patterns X3.1-Y3.1 is observed. The lower mean 

distances nnyd ,  for V2 compared to V1 imply lower forecast 

errors. 

The distance ratio rd for the analyzed load time series, 

patterns X3.1-Y3.1, Euclidean distance and variant V1 was 

equal to zero in 11% of cases. Its mean value was 3.07 and the 

standard deviation was 3.10. For variant V2 these statistics 

were: 16%, 1.79 and 1.34, respectively. The empirical 

cumulative distribution functions of rd are shown in Fig. 12. 

As we can see again, the variant V2 provides a stronger 

relationship between random variables.    

The average values and standard deviations of the indices rs 

expressing the stability of the relationship between loads 

represented by the x- and y-patterns ( = 1) in Table V are 

shown. The sr  value is calculated as a mean of rs values for 

the nearest neighbors of xi representing particular day of a 

week. In variant V2 the nearest neighbors are selected among 

x-patterns of the same day type as xi, whilst in V1 they are 

selected among all x-patterns. In variant V2 compared to V1 

the significant reduction of rs dispersion can be noted when x- 

and y-patterns represent days: Tue-Wed, Wed-Thu, Thu-Fri, 

Fri-Sat and Sat-Sun.  

  
Fig. 10. The shapes of the daily load curves of Wednesdays in summer and 

winter seasons.  

  
 
Fig. 12. The cumulative distribution functions of rd.  

   
 
Fig. 11. The degrees of polynomials approximating the shapes of the load 

curves in 2009.  

 

TABLE IV 

STATISTIC VALUES FOR SAMPLE INCLUDING THE NEAREST NEIGHBORS OF 

X-PATTERN 

Patterns Variant 2 V  nnxd ,  nnyd ,  

X3.1–Y3.1 
V1 1583 0.20 0.34 0.13 0.53 

V2 2425 0.25 0.62 0.16 0.38 

X1.1–Y1.1 
V1 588 0.12 0.21 0.05 0.19 

V2 1163 0.18 0.53 0.06 0.13 

X1.3–Y1.3 
V1 353 0.10 0.20 0.06 0.18 

V2 904 0.15 0.37 0.07 0.14 

 

TABLE III 
STATISTIC VALUES FOR SAMPLE (7) 

Patterns Distance 2 V  

X3.1–Y3.1 
Euclidean 1.04106  0.35 0.67 

Manhattan 9.88105 0.35 0.65 

X1.1–Y1.1 
Euclidean 7.25105 0.30 0.49 

Manhattan 6.87105 0.29 0.50 

X1.3–Y1.3 
Euclidean 8.32105 0.32 0.24 

Manhattan 7.97105 0.31 0.25 

 

5 10 15 20

0.8

0.9

1

1.1

Hour

x
i,t

 

 

18th June 1997

18th June 2003

17th June 2009

5 10 15 20

0.8

0.9

1

1.1

Hour

x
i,t

 

 

15th Jan 1997

15th Jan 2003

14th Jan 2009

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

r
d

F
(r

d
)

 

 

X3.1-Y3.1, V1

X3.1-Y3.1, V2

X1.1-Y1.1, V1

X1.1-Y1.1, V2

X1.3-Y1.3, V1

X1.3-Y1.3, V2

0 50 100 150 200 250 300 350
6

8

10

12

14

16

Day of the year

P
o
ly

n
o
m

ia
l 
d
e
g
re

e



 12 

Now we verify the pattern definitions in the task of the next 

day load curve forecasting for the Polish power system. The 

simple forecasting model is based on the k nearest neighbor 

method. The training set contains pairs of patterns (xi, yi) 

defined using functions from Tables I and II. The forecasting 

procedure is as follows: for the query pattern x* the k nearest 

neighbors representing the same day of a week are selected 

using the Euclidean distance. The forecasted y-pattern paired 

with x* is calculated from the formula: 

 





*)(

1
ˆ

x

yy
j

j
k

, (13) 

 

where (x*) is a set of indices of k x-patterns nearest to x* 

and representing the same day of a week as x*. 

The number of nearest neighbors k was equal to 5. The 

forecasting errors (MAPE) estimated using the leave-one-out 

cross-validation method are presented in Table VI. The best 

results (MAPE  2.00%) are bolded.  

The lowest errors for patterns X4 was achieved at high 

values of parameter a (linear scaling). The reduction of the 

number of x-pattern components using the method described 

in Section III leads to the error increasing (Fig. 13a). The 

nonlinear mapping of patterns X3.1 using sigmoid function (6) 

and discretization of the pattern components did not improve 

results as well. The PCA method allows to keep the same error 

levels at the reduction of the principal components up to 10 

(Fig. 13b).   

Taking into account the further information about the 

process history in functions defining patterns (i.e. loads of 

days i–1 and i–7 or mean loads of the weeks preceding the day 

i) we did not give such good results as taking into account 

current informations: loads of the i-th days (patterns X1.1, 

X2.1, X3.1, X1.3, Y1.1, Y1.3, Y2.1, Y2.3 and Y3.1). 

The diagrams of errors for each day of a week and hour of a 

day, when patterns are defined using different functions, in 

Fig. 14 are shown. Each diagram has seven rows 

corresponding to the week days (top row represents Monday, 

bottom row represents Sunday) and 24 columns corresponding 

TABLE V 

MEANS AND STANDARD DEVIATIONS OF rs 

Patterns Variant  
Day type represented by pattern xi – Day type represented by pattern yi 

Sun–Mon Mon–Tue Tue–Wed Wed–Thu Thu–Fri Fri–Sat Sat–Sun 

X3.1–Y3.1 

V1 
sr  1.180 1.033 0.987 0.988 0.993 0.978 0.897 

srs 0.042 0.046 0.041 0.041 0.043 0.048 0.050 

V2 
sr  1.183 1.035 1.003 0.999 1.002 0.927 0.890 

srs 0.040 0.047 0.021 0.032 0.027 0.028 0.019 

X1.1–Y1.1 
 

V1 
sr  1.182 1.033 0.984 0.988 0.993 0.978 0.895 

srs 0.041 0.048 0.042 0.040 0.042 0.050 0.043 

V2 
sr  1.183 1.037 1.002 0.998 1.003 0.925 0.888 

srs 0.040 0.052 0.020 0.036 0.025 0.025 0.018 

X1.3–Y1.3 

V1 
sr  1.185 1.033 1.004 0.987 0.982 0.963 0.893 

srs 0.045 0.045 0.021 0.044 0.046 0.049 0.028 

V2 
sr  1.187 1.036 1.005 0.995 1.000 0.927 0.889 

srs 0.036 0.052 0.017 0.036 0.031 0.025 0.019 

 

  
Fig. 13. The forecasting errors depending on the level of compression (a) and 

number of the principal components (b).  

 

TABLE VI 

ERRORS (MAPE) FOR DIFFERENT PATTERN DEFINITIONS 

 Y0 Y1.1 Y1.2 Y1.3 Y1.4 Y2.1 Y2.2 Y2.3 Y2.4 Y3.1 Y3.2 

X0 2.21 2.16 3.21 2.12 4.63 2.16 3.22 2.13 4.49 2.23 3.24 

X1.1 4.17 1.90 2.95 1.93 4.62 1.94 2.96 1.95 4.45 1.93 2.99 

X1.2 4.36 2.02 2.13 2.00 3.09 2.06 2.18 2.02 3.04 2.07 2.17 
X1.3 7.46 2.70 3.29 1.98 4.46 2.79 3.36 1.99 4.36 2.72 3.32 

X1.4 9.44 2.94 3.33 2.19 2.81 3.07 3.47 2.20 2.82 3.09 3.33 

X1.5 4.01 2.05 3.08 2.09 4.60 2.10 3.10 2.12 4.48 2.13 3.11 
X2.1 3.85 1.91 2.93 1.93 4.62 1.91 2.91 1.94 4.45 1.92 2.96 

X2.2 4.16 2.04 2.16 2.02 3.11 2.05 2.18 2.02 3.06 2.07 2.18 

X2.3 7.18 2.71 3.32 2.01 4.46 2.77 3.34 2.01 4.31 2.78 3.36 
X2.4 8.84 2.88 3.28 2.18 2.87 2.99 3.37 2.19 2.82 3.05 3.30 

X2.5 3.90 2.08 3.10 2.11 4.62 2.10 3.11 2.13 4.50 2.14 3.12 

X3.1 4.14 1.92 2.99 1.91 4.67 1.96 3.00 1.93 4.49 1.92 3.01 
X3.2 4.39 2.05 2.18 2.00 3.08 2.09 2.24 2.01 3.03 2.09 2.17 

X4 3.90 2.07 3.10 2.11 4.62 2.09 3.11 2.12 4.50 2.14 3.11 
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to the hours of a day. The black elements in the diagrams 

indicate the lowest errors. For example, if we want to know 

which patterns allow us to forecast the load at hour 1 on 

Monday with the lowest error, we find the diagram having the 

black element in the position: row = 1 and column = 1. In our 

case this diagram corresponds to patterns X3.1 and Y2.1 (it 

lies at the intersection of patterns X3.1 and Y2.1). The dark 

gray elements in the diagrams indicate errors greater than the 

lowest one for this day and hour by no more than 5%, and 

light gray elements indicate errors greater than the lowest one 

at least 5% and no more than 10%. White elements indicate 

errors that exceed the minimum error more than 10%. For 

example, patterns X2.1 and Y3.1 give good forecasts at hour 1 

on Monday (diagram for these patterns has dark gray element 

in the position 1, 1), patterns X4 and Y1.1 give worse 

forecasts for this case (light gray element in the position 1, 1), 

and patterns X2.3 and Y2.1 give errors higher than 10% than 

the best model for this case (white element in the position 1, 

1).  

From Fig. 14 it can be seen which are the best pattern 

definitions for the load forecasting at given day of a week and 

hour of a day. For example, the lowest errors for the noon and 

afternoon hours on Saturdays were achieved using patterns X0 

and Y0. The lowest errors for the same hours on Wednesdays 

and Thursdays were achieved using patterns X3.1 and Y3.1. 

For last hours on Sundays patterns X3.1 and Y1.3 have 

brought best results. Models using patterns Y1.4 and Y2.4 

generated the largest errors for each day type and hour 

regardless of the x-pattern definition (note only white 

elements in the diagrams corresponding to these y-patterns). 

VI. CONCLUSIONS 

STLF is an important problem in the daily operation of power 

systems. Accurate forecasts lead to improve the power system 

security and cost savings as well. For these reasons, many 

researchers are making efforts to construct forecasting models 

which are more and more accurate. This is not a simple task 

given that the load time series exhibit many seasonal 

variations as well as trend. 

In this article we describe principles of the pattern 

similarity-based methods of STLF. The patterns carry 

information about the shape of the daily load curve and allow 

us to simplify the forecasting problem reducing or eliminating 

non-stationarity and filtering trend and seasonal cycles longer 

than the daily cycle. Several pattern definitions are proposed. 

The best definitions for the given time series depend on its 

specificity, forecast period and horizon. In the experimental 

part of the work we test pattern definitions in the STLF 

problem using Polish power system data. The lowest errors 

were achieved when using patterns defined with variables 

describing process in the nearest past. In this case the current 

variability of the process is included into patterns. The way in 

which the output (forecast) patterns are defined provides the 

ability of decoding: from the forecasted pattern to the 

forecasted actual loads. 

The PSBFMs are based on the assumption that if the input 

patterns representing the time series elements in the periods 

preceding the forecast periods are similar to each other, then 

the forecast patterns paired with them and representing the 

forecast periods are similar to each other as well. The 

assumption means that the neighboring input patterns and the 

forecast patterns paired with them stay in a certain relation, 

which does not change significantly in time. The forecast 

accuracy depends on the stability of this relation. The 

relationship is strengthened when learning sample contains 

patterns representing the same day of a week as the query 
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Fig. 14. The diagrams showing the error levels for each day of a week and hour of a day. 
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pattern. The strength of the relationship is also affected by an 

appropriate definition of input and forecast patterns, selection 

of the representative learning examples and elimination of 

outliers. The statistical analysis proposed in this work allow us 

to evaluate the validity of the assumption and strength of the 

relationship between input and forecast patterns for a given 

time series. If the results of this analysis are positive, like for 

the Polish power system data, the sense of construction and 

using  PSBFMs is justified. 

Note that the time series associated with electricity demand 

represents different “hard” time series expressing multiple 

seasonal variations. Thus the proposed approach of forecasting 

can be applied not only to STLF but also to other forecasting 

problems: economical, business, industrial, meteorological etc. 

Using patterns we can construct not only similarity-based 

models but also other forecasting models, e.g. based on the 

classical statistical methods like linear regression or machine 

learning methods such as neural networks [19] and decision 

trees [20].  
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