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Abstract—Models for the short-term load forecasting based on 

the similarity of patterns of seasonal cycles are presented. They 

include: kernel estimation-based model, nearest neighbor 

estimation-based models and pattern clustering-based models 

such as classical clustering methods and new artificial immune 

systems. The problem of construction of the pattern similarity-

based forecasting models and the elements and procedures of the 

model space are characterized. Details of the model learning and 

optimization using deterministic and stochastic methods such as 

evolutionary algorithms and tournament searching are 

described. Sensitivities of the models to changes in parameter 

values and their robustness to noisy and missing data are 

examined. The comparative studies with other popular 

forecasting methods such as ARIMA, exponential smoothing and 

neural networks are performed. The advantages of the proposed 

models are their simplicity and a small number of parameters to 

be estimated, which implies simple optimization procedures. The 

models can successfully deal with missing data. The increased 

number of the model outputs does not complicate their structure. 

The local nature of the models leads to their simplification and 

accuracy improvement. The proposed models are strong 

competitors for other popular univariate methods, which was 

confirmed in the simulation studies.  

 
Index Terms—Artificial Immune Systems, Nonparametric 

Regression, Short-Term Load Forecasting, Similarity-based 

Methods 

 

I. INTRODUCTION 

HE importance of the short-term load forecasting (STLF) 

in the power system control, scheduling and security 

translates into a large number of forecasting models. In the last 

few decades various forecasting methods have been proposed. 

They can be generally divided into conventional and 

unconventional methods. Conventional STLF models use 

regression methods, smoothing techniques and statistical 

analysis. Regression methods, linear and nonlinear, parametric 

or nonparametric, are usually applied to model the relationship 

between load consumption and other factors (weather, day 

type, customer class). Examples of semi-parametric additive 

models were recently presented in [1], whilst the 

nonparametric model using kernel estimators was presented in 

[2].  

Gross and Galiana in their review paper [3] consider two 

basic conventional STLF models: time-of-day models and 

dynamic models. The former defines the load as a linear 

combination of a finite number of explicit time function, 

usually sinusoids with a period of 24 or 168 h. The latter take 

into account the most recent behavior of the time series and 

also exogenous variables and random component. Dynamic 

models are of two basic types: autoregressive moving average 

(ARMA) and state-space models. These approaches are used 

successfully up to today. Some examples such as ARIMA, 

exponential smoothing and the structural time series models 

are presented in the first part of this work [4]. Nowadays the 

conventional methods are often hybridized with new 

computational intelligence methods. As an example a new 

self-organizing model of fuzzy autoregressive moving average 

with exogenous input variables proposed in [5] can be given. 

In this approach a combined use of heuristics and evolutionary 

programming scheme is relied on to solve the problem of 

determining optimal number of input variables, best partition 

of fuzzy spaces and associated fuzzy membership functions. 

Good overview of the autoregressive moving average and 

other statistical approaches to modeling and forecasting 

electricity loads and prices can be found in [6]. Some 

conventional approaches to load forecasting such as static and 

dynamic state estimation are described in book [7].    

The rapid development of computational intelligence 

observed in recent years has brought new methods of STLF. 

They are based on artificial neural networks (ANNs), fuzzy 

logic and expert systems. Also intelligent searching methods, 

such as evolutionary algorithms and swarm intelligence, are 

often applied to optimize the STLF models. 

The multilayer perceptron (MLP), ANN which is most 

often applied in load forecasting, is an attractive tool to 

modeling of nonlinear problems due to their universal 

approximation property. Its other useful properties are: 

massive parallelism among a large number of simple units, 

learning capabilities, robustness in the presence of noise, and 

fault tolerance. Many forecasting models based on the MLP is 

used in practice by electric companies. An example would be 

ANNSTF system, which uses  more than 40 companies from 

the U.S. and Canada [8]. Examples of some new publications 

on the use of MLP in STLF are: [9], where the complexity of 

MLP applied to STLF problems has been controlled by the 

Bayesian approach, [10], where a new hybrid forecasting 

method composed of wavelet transform, MLP and 

evolutionary algorithm is proposed, [11], where a generic 

framework that combines similar day selection, wavelet 

decomposition, and MLP is presented, [12], where MLP is 
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combined with wavelet transform and particle swarm 

optimization, [13], where an approach of MLP with rough sets 

for complicated STLF with dynamic and non-linear factors is 

proposed, and [14], where the neural model generates the 

prediction intervals. 

A radial basis function (RBF) network is an alternative to 

MLP in STLF. The RBF network approximates the target 

function by a linear combination of radial functions (usually 

Gaussian), which nonlinearly transform the input data. The 

learning algorithms for RBF are simpler than for MLP. The 

RBF network has a property of universal approximation. Some 

new publications concerning the STLF models based on the 

RBF network are: [15], where RBF is combined with fuzzy 

inference system and genetic algorithm, [16], where a model 

to STLF is established by combining the RBF network with 

the adaptive neural fuzzy inference system and [17], where 

RBF is combined with the wavelet transform.   

A self-organizing feature map (SOFM) is an another ANN 

used in STLF. This network is trained using unsupervised 

competitive learning to produce a low-dimensional 

representation of the input pattern space. The input patterns 

are grouped and represented by neurons. Some examples of 

STLF models using SOFM are: [18], where a hierarchical 

model composed of two SOFM is presented, [19], where an 

adaptive two-stage hybrid network with SOFM and support 

vector machine is proposed, [20], where SOFM is combined 

with MLP and a flexible smooth transition autoregressive 

model, and [21], where nonlinear model based on SOFM and 

predictors determined using curvilinear component analysis is 

described.  

Many other types of neural networks have been used for 

STLF including: recurrent networks, generalized regression 

ANN [22], probabilistic ANN, adaptive resonance theory 

ANN, functional link network and counterpropagation ANN. 

The survey of ANN applications to STLF can be found in [23] 

and [24].  

Fuzzy logic allows to take into account imprecise, 

incomplete and ambiguous information in the STLF models. 

Fuzzy models are often simpler and more accurate than 

standard statistical models and allow to enter input 

information by rules formulated verbally by experts. The 

advantage of fuzzy inference systems is that they describe the 

behavior of complex systems by using linguistic expressions, 

mimicking the action of man. The fuzzy rule base consists of 

if-then statements that are almost natural language. To obtain a 

set of if-then rules two approaches are used. First, 

transforming human expert knowledge and experience, and 

second, automatically generating the rules from examples. The 

fusion of neural networks and fuzzy logic in neuro-fuzzy 

models achieves readability and learning ability (extracting 

rules from data) at once. The fuzzy inference mechanism leads 

to a nonlinear global model, which is an interpolation of local 

models implemented in the individual rules. The fuzzy STLF 

models are based on: fuzzy interpolation [25], fuzzy linear 

regression [26], fuzzy C-regression [27], Takagi-Sugeno-Kang 

model [28],  fuzzy inductive reasoning [29] and neuro-fuzzy 

networks. The main advantages of the latter hybrid approach 

are: the ability to respond accurately to unexpected changes in 

the input variables, the ability to learn from experience, and 

the ability to synthesize new relationships between the load 

demand and the input variables. Examples of such STLF 

models are: [30], where the neuro-fuzzy system is used to 

adjust the results of load forecasting obtained by RBF 

network, [31], where two neuro-fuzzy networks are proposed: 

a wavelet fuzzy neural network using the fuzzified wavelet 

features as the inputs and fuzzy neural network employing the 

Choquet integral as the outputs, [32], where an efficient 

adaptive fuzzy neural network is proposed which can reduce 

its complexity removing the unneeded hidden units, [33], 

where an integrated approach which combines a self-

organizing fuzzy neural network learning method with a 

bilevel optimization method, [34] where a neuro-fuzzy system 

working on the seasonal cycle patterns is proposed, and [35], 

where fuzzy logic is combined with wavelet transform and 

neural network. 

Another useful tools for STLF are: support vector machines 

[36], [37], [38], clustering methods [19], [20], [39] and 

ensembles of models [40], [41], [42]. An interesting approach 

which can be classified as the similarity-based one is 

presented in [43]. It uses the clustering of the normalized daily 

curves for definition new inputs: sequences of the group labels 

for the successive days. The sequences are paired with load 

curves of the next days. The forecast is composed from the 

daily curves paired with the sequences from the history which 

are the same as the current sequence. Another interesting 

similarity-based model for STLF is described in [44]. The 

forecast is calculated as the a weighted average of past daily 

load segments, the shape of which is similar to the expected 

shape of the load segment to be predicted. 

It is noteworthy that many of the models developed in 

recent years are hybrid solutions (most papers concerning 

STLF published in IEEE Transaction on Power Systems in the 

last 10 years relate to just such models). These approaches 

combine data preprocessing methods (e.g. wavelet transform) 

with approximation models (such as neural and neuro-fuzzy 

networks) and methods of optimization and learning of these 

models (e.g. evolutionary and swarm algorithms). Sometimes 

forecast is adjusted depending on additional factors affecting 

the load demand and not included in the basic model. 

This paper presents the univariate STLF models based on 

similarities between patterns of the daily cycles of the load 

time series. The principles of the models were described in the 

first part of this work [4]. The main advantage of the pattern 

similarity-based forecasting models (PSBFMs) is their 

simplicity: they have a clear structure and comprehensible 

principles of operation. The number of parameters is low and 

the optimization and learning procedures are fast.   

The remainder of this paper is divided into seven sections. 

The problems of construction of the PSBFMs in Section II are 

presented. In Section III–V the STLF models based on pattern 

similarity including non-parametric regression methods and 

clustering methods are presented. In Section VI we analyze the 

proposed forecasting methods and we compare the results to 

other STLF methods: ARIMA, exponential smoothing and 
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MLP. An overview of the work is given in Section VII.  

II. CONSTRUCTION OF PSBFMS 

The forecasting models considered in this work are 

memory-based inductive approximation models which learn 

the relevant relationships between variables on the basis of 

observed instances. Instances (examples or samples) are pairs 

of x- and y-patterns extracted from the load time series using 

the functions fx and fy (see Section III in [4]). Instances form 

the series S = {(x1, y1), (x2, y2), …, (xN, yN)}, i = 1, 2, …, N, xi 

 X = ℝn
, yi  Y = ℝn

, where X and Y are domain and 

codomain, respectively. The goal is to approximate the vector-

valued function g : X  Y. We can decompose this problem by 

treating the vector-valued function as vectors of scalar-valued 

functions and approximating these functions separately: gt : X 

 Yt = ℝ, t = 1, 2, …, n. We expect that the model generates 

approximating function f(x,),   , where  is a set of 

acceptable values of parameters , which approximates 

accurately the unknown (seen only by the examples) target 

function g or gt. In the proposed PSBFMs the regression 

function has the nonparametric form m(x) (see (5)).    

The optimal model is selected during searching the model 

space, which is a combination of the following elements and 

procedures: 

 

),(),,(),,(),,({ xxx selszfzfM bayx   

)}(),(),(),,(),(, MOMQmwL ba xxxLL , (1) 

 

where:  

fx(z,), fy(z,) – functions which map the original time series 

elements {zt} into x- and y-patterns, respectively, 

s(xa,xb) – the pattern similarity function, 

sel(x) – the feature selection procedure,     

L – the training sample to estimation of the model parameters, 

L(L) – the learning mode, which determines how the elements 

of the learning sample are used during learning to 

estimate the generalization error (e.g. cross-validation, 

bootstrap), 

w(xa,xb) – the weighting function, which gives the weights to 

patterns according to their similarities to the query 

pattern, 

m(x) – the nonparametric regression function, 

Q(M) – the measure of the model quality, 

O(M) – the optimization procedures. 

The functions defining patterns and the similarity measures 

are described in Section III of the first part of this work [4].  

The aim of the feature selection is to reduce the 

dimensionality of the x-pattern vector by elimination of 

irrelevant, redundant and unpredictive components. The x-

pattern composed with selected features should ensures the 

best quality of the learning model. The dimensionality 

reduction is related to the curse of dimensionality problem. It 

concerns especially similarity-based methods, where we infer 

about the target function based on the neighborhood of the 

query pattern. There are many manifestation of this problem 

[45]. For example in high dimensions data points are closer to 

the boundary of the sample space than to any other data point, 

so the prediction is much more difficult. It requires 

extrapolation from neighboring sample points rather that 

interpolate between them. Another problem is that in high 

dimensions the training samples sparsely populate the input 

space. Their density is proportional to N
1/n

. The distance 

between the closest points increases, and the distances 

between all pairs of points are similar. The function 

complexity can grow exponentially with the dimension, and if 

we want to estimate the function with high accuracy we need 

the size of training set to grow exponentially as well. In STLF 

the x-pattern size n is 24, 48 or 96 for hourly, half-hourly or 

quarter-hourly load time series, respectively. Meanwhile, the 

length of the time series is limited to the period of several 

years, which gives the size of the learning sample N of 

hundreds or thousands instances. This is insufficient. Since the 

acquisition of additional samples is unreal, the solution is to 

reduce the dimension of vector x. But it should be noted that 

the components of x-patterns are highly correlated which 

means that in the input space there are regions with greater 

density and regions which are empty. This reduces 

unfavorable phenomenon of the curse of dimensionality and 

enables to approximate the function locally in the denser 

regions with greater accuracy.  

The measure of the space filling by a set of random points 

can be a fractal dimension. Among many different types of 

fractal dimensions we choose the correlation dimension [46], 

which is based on the correlation integral defined according 

to: 

 

 





N

ji

ji
N

drH
N

rC
1,

2
),(

1
lim)( xx , (2) 

 

where H(.) is the Heaviside step function, r is the radius and 

d(.,.) is the distance between two points. 

C(r) is proportional to the total number of pairs of points 

closer then r to each other. For small r the correlation integral 

grows like a power: C(r) ~ r
ν
, and ν is interpreted as the 

correlation dimension. If the number of points is sufficiently 

large a log-log graph of the correlation integral versus r will 

yield an estimate of ν. For the hourly load time series of the 

Polish power system the correlation dimension was 2.01 (X3.1 

patterns were used – see Section III in [4]), whilst for the 

random points distributed uniformly in the same region ν = 

7.59. 

Another simple measure of the space filling is proposed: 

the length of the transition path at all points, wherein each 

point is visited once and the next step is performed to the 

unvisited nearest neighbor. This path was three times longer 

for points uniformly filling the space than for points 

representing x-patterns for the Polish power system regardless 

of the starting point. 

The shorter path and smaller correlation dimension indicate 

that the intrinsic dimension of the set of x-pattern is less than 

24. Feature selection procedure can reduce dimensionality as 
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well as feature extraction methods such as principal 

component analysis. In the experimental part of this work the 

genetic algorithms and tournament searching method [47] are 

used as wrappers to the feature selection. 

Next element of model (1) is the learning sample. In [4] it 

was shown that the properties and performance of PSBFMs 

are better when the learning sample contains patterns 

representing the same day of a week as the query pattern. In 

the proposed approach for each forecasting task, i.e. 

forecasting the daily load curve of the day i+ or, after 

decomposition, load at the time t of this day, the individual 

model is learned and optimized. This allows to fine-tune the 

model to the specifics of this task.  The learning sample in this 

case includes pairs of patterns representing the same days of a 

week from the history as the query instance (xi, yi): L = {(xj, 

yj)}, j = i–7q, i–7(q–1), …, i–7, where q = (i–1)/7. The 

outliers are removed from the training set.  

To estimate the generalization error in the learning and 

optimization processes the leave-one-out cross-validation 

(LOO) is used. This procedure can be applied in two local 

versions. In the first case (LOO-v1) the validation samples are 

chosen one by one from the set of nearest neighbors of the 

query pattern. We do not need to learn the model for each 

training sample but only for some samples from the 

neighborhood of query x-pattern. Thus we gain savings in 

computation time and more accurate fitting of the model in the 

neighborhood of the query pattern. In the second local version 

of leave-one-out (LOO-v2) we determine the error for each 

training point (global LOO) and we estimate the 

generalization error averaging these errors with the weights v 

dependent on the distance between training points and the 

query point: 

 










N

j

j

N

j
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v
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APE is the absolute percentage error, x* is the query pattern, 

d(.,.) is the distance function and  controls the width of the 

Gaussian function (4). 

Equation (3) expresses the weighted mean absolute percentage 

error. (MAPE is traditionally used as an error measure in 

STLF.)        

The regression function m(x) in (1) has the nonparametric 

form:  

 





N

j

jjwm
1
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The weighting function w(x,xj) is dependent on the similarity 

or distance between patterns x and xj. Usually its value 

decreases monotonically with the distance and 
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j

jw
1
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Forms of the weighting function are described in the next 

sections.     

The quality measures of the model Q(M) are mainly based 

on the error which is minimized in the training process 

(MAPE here). They can also include a component related to 

the model complexity. Typical examples of such a measure are 

the Akaike or Bayesian information criterions.    

The goal of the model optimization process is to find its 

structure and parameter values to get the minimum of the 

objective function measuring the model quality. The 

optimization procedures O(M) are dependent on the model 

parameters and the objective function character. Most 

preferably is to optimize the model in the space of all 

parameters, but usually it is unrealistic because of the different 

types of these parameters (continuous, integer, binary, 

enumeration), the huge size of the space and multimodality of 

the objective function. The solution is the decomposition of 

the optimization problem into subproblems, each of which 

includes some subset of the parameters. These subproblems 

are solved alternately or one by one. This approach leads to 

the local optimum,  rarely to the global one.  

The proposed PSBFMs have few parameters, which is their 

great advantage. To optimization of these models the 

exhaustive search method is even possible after discretization 

of the continuous parameters. In the experimental part of this 

work evolutionary algorithms and tournament searching 

methods are used as well. Their advantage is the ability to 

simultaneously optimization of the parameters of different 

types (continuous and discrete) and the global optimization 

property. The implementation details of this algorithms are 

described later in this work. 

III. KERNEL ESTIMATION-BASED MODEL 

The kernel methods are characterized by flexibility in the 

estimation of the regression function m(.). This flexibility is 

due to the local nature of fitting of the simple regression 

models. The most popular estimator from this group is the 

Nadaraya-Watson estimator (N-WE): 
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where K(.,.) is a kernel function and h is a bandwidth . 

When we put vector yj in (7) instead of scalar yj we get a 

vector valued function like (8). In the experimental part of this 
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work we use both: scalar yj getting MISO model and vector yj 

getting MIMO model.  

For multidimensional input variables the kernels are 

expressed using a multidimensional product kernel function. 

In this case the estimator is defined as: 
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The selection of the kernel function form is not as important as 

the selection of its bandwidth. We choose a normal kernel and 

the estimator is now of the form: 
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Estimator (8) is a linear combination of vectors yj (or scalars 

yj,t in scalar-valued version of the model) weighted by the 

normalized kernel functions (to satisfy constraint (6)) which 

nonlinearly map the distance between patterns x and xj. The 

greater the distance the lower the weight. The distance is 

parameterized by the bandwidths. The parameter ht 

strengthens or weakens the share of the t-th component of x in 

the distance. This is an analogy to the weighted feature 

selection where weights are not binary but continuous. The 

bandwidth values decide about the bias-variance tradeoff of 

the estimator. Too small bandwidth values result in 

undersmoothing, whereas too large values result in 

oversmoothing. Thus the selection of the bandwidth values is 

a key problem. The simplest way is to adopt the h values from 

the formula proposed by Scott [48] for the normal product 

density estimators: 

 

4

1




 n
t

S

t Nh 


, (10) 

 

where t


 is the standard deviation of the t-th component of x 

estimated from the learning sample.  

The next step is to search the neighborhood of the point  

h
S
 = [

Sh1  
Sh2  … 

S

nh ] to adjust the bandwidths to our problem. 

The simplest method is the iteration process where the h 

vectors are generated according to the scheme: 

 
S

ll a hh  ,    l = 1, 2, ..., (11) 

 

where al = a0+(l–1), a0  ℝ+
  1,  is the step defining the 

density of search. 

The final value of l results from the stop criterion such as L 

iterations without improvement in results. This grid method 

(GM) is sub-optimal and searches sets of discrete values of the 

components of h. The multi-dimensional optimization 

problem is here replaced with a simple one-dimensional 

optimization problem (searching of a value instead of h1, h2, 

..., hn). 

To the individual, independent tuning of each bandwidth 

the evolutionary algorithm (EA) and the tournament searching 

(TS) are used. In EA the vectors h are individuals. The 

population of individuals is initialized by the Scott's rule (10). 

The evolutionary process consists of mutation, recombination 

and selection. The mutation operator adds to each component 

of h the random disturbance  from the normal distribution 

with mean zero and standard deviation:    

   

ttt hh  ,    t = 1, 2, ..., n, (12) 

 

The standard deviation  determines the mutation range 

(diversity of mutants). It is assumed that t = w
S

th , where  

w = const  ℝ+
. Thus the mutation range in the t-th direction 

is dependent on the initial value of ht, i.e. on the variance of xt. 

The arithmetic recombination (intermediate) [49] was 

applied. This operator produces two new individuals by taking 

two linear combinations of the parent individuals which are 

selected by random: 

 

)( ,,,, tatbtata hhchh  ,     (13) 

)( ,,,, tbtatbtb hhchh  ,     (14) 

 

where c ~ U(0,1), t = 1, 2, …, n. 

As a selection operator the tournament selection was applied 

[49]. The tournament size Ts determines the selection pressure. 

To save the best solution the elitist strategy was used: the best 

individual in the population is copied to the next population. 

The EA parameters are: the population size, the number of 

generations, the tournament size, probability of mutation and 

probability of recombination. 

The TS method has been proposed in [47] to feature 

selection problem as an alternative to the more complex 

combinatorial optimization algorithms such as genetic 

algorithm and simulated annealing. In application to the 

continuous optimization problem of estimation of the 

bandwidth values it is redefined and labeled as TSc. The TSc 

explores the solution space starting from h
S
 determined by the 

Scott's rule and generating new solutions by perturbing it. 

When the set of new l candidate solutions {h1 h2 … hl} is 

generated (l is called the tournament size), their costs are 

calculated using the learning model. The best candidate 

solution (the tournament winner), with the lowest value of the 

cost function is selected and it replaces the parent solution, 

even in case it is worse than the parent solution (this prevents 

getting stuck in local minima). The only operator is the move 

operator which is identical to the mutation operator (12). The 

standard deviation of mutation  and the tournament size l 
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decide about the exploration/exploitation properties of the 

algorithm. If the tournament size is equal to 1, this procedure 

comes down to the random walk. On the other hand, when l 

increases the neighborhood of the parent solution is sampled 

densely (local searching) and this method becomes more 

greedy.  

The TS method in binary version (TSb) [47] was applied to 

the selection of the x-pattern components. The solution is 

represented by a binary vector composed of bits corresponding 

to n components of x: b = [b1, b2, …, bn]. The bit value 

indicates whether the component is selected (1) or not (0). The 

starting solution is initialized by random. The move operator 

generates l  {1, 2, …, n} candidate solutions by switching 

the value of the randomly chosen bit (different for each 

candidate solution) of the parent solution. For l = 1 we get a 

random walk, and for l = n we get a hill climbing procedure. 

The former has a global search property, the latter is the local 

deterministic search method. The tournament size decides 

about the exploration/exploitation properties, as in the case of 

TSc. The best candidate solution replaces the parent solution 

in the next generation. 

To the component selection the genetic algorithm (GA) and 

two deterministic suboptimal methods: sequential forward 

selection (SFS) and sequential backward selection (SBS) [50] 

are also used. The solution representation in all these 

algorithms was the binary vector b, the same as in TSb. The 

GA consists of the bit-flip mutation, one-point crossover and 

tournament selection. 

Results of the bandwidth optimization and selection of the 

x-pattern components are obviously dependent on each other. 

For simultaneous optimization of the model in these two 

spaces the algorithm based on TS is proposed (labeled as 

TScb). The algorithm processes two connected vectors: b 

encoding binary the selected components, and h encoding the 

bandwidths. The vectors b and h are initialized as in TSc and 

TSb, respectively. There are two types of the move operator: 

one for the b vector and second for the h vector. The former is 

the same as in TSb. The latter has form (12), wherein only 

these components of h are modified which correspond to 1s in 

the paired b vector. The tournament size is l  {1, 2, …, n}. 

The best candidate solution becomes the parent solution in the 

next iteration. 

IV. NEAREST NEIGHBOR ESTIMATION-BASED MODELS 

The nearest neighbor estimate m(x) is defined as the 

weighted average of the response variables in a varying 

neighborhood of x. This neighborhood is defined through 

those x-patterns which are among the k nearest neighbors of 

the query pattern. The value of k determine  the number of 

pattern from which the regression function is constructed 

(these patterns are called the construction patterns). If the 

response and explanatory variables are vectors the k-NN 

estimator is defined as: 
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where v(x,xj) is the weighting function of the form: 
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j  k(x), k(x) is the set of the k nearest neighbors of x, x
k
 is 

the k-th nearest neighbor of x, p  [0, 1] is a parameter that 

controls the degree of differentiation of weights,   –1 is a 

parameter that controls the convexity of the function.  

For p = 1 the weights are the most diverse, for p = 0 all 

weights are the same, equal to 1. When  = 0 the weighting 

function (16) is linear, when  > 0 it decreases more rapidly 

than a linear function, and when  < 0 it decreases slower than 

a linear function. The weighting function is shown in Fig. 1.   

The number of the nearest neighbors k is a parameter 

controlling the degree of smoothing. It performs a similar 

function to the bandwidths in the N-WE. When k = 1, the 

regression function is a step function exactly fitted to the 

learning points. Increasing k leads to smoothing the regression 

function, which implies an increase in the bias and the 

reduction in variance of the model. The k-NN estimator gives 

the regression function, which is less smooth than in the case 

of the Gaussian kernel estimation. It is discontinuous:  in the 

points where the set of the nearest neighbors is modified the 

jumps on the function graph appear.   

In the N-WE the kernel functions are stretched over each 

learning point. This gives the opportunity to decide about the 

influence of individual points on the shape of the regression 

function. In the nearest neighbor estimators the weighting 

function is one, stretched over the query point. Thus there is 

no possibility of such a flexible control of the impact of the 

individual points on the regression curve. Moreover the 

number of the construction points are limited to k. 

In the above-described approach the neighborhood of the 

 
 
Fig. 1. The weighting function (16) for  = 0 - solid line,  = 5 - dashed line,  

 = -0.8 - dotted line, p = 1 - black, p = 0.25 - gray. 
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query point include the k nearest neighbors. In [51] a fuzzy 

membership of the learning points to the neighborhood of the 

query point was introduced. In this case, each learning point 

belongs to this neighborhood but with a different degree. The 

number of the construction points is equal to the learning 

sample size N. The weighting function has a form of the 

membership function, e.g.: 
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where  and  are parameters controlling the shape of the 

function (see Fig. 2).  

These functions have a maximum in d(x, xj) = 0. 

Membership function (17) is a Gaussian-type function 

whereas (18) is a Cauchy-type function with fatter tail than the 

Gaussian function, which provides a greater influence of the 

more distant points on the regression curve. 

The forecasting models based on nearest neighbor 

estimators are characterized by a small number of parameters. 

There are only three parameters in the k-NN model: k, p and . 

The values of these parameters can be estimated in a grid 

search procedure for k = 1, 2, …, kmax, p = 0, , 2, …, 1,  

 = 1, 2, …, m. In fuzzy neighborhood models (FNMs) there 

are two parameters:  and , which can be estimated in the 

same way. In [51] to the estimation of these parameters two 

local optimization methods were used: the Nelder–Mead 

simplex method and quasi-Newton method. To increase the 

probability of finding global minima the multistart was used. 

The components of the vectors x can be selected using the 

same methods as for the N-WE. In [51] to component 

selection for the FNM the weighted feature selection was 

applied, where the importance of the components were 

expressed using not binary weights but continuous ones from 

the range of [0, 1]. The distance measure in (17) and (18) is 

based on the components of x multiplied by the corresponding 

weights. To estimation of the weights two methods were used: 

the (, ) evolution strategy and the evolutionary algorithm 

with the continuous representation, Gaussian mutation, 

uniform crossover and tournament selection. 

For the simultaneous search of the feature space and the 

width parameter space (k or ) a combination of the TSb and 

the grid search is proposed. Each solution b representing the 

selected components of x is evaluated for each value of the k 

or  from the assumed range ( is discretized). The best score 

and the width parameter value at which it was achieved are 

assigned to the solution b. The solutions are modified using 

the move operator for TSb described above. The best solution 

among l candidate solutions replaces the parent solution. 

Instead of TSb other feature selection method can be applied 

in combination with the grid search. In Section VIA the SFS 

and SBS methods are used as well. 

V. PATTERN CLUSTERING-BASED MODELS 

The aim of clustering is to extract clusters of patterns 

representing similar shapes of the load curves. Grouping 

patterns allows to decrease in the number of construction 

patterns, which now represent the clusters of original patterns. 

This can lead to the reduction of the impact of errors affecting 

the data on the estimator accuracy, and improvements in 

generalization. Two forecasting procedures based on pattern 

clustering and two new approaches based on the artificial 

immune systems are described below. 

A. Forecasting Procedures 

In the first forecasting procedure (FP1) the paired vectors x 

and y are concatenated and form vector u = [x
T
 y

T
]

T
. When we 

forecast the daily load curve for the day type s (Monday, …, 

Sunday), the vectors u that include y-patterns for day s are 

selected and grouped. After the clustering phase, each cluster 

C is represented by a single vector m (prototype of a cluster), 

which has two parts corresponding to x- and y-patterns: mx 

and my. The prototype vector m is a point located inside the 

cluster. Its position depends on the clustering method. In the 

forecasting phase the query x-pattern is presented and it is 

assigned to the cluster i* represented by the closest prototype 

to the query pattern: 

 

),(minarg* ,
,...,2,1

ix
Ki

di mx


 , (19) 

 

where K is the number of clusters and mx,i is the x-part of the 

i-th cluster prototype. 

The y-part of the closest cluster prototype is the estimator 

m(x): 

 

*,)( iym mx  . (20) 

 

The forecasted y-pattern is the mean of y-patterns forming the 

nearest cluster. The number of clusters K is predefined or 

adjusted during the learning phase. If K = 1 this method comes 

down to the k-NN method with k = 1 and v(x, xj) = const. In 

this case the variance of the estimator is the highest and its 

bias is the lowest. Increasing of K causes the increasing in bias 

and decreasing in variance. Thus K should be chosen carefully 

to ensure a compromise between bias and variance. 

In the second forecasting procedure (FP2) inspired by [21] 

    

Fig. 2. The membership functions: Gaussian functions (a), Cauchy functions 
(b). 
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patterns x and y are grouped independently into K and L 

clusters, respectively. In the forecasting task for day type s the 

subset of the learning set is selected containing only these 

pairs (x, y) which include y-patterns representing day of type 

s. Patterns from this subset are grouped and two populations of 

clusters are created: Cx and Cy represented by the prototypes 

mx and my, respectively. After grouping the successive pairs 

(x, y) from the learning subset are presented, and the empirical 

conditional probabilities P(Cy,l|Cx,k) that the forecast pattern y 

belongs to cluster Cy,l, when the corresponding pattern x 

belongs to cluster Cx,k, are estimated. In the forecasting phase 

the x-pattern is assigned to the group Cx,i*. The forecasted y-

pattern paired with it is determined from the prototypes my 

weighted by the conditional probabilities P(Cy,l|Cx,i*): 

 








L

l

ixy,l

L

l

lyixly

CCP

CCP

m

1

*,

1

,*,,

)|(

)|(

)(

m

x , (21) 

 

where my,l is the prototype of the cluster Cy,l. 

The prototypes of these y-clusters have the largest share in 

mean (21), which probability of occurrence after observing the 

cluster Cx,i* including the query pattern is the highest. The 

number of clusters determine the bias and variance of the 

model as in FP1. 

The cluster prototypes determined in FP1 and FP2 are 

potential construction patterns. Note that in FP2 prototypes mx 

representing periods preceding the forecasted periods and 

prototypes my representing forecast periods are not paired as it 

was assumed for patterns x and y so far, but connected using 

conditional probabilities. 

The forecasting procedures are summarized in Algorithms 

1 and 2. 

The clustering method applied to FP1 and FP2 should return 

the prototype vectors m which represent groups of patterns in 

U, X or Y spaces. Many popular clustering methods can be 

used, e.g. k-means in crisp and fuzzy variants [39], self 

organizing maps and neural gas [52]. These algorithms belong 

to the sequential clustering or partitioning ones, where the 

measure of similarity between patterns and clusters are based 

on the distance measure d(x,m). The goal is to partition N data 

points into K disjoint groups so as to minimize the within-

cluster sum-of-squares criterion. In the next sections two new 

methods dedicated to STLF and based on the artificial immune 

systems are described. These methods use the forecasting error 

in the grouping phase. This distinguishes these methods from 

the mentioned above ones, and enables to adjust the prototype 

positions so as to minimize the forecasting error. 

B. Artificial Immune System AIS1 

AIS1 was proposed in [53] and operates according to FP1. 

The concatenated patterns x and y are represented by antigens 

(AGs) with epitopes u. Antigens are recognized by antibodies 

(ABs) which play a role of clusters. Epitopes correspond to 

antibody paratopes (cluster prototypes) which are constructed 

analogously to the epitopes: v = [p
T
 q

T
]

T
, where p  X = ℝn

 

corresponds to x-patterns, and q  Y = ℝn
 corresponds to y-

patterns. Unlike epitopes paratopes are modified during 

training. The paratope and epitope structure in Fig. 3 is shown.  

AB have the recognition regions or receptive fields 

represented by the n-dimensional hyperballs of radius r > 0 

with centers in the points p. The radius r is called the cross-

reactivity threshold. It is unchanging, fixed a priori and the 

same for each AB. The k-th AB can be seen as a pair (vk, r). 

The cluster represented by an AB includes those AGs, whose 

x-epitopes demonstrate the affinity for the p-paratope of this 

AB. The affinity depends on the distance between vectors x 

and p as well as the cross-reactivity threshold. 

In the training phase the immune memory is formed (i.e. 

the population of ABs) which represents a set of clusters 

covering the population of the learning AGs. The quality of 

this memory is measured using an average forecast error.  

In the forecasting phase an incomplete AG is presented 

having only the x-epitope (query pattern). It is recognized by a 

set of ABs from the immune memory which demonstrate the 

affinity for this AG. We can infer about the y-epitope of this 

AG on the basis of the q-paratopes of the activated ABs and so 

reconstruct it. 

The steps of AIS1 are presented in Algorithm 3 and 

described in detail below.       

Step 1. The training AG population contains AGs with y-

epitopes representing historical daily curves of the same day 

type as the forecasted day.  

Step 2. The AB paratopes are created by copying the 

epitopes of the training AGs: vk = uk, k = 1, 2, …, N. The 

1. Concatenation of the paired x- and y-patterns in 
the pattern z. 

2. Grouping of patterns z. 
3. Presentation of the query pattern x and assigning 

it to the nearest group (19). 

4. Reconstruction of the y-pattern paired with the 
query pattern based on the y-part of the nearest 

cluster prototype my (20). 

 
Algorithm 1: The first forecasting procedure (FP1). 

1. Independent grouping of patterns x and y. 
2. Estimation of the conditional probabilities 

P(Cy,l|Cx,k). 

3. Presentation of the query pattern x and assigning 
it to the nearest group (19). 

4. Reconstruction of the y-pattern paired with the 
query pattern based on the cluster prototypes my 

and probabilities P(Cy,l|Cx,k) (21). 

 
Algorithm 2: The second forecasting procedure (FP2). 

  
Fig. 3. The antigen and antibody structure in AIS1. 

0 10 20 30 40 50
0.8

0.9

1

1.1

Component

u
, 

v
 

 

part y (q)part x (p)



10 

 

starting AB population has the same size as the training AG 

population. The cross-reactivity threshold r is initiated by a 

constant.  

Step 3 and 5.2. The affinity of the k-th AB for the j-th AG 

depends on the distance between their paratope and epitope: 
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where a(pk, xi)  [0, 1]. 

It is assumed that if a(pk, xj) > 0 then the j-th AG is recognized 

by the k-th AB or the k-th AB is activated by the j-th AG. 

Affinity a(pk, xj) informs about the degree of membership of 

the j-th AG to the cluster represented by the k-th AB. The 

affinity is maximal when pk = xj. 

Step 4 and 5.3. For each AB the set  of AGs lying in its 

recognition region is determined (i.e. AGs having the nonzero 

affinity for this AB).  For each AG from the set  the forecast 

of the load curve encoded in the AG y-epitope on the basis of 

the AB q-paratope is determined and its error is calculated: 
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where: j  k, k is the set of AGs lying in the recognition 

region of the k-th AB, zj+,t is the t-th time series element in the 

forecast period i+ (load) encoded in the y-epitope of the j-th 

AG: ),( ,, jtjytj zfy  , ),( ,

1

jtky qf 
 is the inverse function 

for y-patterns (see  Section III in [4]) which returns the 

forecast of zj+,t on the basis of the k-th AB q-paratope and the 

variables  determined for the j-th AG epitope. 

The evaluation measure of AB is the average forecast error 

for all AGs lying in its recognition region: 
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Step 5. In the clonal selection loop successive populations 

of ABs are generated, which forecast the load curves encoded 

in the AG y-epitopes with the decreasing error. This loop 

include AB clonning, hypermutation, evaluation and the clonal 

selection. The stop condition is: there is no decreasing of the 

average forecast error in S successive iterations. 

Step 5.1.1. AB secrets as many clones as many AGs are in 

its recognition region. Thus in the dense AG clusters more 

clones are generated.     

 Step 5.1.2. The goal of the hypermutation is to modificate 

the AB paratopes to maximize their recognition and 

forecasting abilities. For a certain parent AB secreting clones 

the hypermutation results in a shift of each clone towards 

different AG lying in the receptive field of this AB. The 

greater error (23) for the j-th AG results in the greater shift of 

the clone towards this AG. New paratope of the j-th clone 

generated from the k-th AB after hypermutation is:  

 

)( kj

j

kk

j

k vuvv   , (25) 

 

where: j  k, 
j

kv  is the paratope of the clone secreted by the 

k-th AB and shifted towards the j-th AG, 
j

k  [0, 1) is the 

shift coefficient calculated from the sigmoid function: 
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 > 0 is the slope parameter and k,j ~ N(1, ). 

The value of the shift coefficient depends on the error k,j 

and takes higher values for larger k,j as well as . The random 

perturbation k,j with intensity regulated by  introduces a 

disturbance of the shift coefficient to prevent stagnation of the 

learning process due to trapping into the local minima of the 

error function. 

The shifts of clones are illustrated in Fig. 4. The clones are 

shifted in the paratope space from their initial position (at the 

parent AB) towards the AGs. As we can see the hypermutation 

generates new clones inside the region of the cluster 

Training (immune memory creation) 

1. Loading of the training population of antigens. 

2. Generation of the initial antibody population. 

3. Calculation of affinity of antibodies for 

antigens. 

4. Evaluation of antibodies. 

5. Do until the stop criterion is reached (clonal 

selection loop). 

5.1. Do for each antibody. 
5.1.1. Clonning. 
5.1.2. Clonal hypermutation. 

5.2. Calculation of affinity of clones for 

antigens. 

5.3. Evaluation of clones. 
5.4. Clonal selection. 

Test 

6. Antigen presentation with x-epitope and 

detection of the activated antibodies. 

7. Reconstruction of the y-epitope using q-

paratopes of the activated antibodies. 

 
Algorithm 3: Artificial immune system AIS1. 

   

 
 
Fig. 4. Hypermutation: shifts of the clones () towards antigens () lying in 

the receptive field of the parent antibody (O). 
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represented by the parent AB. Clones do not exceed the 

receptive fields of the parent AB.  

Step 5.4.  For each training AG the set  of ABs activated 

by this AG is determined (this is a subset of the set consisting 

of the parent ABs and all clones generated from them in the 

current iteration of the clonal selection loop). The AB with the 

best score (24) is selected from the set  and become one of 

the parent AB in the next iteration. This clonal selection 

process is repeated for each AG. The maximum number of 

ABs in the next population is thus equal to the number of 

AGs, but the actual number of ABs is usually smaller, since 

the same AB can be selected by several AGs. The AB number 

depends on the cross-reactivity threshold r. The larger r 

implies less ABs. 

Step 6 and 7. ABs contained in the immune memory have 

paratopes formed during training representing the clusters of 

AGs in the best manner in terms of the forecasting ability. In 

the forecast phase the AG is presented having only x-epitope. 

The set  of activated ABs is determined. The q-paratopes of 

these ABs store information about y-epitopes of the training 

AGs which x-epitopes were classified to the same clusters. 

The y-epitope of the query AG is reconstructed from these q-

paratopes. The regression function is of the form: 
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AB showing a greater affinity for the query AG have a greater 

impact on the reconstruction of its y-epitope. When AG is not 

recognized by any AB, it means that the x-epitope represents a 

new load curve which is dissimilar to those contained in the 

training set and represented by x-epitopes of AGs. 

 

Discussion. In the immune memory creation process the 

average forecast error for all ABs is minimized: 
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where the number of ABs (K) is determined adaptively during 

training. 

Subsequent populations of ABs generated in the clonal 

selection loop represent the population of AG with lower 

error. The final population of ABs optimized in this process is 

the immune memory. This population corresponds to the set of 

the overlapping clusters in U space. These clusters are 

composed of the spherical subclusters in the subspace X, and 

subclusters in the subspace Y. The subcluster size in X is 

limited by the radius r. A subcluster in Y is understood as a set 

of y-epitopes of these AGs, which are assigned to the same 

subcluster in the subspace X. This is illustrated in Fig. 5. The 

immune memory is complete, i.e. it covers all training AGs. 

The number of clusters (ABs) results from the cross-reactivity 

threshold and their compactness in the subspace Y. The 

prototypes of the subclusters in X and Y are the p-paratope and 

q-paratope, respectively. These paratopes are shaped 

simultaneously by the hypermutation operator.  

The model parameters are: the cross-reactivity threshold r, 

the slope parameter of the sigmoid function , the width 

parameter of the normal distribution  regulating intensity of 

the random perturbation of the shift coefficient , and the 

number of iterations S determining the stop condition of the 

clonal selection loop.  

The large value of the cross-reactivity threshold implies the 

larger numbers of AGs in the reception fields of ABs and the 

larger sets  of activated ABs. In this case the forecast is 

calculated by averaging more q-paratopes. This implies an 

increase in the model bias and decrease in its variance. The 

model is less sensitive to noise in the training data, but also 

less accurate. Decreasing of the r value has the opposite effect. 

It also reduces the detection ability of new AGs.   

In comparison to the above-mentioned methods of data 

clustering, AIS1 during clustering uses the forecast errors. 

This leads to such cluster positions in space that minimize the 

forecast error. More difficult regions in subspace X are 

covered by more ABs, which allows these regions to be 

represented more accurately. The number of groups is 

adaptively adjusted depending on the data arrangement in 

space, which is an additional advantage. 

C. Artificial Immune System AIS2  

AIS2 operating according to FP2 includes the immune 

memory consisting of two populations of ABs. The population 

of ABs of type x (ABx) recognize AGs representing the x-

patterns (AGx), whilst the population of ABs of type y (ABy) 

recognize AGs representing the y-patterns (AGy). Patterns x 

are the epitopes of AGxs and paratopes of ABxs, and patterns 

y are the epitopes of AGys and paratopes of ABys. Epitopes 

and paratopes are fixed. ABx has the cross-reactivity threshold 

r defining the recognition region or receptive field (n-

dimensional hyperball) of radius r with center in the point x. 

Similarly, ABy has a receptive field of radius s with center in 

the point y. Radii r and s are adjusted individually during 

 
Fig. 5. Subclusters in the subspace X represented by the AB recognition 

regions and corresponding subclusters in subspace Y, where: □ are p-

paratopes, O are q-paratopes,  are x-epitopes and  are y-epitopes.  
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training, so that AB covers AGs which epitopes are similar to 

the AB paratope. AG can activate or stimulate many ABs of 

the same type (x or y). Stimulation occurs when the AG is in 

the receptive field of AB. The strength of the stimulation 

(affinity) is dependent on the distance between an epitope and 

a paratope. AB represents a cluster of similar AGs in the 

feature space X or Y. The k-th ABx can be seen as a pair (pk, 

rk), where pk = xk is a paratope recognizing and representing 

AGx epitopes, and the k-th ABy can be seen as a pair (qk, sk), 

where qk = yk is a paratope recognizing and representing AGy 

epitopes. Number of AGs and ABs of both types is equal to 

the number of learning patterns. Sizes of the recognition 

regions of ABs depend on the data distribution in the spaces X 

and Y.            

After the two populations of the immune memory have 

been created, the empirical conditional probabilities P(AByk | 

ABxj), j, k = 1, 2, …, N, that the i-th AGy stimulates the k-th 

ABy, when the corresponding i-th AGx stimulates the j-th 

ABx, are determined on the training population of AGs. These 

probabilities are used to determine the forecast pattern y 

paired with the query pattern x, as well as the affinities. 

The AIS2 is presented in Algorithm 4 and described in 

detail below. This is a modified version of the artificial 

immune system for forecasting seasonal time series proposed 

in [54] and [55].    

 Step 1. The training AGy population contains AGs 

representing historical daily curves of the same day type as the 

forecasted day (y-patterns) and the training AGx population 

contains AGs representing corresponding daily curves 

preceding the daily curves encoded in AGy (x-patterns). 

Step 2. The paratopes of ABs of both types are created by 

copying the epitopes of the training AGs: pk = xk, qk = yk,  

k = 1, 2, …, N. The number of AGs and ABs of both types is 

fixed and is the same as the number of learning patterns N. 

The cross-reactivity thresholds r and s do not require 

initialization.  

Step 3. The recognition region of the k-th ABx should be as 

large as possible and cover only the AGxs that satisfy two 

conditions: 

(i) their epitops x are similar to the paratope pk, and  

(ii) the AGy paired with them have epitopes y similar to the k-

th ABy paratope – qk. 

A measure of similarity between the j-th AGx and the k-th 

ABx is the distance between their epitope and paratope  

d(pk, xj). Similarity between the j-th AGy and k-th ABy, 

mentioned in (ii) is measured using the forecast error of the 

daily load curve encoded in the paratope of the k-th ABy. This 

curve is forecasted using the epitope of the j-th AGy. The 

forecast error is: 
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where: zk+,t is the t-th time series element in the forecast 

period i+ (load) encoded in the paratope of the k-th ABy: 

),( ,, ktkytk zfq  , ),( ,

1

ktjy yf 
 is the inverse function for 

y-patterns returning the forecast of zk+,t using the epitope of 

the j-th AGy and the variables  determined for the k-th ABy 

epitope. 

If the condition k,j   is satisfied, where is the error 

threshold value, it is assumed that the j-th AGy is similar to 

the k-th ABy, and it is classified to class 1 as well as the  j-th 

AGx, paired with it. When the above condition is not met the 

j-th pair (AGx, AGy) is classified to class 2. Class 1 indicates 

the high similarity between ABy and AGy. The classification 

procedure is performed for each ABx. As a result, the pairs of 

AGs are split into two classes for each ABx. 

The cross-reactivity threshold of the k-th ABx is defined as 

follows:   

 

)],(),([),( AkBkAkk ddcdr xpxpxp  , (30) 

 

where B denotes the nearest AGx of class 2 to the k-th ABx, 

and A denotes the furthest AGx of class 1 satisfying the 

condition d(pk, xA) < d(pk, xB). The parameter c  [0, 1) allows 

to adjust the cross-reactivity threshold value from rkmin =  d(pk, 

xA) to rkmax =  d(pk, xB).  

The reception field of the k-th ABx covers only these AGxs 

which are located in its geometrical neighborhood and are 

characterized by similarity of AGys paired with them to the k-

th ABy. This is illustrated in Fig. 6, where the reception field 

of ABxa covers AGxa, AGxb, AGxc, and AGxA, because they are 

near the ABxa in X space and paired with them AGya, AGyb, 

AGyc, and AGyA are similar to ABya. AGxB is outside the ABxa 

reception field because AGyB is not similar to ABya (to big 

error (29) for AGyB). AGyd and AGye are also outside the ABxa 

reception field because the distance between them and ABxa is 

greater than the distance between ABxa than AGxB (AGxB 

cannot be included in the reception field of ABxa).     

Step 4. The recognition region of the k-th ABy contains 

AGy which epitopes are similar to the paratope of this ABy. A 

measure of the similarity is error (29). The classification of the 

AG pairs carried out in step 3 classify to class 1 those AGys 

which are similar to the k-th ABy.   

The cross-reactivity threshold of the k-th ABy is 

determined analogously to the threshold of k-th ABx: 

Training (immune memory creation) 

1. Loading of the training population of x- and y-

antigens. 

2. Generation of the initial x- and y-antibody 

population. 

3. Determination of the cross-reactivity thresholds 

of x-antibodies. 

4. Determination of the cross-reactivity thresholds 

of y-antibodies. 

5. Determination of the empirical conditional 

probabilities P(AByk|ABxj). 

Test 

6. X-antigen presentation and detection of the 

activated x-antibodies. 

7. Reconstruction of the y-antigen epitope using y-

antibodies, P(AByk|ABxj) and affinities. 

 
Algorithm 4: Artificial immune system AIS2. 
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where B denotes the nearest AGy of class 2 to the k-th ABy, 

and A denotes the furthest AGy of class 1 satisfying the 

condition d(qk, yA) < d(qk, yB). The parameter b  [0, 1) has 

the same function as the parameter c in (30). 

In the recognition region of the k-th ABy there are AGys 

paired with AGxs lying in the recognition region of the k-th 

ABx, but in this region there can be also AGys paired with 

AGxs laying outside the recognition region of the k-th ABx if 

for these AGys the following condition is satisfied: d(qk, y) < 

d(qk, yB) (see Fig. 6).  

Step 5. When both populations of the immune memory are 

created, the successive pairs of learning AGs are presented: 

(AGxl, AGyl), l = 1, 2, …, N. For each pair the sets of 

stimulated ABx and ABy are determined and the conditional 

probabilities are estimated: P(AByj|ABxi) = Lj,i/N, where Lj,i is 

the number of simultaneous stimulations of the j-th ABy and i-

th ABx by the paired AGs.        

Step 6 and 7. In the forecast procedure new AGx, 

representing the query pattern x, is presented to the immune 

memory. Let  be a set of ABx stimulated by this AGx. The 

forecasted pattern y corresponding to the query pattern is 

estimated using regression function: 
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a(pi, x)  [0, 1] is the affinity informing about the 

membership degree of the query AGx to the cluster 

represented by the i-th ABx defined as: 
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Thus the forecast is the weighted average of ABy paratopes. 

Weights express the sums of products of affinities of the 

stimulated ABx for the query AGx and probabilities 

P(AByj|ABxi).     

 

Discussion. The ABs in AIS2 represent clusters in X and Y 

spaces. These clusters have a spherical shape, may overlap and 

are limited by the cross-reactivity thresholds, as in AIS1, but 

these thresholds are not the same. They are determined 

individually for each AB. The cross-reactivity thresholds of 

ABx determining the size of the groups in X, are adjusted to 

the training data so that the clusters in X correspond to tight 

clusters in Y. Thresholds of ABy are adjusted so that the ABy 

receptive field covers a tight cluster in Y. The compactness of 

this cluster is measured with the forecast error of the load 

curve encoded in the ABy paratope. This forecast is 

determined using AGy belonging to the same cluster. 

The number of groups is equal to the number of learning 

patterns, and locations of the cluster prototypes in X and Y 

spaces (x- and y-paratopes) are fixed and the same as the 

locations of training patterns x and y, respectively. Each AGx 

(AGy) from the training set is covered by at least one ABx 

(ABy). AGx located in dense clusters may be covered by 

many ABx, especially when paired with them AGy are not 

outliers. AGx paired with an outlier AGy is covered by only 

one ABx, specialized to recognize this AGx. 

The way of forming clusters in X makes their sizes 

dependent on the dispersion of y-patterns paired with x-

patterns belonging to these clusters. To the cluster represented 

by ABxk the pattern xj is added (increasing the cross-reactivity 

threshold rk), if the pattern yj is sufficiently similar to the 

paratope of AByk.  The pattern is sufficiently similar if it can 

forecast the paratope qk with an error not greater than the 

threshold value . Such a clustering procedure ensures that the 

forecast error for the training patterns is not greater than the 

threshold error. 

The relationship between ABx and ABy are expressed in 

probabilities P(AByj|ABxi). The regression function is defined 

using these probabilities and affinities ABx for AGx. The 

share of the paratope qj in forming of the regression curve 

depends on the similarity between paratope pj paired with qj 

and the query pattern x. This paratope qj has the larger share 

which is paired with ABx showing greater affinity for the 

query AGx, and for which a greater probability of 

simultaneous occurrence of the cluster they represent and the 

clusters to which the query AGx was assigned is observed. 

The learning procedure is deterministic and requires only 

one pass of the training data. The deterministic nature of the 

model means stable responses and short training time. AIS2 

has three parameters: threshold error  and parameters b and c 

adjusting the cross-reactivity thresholds. Increasing the values 

of these parameters implies an increase in cluster sizes. This 

gives higher bias and smaller variance of the model. During 

the forming of clusters the information about the forecast error 

  
Fig. 6. A cluster in the space X represented by the ABx recognition region and 

corresponding cluster in the space Y represented by the ABy recognition 

region, where: □ is the paratop p, O is the paratope q,  are epitopes x and  

are epitopes y.  
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is used which distinguishes this forecasting model from others 

based on the classical clustering methods. 

VI. EVALUATION OF PSBFMS 

In this section we illustrate the proposed PSBFMs on 

examples and we analyze their performance and features. In 

the first example we train and optimize models for tasks of 

hourly load forecasting with one day horizon for the Polish 

power system. Then we study the sensitivities of the models to 

changes in parameter values and model robustness to noisy 

and missing data. We compare our models with other popular 

STLF models such as: ARIMA, exponential smoothing and 

neural network in the forecasting tasks on several load time 

series and forecasting horizons up to 7 days. Finally the 

computational complexity analysis of PSBFMs is carried out. 

In these studies we use X3.1 and Y3.1 pattern definitions 

(see Section III in [4]) and Euclidean metric as a measure of 

distance between patterns.  

A. Training and Optimization of PSBFMs 

The task is to forecast the hourly load of the Polish power 

system at hour t = 1, 6, 12, 18, 24 for the next day ( = 1). We 

use the N-WE in MISO version and other PSBFMs described 

above in MIMO versions. The time series is from the period 

2002-2004 (see Fig. 1 in [4]; these data can be downloaded 

from the website http://gdudek.el.pcz.pl/varia/stlf-data). The 

test samples are from January 2004 (without untypical 1 

January) and July 2004. 

In the N-WE the bandwidth values were estimated using 

Scott’s rule (10), GM (11), EA and TSc. The parameters of 

these methods were: 

 GM: a0 = 0.1,  = 0.05, L = 20, 

 EA: population size = 30, number of generations M = 

100, tournament size Ts = 2, crossover probability = 0.9, 

mutation probability of the individual = 1, w = 0.1, 

 TSc: number of iterations M = 100, l = 30, w = 0.1. 

These parameters were adjusted in the preliminary tests. The 

stop criterion in EA and TSc was: there is no improvement in 

results in 0.25M successive iterations. 

In Table I errors for validation (global LOO) and test 

samples are presented. The optimization of the bandwidths 

results in the validation error reduction but it did not bring the 

expected effect on the test samples. Using the local versions of 

LOO: LOO-v1 and LOO-v2, we did not improve results on the 

test samples as well.  

In the next experiment we select the components of the x-

patterns using SFS, SBS, GA and TSb. The parameters of GA 

and TSb determined on the basis of preliminary tests were: 

 GA: population size = 8, number of generations M = 100, 

tournament size Ts = 2, crossover probability = 0.9, 

mutation probability = 0.05, 

 TSb: number of iterations M = 100, l = 8. 

The bandwidths were determined using the Scott’s rule. 

The errors in Table II are presented.  Fig. 7 shows how often 

the components were selected as inputs when using different 

feature selection methods. 

The results of the combined optimization of the bandwidth 

values and selection of the x-pattern components using TScb 

are shown in Table II and Fig. 7.  

From Table II it can be seen that the validation error was 

reduced compared to the case without selection but the test 

errors are statistically indistinguishable (Wilcoxon signed-rank 

test was used). This can be caused by the insufficient 

information about the target function included in the learning 

sample. Note that the number of the learning points is only 

about one hundred and their size is up to 24, so they are 

sparsely distributed in the space. In addition, points are 

distorted by noise. Thus the target function in the 

neighborhoods of the test points is poorly represented by the 

learning points.  

 The average reduction in the number of components was as 

follows: for SFS - 76%, for SBS - 52% for GA - 60%, for TSb 

- 67% and for TScb - 57%. This means that rejecting more 

than half of the x-pattern components should not adversely 

affect the accuracy of the model. The most information about 

the forecast is included in the last components, i.e. the system 

loads at hours 23 and 24 (see Fig. 7).  

In conclusion it should be noted that the most accurate 

model based on the Nadaraya-Watson estimator was obtained 

when the smoothing parameters were calculated using Scott's 

rule. Any attempt to optimize the model for the analyzed 

forecasting tasks did not bring a statistically significant 

improvement of the accuracy on the test sample.  

 
Fig. 7. The frequencies of the component selection in the N-WE model.  

TABLE II 
FORECAST ERRORS FOR N-WE MODEL USING DIFFERENT METHODS OF X 

COMPONENT SELECTION 

Method 
January July Average 

MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst 

SFS 1.37 1.25 1.32 0.90 1.34 1.07 
SBS 1.37 1.20 1.35 0.90 1.36 1.05 

GA 1.38 1.17 1.34 0.90 1.36 1.03 

TSb 1.34 1.17 1.30 0.90 1.32 1.03 
TScb 1.25 1.20 1.21 0.86 1.23 1.03 

 

TABLE I 

FORECAST ERRORS FOR N-WE MODEL USING DIFFERENT METHODS OF 

ESTIMATION OF BANDWIDTHS 

Method 
January July Average 

MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst 

Scott’s rule 1.62 1.20 1.54 0.92 1.58 1.05 

GM 1.58 1.21 1.51 0.96 1.55 1.09 

EA 1.32 1.36 1.28 0.90 1.30 1.13 
TSc 1.30 1.23 1.25 0.93 1.28 1.08 
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In the k-NN model the number of nearest neighbors k, and 

parameters p and  were optimized using the grid search 

method. It was assumed: k = 1, 2, …, 50, p = 0, 0.25, …, 1 and 

  {0, –0.8, 5}. The model performance was evaluated in the 

global LOO procedure. The validation errors reached lower 

values for higher values of p. The validation MAPE at p = 1 

were: 1.58 for  = 0 (the linear model), 1.60 for  = –0, 8, and 

1.57 for  = 5. When using the same nonzero weights for each 

construction pattern in (15) the validation MAPE was 1.65. 

When p = 1 and  = 0 the weighting function is linear of the 

form: v(x,xj) = 1 – d(x, xj)/d(x, x
k
). In Table III the errors for 

this model are presented. The optimal values of the nearest 

neighbors ranged from 4 to 17.   

The extensive studies of FNM reported in [51] showed that 

this model is not very sensitive to parameter  in (17) and 

(18). So in our study it was assumed  = 2. The parameter  

was changed according to the schemes: 

(i)  = bdmed, where dmed is a median of distances between 

x-patterns in the training set, b = 0.02, 0.04, …, 1,  

(ii)  = d(x, x
k
), k = 1, 2, …, 50.  

The lower errors were achieved when we used scheme (i). 

In all forecasting tasks the Cauchy function (18) gave higher 

errors than the Gaussian function (17). The average validation 

errors were: 1.55 for the Gaussian function and variant (i), 

2.04 for the Cauchy function and variant (i), 1.63 for the 

Gaussian function and variant (ii), and 2.15 for the Cauchy 

function and variant (ii). The optimal value of  in the model 

with the Gaussian function does not exceed 0.32dmed at its 

modal value of 0.20dmed. The errors for FNM with the 

Gaussian membership function and  determined using (i) in 

Table III are shown. The optimal  values ranged from 0.080 

to 0.161. 

From Table III it can be seen that FNM outperforms k-NN 

model. In further studies we simultaneously select components 

of x and optimize the width parameter  in FNM using a 

combination of the feature selection algorithm and the grid 

search (GS). As a feature selection algorithm SFS, SBS and 

TSb are applied. The tournament size in TSb l = 8 and the 

number of iterations M = 100. The errors in Table IV are 

shown. As can be seen the validation and test errors were 

reduced, but the test error reduction is statistically 

indistinguishable (Wilcoxon test was used). The selected 

components of x-patterns for each forecasting task in Fig. 8 

are presented. The average number of x-pattern components 

was reduced as follows: SFS+GS – 66%, SBS+GS – 49% and 

TSb+GS – 59%. Components 18, 23 and 24 were most often 

selected.  

The forecasting models based on the clustering methods 

were examined under the grant [56]. As the clustering 

methods k-means in crisp and fuzzy variants, agglomerative 

hierarchical clustering, self organizing maps and neural gas 

were used. The models were tested on 8 electric load time 

series and 4 energy price time series. The forecasting model 

using FP2 and the crisp k-means clustering turned out to be the 

best one. So we limit further studies to the models based on 

the crisp k-means. The FP1 and FP2 are both examined.  

In the model using FP1 and k-means (FP1+k-means) the 

only parameter is the number of groups K. Each group is 

represented by a prototype vector m, which is a mean of u-

patterns belonging to this group. The K value was changed 

from 1 to 40. Models were evaluated in LOO-v1 procedure. 

The errors for optimal values of K in Table V are shown. The 

clusters created for the forecasting task of July 1, 2004 in Fig. 

9 are shown. The query pattern in this case was assigned to 

cluster 1 (Fig. 10). Cluster 3 includes only one outlier pattern 

representing the daily curves of 1 and 2 January 2003.     

A similar test procedure was carried out for FP2 and k-

means (FP2+k-means). The number of clusters K and L were 

changed from 1 to 40 and the GS was used to find their 

optimal values using LOO-v1 procedure to model evaluation. 

Errors in Table V are shown. For the forecasting task of July 

1, 2004 the lowest errors were achieved for K = 25 and L = 29. 

The clusters created for this task in Fig. 11 are presented, the 

 
Fig. 8. The components of x-patterns selected using combined algorithm  

TSb + GS for FNM (black elements).  

 

 
 
Fig. 9. The clusters created by FP1+k-means model for the forecasting task of 

July 1, 2004 (black lines are the cluster prototypes, gray lines are the patterns 

u assigned to the clusters).  

TABLE III 
FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR K-NN  

AND FNM 

Method 
January July Average 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

k-NN 1.47 1.12 0.99 1.01 1.23 1.14 

FNM 1.22 1.30 0.96 0.89 1.08 1.06 

 

 TABLE IV 
FORECAST ERRORS FOR FNM USING COMBINED METHODS OF 

COMPONENT SELECTION AND ESTIMATION OF   

Method 
January July Average 

MAPEval MAPEtst MAPEval MAPEtst MAPEval MAPEtst 

SFS + GS 1.46 1.13 1.42 0.98 1.44 1.05 

SBS + GS 1.44 1.17 1.41 0.92 1.42 1.04 
TSb + GS 1.44 1.19 1.41 0.93 1.42 1.06 
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validation errors depending on K and L in Fig. 12a are 

presented and the probabilities P(Cy,l|Cx,k) in Fig. 12b are 

presented. The query pattern was assigned to cluster Cx 

number 20 and the forecast pattern y was reconstructed from 

the prototypes my of clysters 1, 18, 19 and 22. The 

probabilities P(Cy,l|Cx,k=20) for these clusters were: 1/N, 4/N, 

2/N and 1/N, respectively. The forecasted y-pattern in Fig. 13 

is shown. 

In the first stage of AIS1 optimization the cross-reactivity 

threshold was changed according to r = d, where d is the 

average distance between each training AG and AB from the 

initial population and  = 0.1, 0.15, …, 1.0. Other parameters 

were kept constant:  = 0.2,  = 0.1 and S = 10. In the case 

when the query AG was not recognized by any AB, the 

nearest AB was selected and its q-paratope was taken as the 

predicted y-epitope of the query AG. The lowest validation 

errors MAPEval = 1.27 were obtained for  = 0.3. In the next 

stages other parameters were changed according to the 

schemes: 

(i)  = 0.05, 0.10, …, 1.00, at  = 0.3 and   = 0.1,  

(ii)  = 0.025, 0.050, …, 0.200, at  = 0,3 and   = 0,2.  

Using schemes (i) and (ii) it was observed that the AIS1 

model showed low sensitivity to changes in parameters  and 

. The validation error in these cases varied between 1.24 and 

1.27. It was assumed that the best values of parameters are:  

= 0.3,  = 0.2,  = 0.1 and S = 10. Errors for this parameter 

values in Table VI are presented. The size of the immune 

memory (number of clusters) was changing in 30 training 

sessions from 52 to 84 and the number of iterations of the 

clonal selection loop varied from 16 to 57 (the average value 

was 27). In Fig. 14 the set  of activated ABs in the 

forecasting task of July 1, 2004 and the reconstructed forecast 

pattern are shown. 

In the first stage of AIS2 optimization we change  = 1.00, 

1.25, …, 3.00 keeping other parameters constant: b = c = 1. At 

lower values of  many validation AGs were unrecognized (up 

to 18%). The value of  = 2.00 ensures recognition of 98% 

AGs. Increasing  above this value leads to an increase in the 

validation error.  In the second stage of the study the values 

of b and c were reduced (b = c = 0.8, 0.6, …0.0) at a fixed 

value of  = 2. The validation error in these cases remained at 

a similar level, but the number of unrecognized AGs 

TABLE VI 
FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR  

ARTIFICIAL IMMUNE SYSTEMS-BASED MODELS 

Method 
January July Average 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

AIS1 1.40 1.27 0.99 0.97 1.19 1.06 
AIS2 1.32 1.39 1.01 0.81 1.16 1.11 

 

 

(a)             (b)  

  

Fig. 12. The validation errors depending on the number of clusters in  

FP2+k-means model (a) and the probabilities P(Cy,l|Cx,k) (b) for the forecasting 

task of July 1, 2004.  

 

Fig. 11. The clusters created by FP2+k-means model for the forecasting task 

of July 1, 2004. 

TABLE V 
FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR  

K-MEANS-BASED MODELS 

Method 
January July Average 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

FP1+k-means 1.85 1.37 1.06 0.89 1.45 1.11 

FP2+k-means 1.52 1.11 1.07 0.88 1.29 0.95 

 

 

 

Fig. 10. The test pattern u (continuous black line) assigned to cluster 1 

(dashed line is the cluster prototype) in the forecasting task of July 1, 2004; 

FP1+k-means model.  
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increased. The forecast errors at  = 2, b = c = 1 in Table VI 

are shown. Fig. 15a shows the empirical conditional 

probabilities P(AByj|ABxi) estimated on the training set in the 

forecasting task of July 1, 2004. From this figure it can be 

seen a specific pattern showing simultaneously activated ABs 

in both populations of immune memory. These are ABs 

representing load curves of days lying in the same periods of 

the years. The weights (33) of activated ABs for this 

forecasting task in Fig. 15b are shown and in Fig. 16 the 

activated ABys and the reconstructed y-pattern are presented. 

It is worth noting that all clustering methods except AIS2 

are stochastic and unstable. They can give different results for 

the same input. 

B. Sensitivity and Robustness of PSBFMs 

In this section we analyze the sensitivity of PSBFMs to 

changes in parameter values and their robustness to noisy and 

missing data. For nondeterministic models results presented in 

tables and figures are averaged over 30 training sessions. 

The sensitivity measure to changes in parameter value is 

defined as follows: 

 

100
min

minmax 



tst

tsttst
p

MAPE

MAPEMAPE
S , (35) 

 

where MAPEtstmin and MAPEtstmax are minimum and maximum 

test errors, respectively, when the value of the parameter p 

changes from 0.5p* to 1.5p*, p* is the value of p ensuring the 

minimal validation error.    

Measure (35) informs about the relative percentage 

difference between the maximum and minimum errors 

MAPEtst when the parameter varies in a given range. This 

measure is calculated for each parameter keeping other 

parameters constant at their optimal values. In Table VII the 

values of Sp are presented.  

In many cases the parameter value ensuring minimum 

validation error (p*) is not the same as its value ensuring  

minimum test error (p’). The differences between test errors 

for p* and p’: MAPE = MAPEtst(p*) – MAPEtst(p’) are shown 

in Table VII. MAPE shows how much the forecast error 

increases when we estimate model parameters in the 

validation procedure like LOO.  

The test error reached a minimum for the parameter value 

estimated in the validation procedure in two cases: for  in 

FNM and  in AIS2. The deviation MAPE in no case exceed 

the value of 0.1. The sensitivity of the N-WE model to the 

width parameter was approximately twice higher than for 

FNM. The AIS1 model is the most sensitive to the parameter 

 determining the crossreactivity threshold (Sp = 35.29%). The 

sensitivity of this model to other parameters is low (no more 

than 3.56%). Also AIS2 is highly sensitive to the 

crossreactivity threshold. The sensitivity to the number of 

clusters in the models using k-means is at the level of 11-16%. 

FNM shows the lowest sensitivity to changes in parameters 

among the proposed PSBFMs. 

The noise in the load data arises from errors of 

measurements and load estimation. It is assumed that the 

 

Fig. 14. The test pattern u (continuous black line) recognized by a set of ABs 

(gray lines) and reconstructed y-pattern (dashed line) in the forecasting task of 

July 1, 2004; AIS 1 model.     

 

Fig. 13. The prototypes my of clusters of non-zero conditional probabilities 
P(Cy,l|Cx,k=20) (gray lines), the reconstructed forecast pattern (dashed line) and 

actual forecast pattern (continuous black line) for the forecasting task of July 

1, 2004; FP2+k-means model.  

 
Fig. 16. The activated ABys (gray lines), the reconstructed forecast pattern 

(dashed line) and actual forecast pattern (continuous black line) for the 

forecasting task of July 1, 2004; AIS2 model.  

(a)             (b)  

 
 
Fig. 15. The probabilities P(AByj|ABxi) (a) and weights of ABy (b) for the 

forecasting task of July 1, 2004; AIS2 model.  
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components of the load vector z are disrupted by noise as 

follows: 

 

tititi zz ,,,'  , (36) 

 

where i,t ~ N(1,).  

The models were learned and tested using noisy data. The 

noise intensity was controlled by the standard deviation of the 

normal distribution:  = (0, 0.1). This correspond to a share of 

noise in the data (100|z'–z|/z) from 0 to 8%. Results in Fig. 17 

are shown.  

A measure of sensitivity to the noise in data is defined as 

follows:   

 

100
)0()(







 tsttst
n

MAPEMAPE
S , (37) 

 

where MAPEtst() is the test error observed when  > 0.  

Measure (37) expresses the ratio of the change in forecast 

error due to the noisy data to the intensity of the noise. The 

mean values of Sn for all , which corresponds to the slope of 

the straight line approximating the characteristics presented in 

Fig. 17, were shown in Table VIII. In this table the increases 

in test errors MAPE at  = 0.01 and  = 0.1 with respect to 

errors for noiseless data are also presented.  

The noisy x-patterns have different positions in space in 

relation to the original x-patterns. It results in changes in the 

construction pattern weights in the formulas for the regression 

function estimators. For the small noise ( = 0.01) the forecast 

errors increase slightly, from 0.12 for FP1+k-means to 0.56 for 

AIS2. Big noise causes a large increase in the forecast error 

(from 3-4 percentage points for k-means models up to 7-8 

percentage points for AIS). Sn takes the lowest values for the 

models based on the k-means clustering (26.53% for FP2+k-

means and 31.15% for FP1+k-means), and the largest ones for 

the models based on the immune systems (66.94% for AIS2 

and 74.41% for AIS1). 

In the robustness to missing data analysis it is assumed that 

m components the of vector z* corresponding to the query 

pattern x* are missing. These components are missing in x* as 

well, and moreover the values of other components can 

change when the x-pattern is defined using variables  (see 

Table I in [4]), which are determined on the basis of many 

components of vector z, among which are the missing ones 

(e.g. pattern X3.1 is defined using mean value of z 

components). In the same way as for x* components of the 

training x-pattern are determined assuming that the m 

components of the corresponding vectors z are undefined. If as 

a result of the lack of components in z* the value of variables 

 in function fy change, the components of y-pattern change as 

well.  

The x-patterns of reduced number of components which 

values may be different than the original ones are arranged in 

the space differently relative to each other than the original 

patterns. This has an impact on the distances between them, 

and thus, on the weights of construction patterns and 

TABLE VII 
SENSITIVITY OF PSBFMS TO CHANGES IN PARAMETER VALUES 

Model Parameter Sp MAPE 

N-WE h 17.14 <0.01 

FNM  8.07 0.00 

FP1+k-means K 15.71 0.08 

FP2+k-means K 11.56 0.04 
 L 12.92 0.05 

AIS1  35.29 0.04 

 β 3.56 0.03 

  3.09 0.02 
 S 3.36 0.02 

AIS2  29.23 0.00 

 b,c 8.02 0.09 

 

 
TABLE VIII 

SENSITIVITY OF PSBFMS TO NOISY DATA 

Model Sn 
MAPE for  

 = 0.01 

MAPE for  

 = 0.1 

N-WE 52.51 0.25 6.14 
FNM 41.28 0.15 4.84 

FP1+k-means 31.15 0.12 4.11 

FP2+k-means 26.53 0.14 3.14 
AIS1 74.41 0.56 7.92 

AIS2 66.94 0.17 7.59 

 

TABLE IX 

SENSITIVITY OF PSBFMS TO MISSING DATA 

Model 
Sm for 

m = 6 

Sm for  

m = 12 

MAPE 

for m = 6 

MAPE 

for m = 12 

N-WE 10.98 28.01 0.03 0.14 

FNM 6.97 17.27 0.02 0.09 

FP1+k-means 8.42 14.19 0.02 0.07 
FP2+k-means 9.20 18.61 0.02 0.09 

AIS1 15.75 18.14 0.04 0.09 

AIS2 16.42 22.20 0.04 0.11 

 
 

 
Fig. 18. The forecast errors depending on the relative number of missing 

components of x-patterns.  

Fig. 17. The forecast errors for noisy data depending on the deviation . 
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consequently on the forecast. 

To examine the robustness of PSBFMs to missing data we 

remove m components of the vectors z* and  then we redefine 

training patterns x and y. The models are learned and tested on 

the modified data. We change the number of missing 

components m = 1, 2, ..., 22. Their positions were determined 

by random.  The forecast errors depending on the relative 

number of missing components in Fig. 18 are shown. Note 

that when the number of missing components is low the 

deterioration in the model accuracy is not observed. Errors 

begin to grow rapidly when m exceeds 16. 

A measure of the model sensitivity to the missing 

components is defined as follows: 

 

100
/

)0()(





nm

mMAPEmMAPE
S tsttst
m , (38) 

 

where MAPEtst(m) is the average test error observed at m 

missing components. 

The values of Sm and the increases in test errors with respect to 

errors for noiseless data MAPE at m = 6 and m = 12 in Table 

IX are presented. From this table it can be seen that the least 

sensitive models are: FNM and k-means based models, and the 

most sensitive models are AISs. The deterioration of the test 

error for m = 6 is not greater than 0.04 percentage points and 

for m = 12 is not greater than 0.14 percentage points.      

It is noteworthy that in many models (e.g. ARIMA, 

exponential smoothing, neural networks) the incomplete input 

information is a serious problem, and the missing data 

reconstruction is needed. PSBFMs successfully deal with 

missing data because the similarity measure, on the basis of 

which the weights of input patterns in the nonparametric 

regression are determined, can be calculated without some 

components of these patterns. 

C. Comparative studies of PSBFMs with other models 

We compare our PSBFMs with other popular models of 

STLF: ARIMA, exponential smoothing (ES) and MLP. The 

models were tested in STLF problems on four time series of 

electrical load: 

 PL: time series of the hourly load of the Polish power 

system from the period of 2002–2004 (this time series 

was used in the experiments described above). The test 

sample includes data from 2004 with the exception of 13 

untypical days (e.g. holidays),  

 FR: time series of the half-hourly load of the French 

power system from the period of 2007–2009. The test 

sample includes data from 2009 except for 21 untypical 

days,  

 GB: time series of the half-hourly load of the British 

power system from the period of 2007–2009. The test 

sample includes data from 2009 except for 18 untypical 

days, 

 VC: time series of the half-hourly load of the power 

system of Victoria, Australia, from the period of 2006–

2008. The test sample includes data from 2008 except for 

12 untypical days.   

These load time series are characterized in Table X, where:  

 z  is the mean load of the power system in GW,  

 cd, cw and ca are the daily, weekly and annual variation 

coefficients, respectively (see Section V in [4]),  

 2
, V,  are the chi-square value, Cramer’s contingency 

coefficient and Pearson’s correlation coefficient, 

respectively, determined on the basis of the contingency 

table for d(xi, xj) and d(yi, yj), where i and j are indices of 

patterns representing the same type of the day of a week 

(see Section VI in [4]),  

 n is the forecast error (MAPE) for the naïve method, 

where the forecast rule is of the form: the forecasted 

daily curve is the same as seven days ago.  

From Table X it can be seen that the biggest daily variation of 

load is for GB data and the biggest annual variation is for FR 

data. The value of 2
 is above of its critical value (66.34 at  = 

0.05) for each time series. This confirms a relationship 

between random variables d(xi, xj) and d(yi, yj) and justifies 

using PSBFMs. The values of V and  indicate significant, 

moderately strong and positive correlation between random 

variables, which is the strongest for GB data. 

To simplify the forecasting problem for ARIMA and ES the 

time series were decomposed into n series, i.e. for each t a 

separate series was created. In this way a daily seasonality was 

removed. For the independent modeling of these series 

ARIMA(p, d, q)(P, D, Q)m model was used. To find the best 

ARIMA model for each time series we use a step-wise 

procedure for traversing the model space which is 

implemented in the forecast package for the R system for 

statistical computing [57]. This automatic procedure returns 

the model with the lowest Akaike Information Criterion (AIC) 

value.  

The ES state space models [58] are classified into 30 types 

depending on how the seasonal, trend and error components 

are taken into account. These components can be expressed 

additively or multiplicatively, and the trend can be damped or 

not. The time series were modeled independently using an 

automated procedure implemented in the forecast package for 

the R system [57]. In this procedure the initial states of the 

level, growth and seasonal components are estimated as well 

as the smoothing and damping parameters. AIC was used for 

selecting the best model for a given time series. 

ARIMA and ES parameters were estimated using 12-week 

time series fragments immediately preceding the forecasted 

daily period. Untypical days in these fragments were replaced 

with the days from the previous weeks. 

TABLE X 

BASIC PARAMETERS OF THE LOAD TIME SERIES 

Time 

series 
z  cd cw ca 2 V  n 

PL 16.05 8.08 7.70 10.87 30967 0.42 0.67 3.43 
FR 55.64 9.05 7.38 16.73 20905 0.35 0.63 5.05 

GB 37.45 16.49 6.93 10.40 37074 0.46 0.86 3.52 

VC 5.96 10.34 7.07 5.32 16367 0.30 0.49 4.88 
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The third reference model is built on MLP using patterns. 

The network learns the target function gt mapping the input 

patterns x into the y-pattern components (MISO model). The 

MLP learns locally [59] using the training sample selected 

from the neighborhood of the query pattern x*. By the 

neighborhood of x* we mean the set of its k nearest neighbors 

representing the same day of a week (k was assumed to be 12). 

For each forecasting task (forecast of system load at time t of 

day i) a separate MLP is learned. To prevent overfitting MLP 

is learned using Levenberg-Marquardt algorithm with 

Bayesian regularization [60]. Since the target function is 

modeled locally, using a small number of learning patterns, 

rather a simple form of this function should be expected, 

which implies small number of neurons. Based on the research 

reported in [59] the network composed of only one neuron 

with bipolar sigmoid activation function was chosen as an 

optimal architecture. 

In Table XI errors for one day ahead forecasts are 

presented. All PSBFMs were used in the MIMO versions and 

were optimized and learned for each forecasting task. The 

lowest errors for all time series were achieved by N-WE, FNM 

and MLP. The Wilcoxon rank sum test with 5% significance 

level indicates the statistically significant difference between 

errors for these three models and other ones. The rankings of 

the forecasting models based on the average difference 

between model error (APE) and the smallest error (APE*) for 

the test sample and based on the average rank in the accuracy 

ranking for each test sample in Fig. 19 are shown. Note that 

the classical forecasting tools, ARIMA and ES occupy the last 

positions in both rankings.          

The error distributions are illustrated in Fig. 20. In Fig. 21 

the forecast errors are shown for horizons up to seven days  

( = 7). Among PSBFMs the lowest errors for longer horizons 

are observed when using N-WE. In one day ahead STLF 

ARIMA and ES gave higher errors compared to other models, 

but they become more competitive for  > 1. For longer 

horizons errors achieved by the examined models approach 

errors achieved by the naive method.  

Note that in the case of ARIMA and ES the model 

parameters are estimated on the basis of the time series 

fragment (12 weeks in our examples) directly preceding the 

forecasted fragment. In the case of PSBFMs it is assumed that 

the information about the forecast can be included in the 

historical data from a longer period. The construction patterns 

representing the daily cycles are selected from historical data 

using criterion based on the similarity to the query pattern. 

The regression function is constructed locally using these 

patterns. Similarly in the case of MLP locally learned on 

Fig. 19. Rankings of the forecasting models. 

     
Fig. 21. Errors for different forecast horizons. 

TABLE XI 

FORECAST ERRORS AND THEIR INTERQUARTILE RANGES FOR  

THE EXAMINED MODELS 

Model 
PL FR GB VC 

MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst MAPEtst IQRtst 

N-WE 1.30 1.30 1.66 1.67 1.55 1.63 2.82 2.56 

FNM 1.38 1.38 1.67 1.71 1.60 1.66 2.91 2.67 

FP1+k-means 1.69 1.64 2.05 2.17 1.84 1.88 3.34 3.01 
FP2+k-means 1.59 1.51 1.94 2.05 1.76 1.84 3.13 2.94 

AIS1 1.50 1.50 1.93 1.95 1.77 1.84 3.04 2.75 

AIS2 1.50 1.51 1.93 1.96 1.78 1.87 3.33 2.93 
ARIMA 1.82 1.71 2.32 2.53 2.02 2.07 3.67 3.42 

ES 1.66 1.57 2.10 2.29 1.85 1.84 3.52 3.35 

MLP 1.44 1.41 1.64 1.70 1.65 1.70 2.92 2.69 

 
 

    
Fig. 20. Cumulative distribution functions of errors. 
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patterns the training data are selected using criterion of 

similarity to the query pattern. Thus the construction or 

learning data are selected depending on the current input from 

its neighborhood. 

D. Complexity analysis of PSBFMs 

The runtime complexity of the PSBFM algorithms in Table 

XII is presented. We analyzed the complexity of training, test 

and optimization procedures. The validation procedure is LOO 

method with M validation samples (in the global LOO M = N). 

In the case of NW-E it is assumed that the model is optimized 

using GM. The grid search is also used in FNM to estimate the 

width parameter  assuming a constant value of . The AIS1 

parameters were estimates according the scheme described in 

Section VIA: sequentially executed procedures for estimation 

of individual parameters with the other parameters constant. 

Similar sequential procedure was applied to the AIS2 

parameter estimation   and b = c. In the grid or sequential 

search the model is trained for Px values of the x parameter. 

Thus the optimization complexity of algorithms is dependent 

on Px.    

In the stochastic models: FP1+k-means, FP2+k-means and 

AIS1 the time complexity is dependent on the unknown a 

priori factors: the number of loop iterations (I and J), the 

number of clones generated (Z) and the immune memory size 

(V). These factors are a function of the sample distribution in 

the space and the values of the algorithm parameters. 

The complexity of the test procedures is small compared 

with the complexity of the training and optimization 

procedures. Test runtime depends linearly on the pattern size n 

and the number of learning samples N (N-WE, FNM), the 

number of clusters K and L (k-means based models) or the size 

of immune memory V (AIS1). The AIS2 test time is 

proportional to the square of the number of samples. In the 

deterministic algorithms N-WE and FNM the training phase is 

skipped. The optimization procedures for these models are 

considerably less time-consuming than for other ones. It is due 

to lack of the training, only one parameter to estimation in 

FNM and the simple one-dimensional optimization problem in 

N-WE (see (11)). These algorithms should be considered as 

the least complex ones among the proposed PSBFMs. 

E. Best model selection 

A method of model selection should balance goodness of fit 

with simplicity. Goodness of fit relates to the model prediction 

capability on independent test data. Usually to measure the   

goodness of fit mean squared error is used but we use MAPE 

because it is traditionally used in STLF literature and in 

practice. IQRs of MAPE presented in the above tables inform 

about dispersion of errors. Smaller IQR indicates more precise 

models (errors are centered around their mean value). The 

simplicity of the model is also important because more 

complex models tend to overfitting (the variance of the model 

is higher). The model complexity is generally measured by 

counting the number of parameters in the model. Some criteria 

of model selection, such as Akaike or Bayesian information 

criteria, deal with the trade-off between the goodness of fit and 

the model complexity.  

 The above mentioned criteria of model selection can be 

extended with additional ones, e.g.: 

 sensitivity to changes in parameter values, 

 robustness to noisy data, 

 robustness to missing data, 

 runtime complexity, 

 clear structure which is understandable for people. 

For the user of the forecasting model as important as the 

forecast accuracy is the clear structure of the model enables us 

to understand its principle of operation. This translates into a 

greater confidence in the forecast. Many popular STLF models 

have uninterpretable parameters and are too complex to 

understand. This applies to both classical models (e.g. 

ARIMA, exponential smoothing) and unconventional ones 

(e.g. neural networks, SVM). The proposed PSBFMs: NW-E, 

FNM, k-NN and k-means seem to be free of this drawback. 

Among the proposed PSBFMs the best performance and 

properties have N-WE and FNM. These two models are the 

most accurate (see Fig. 19), the simplest and clear having the 

understandable principles of operation. The FNM has only one 

parameter to estimate, . N-WE has n parameters, ht, but they 

are easy to estimate in the one-dimensional grid search. Small 

number of parameters results in the lowest runtime complexity 

of these both models (see Table XII).        

VII. CONCLUSIONS AND FURTHER WORK  

Due to the great importance of STLF in the daily operation 

of power systems and energy markets a variety of methods 

have been developed for this forecasting problem. In this work 

TABLE XII 

RUNTIME COMPLEXITY OF PSBFM ALGORITHMS 

Model Training Test Optimization 

N-WE - O(Nn) O(NnMPa) 

FNM - O(Nn) O(NnMP) 
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similarity-based methods using patterns of seasonal cycles for 

STLF are described. The patterns enable us to simplify the 

problem of forecasting non-stationary time series with 

multiple seasonal cycles and trend. PSBFMs construct the 

regression curve aggregating the forecast patterns from the 

history with weights dependent on the similarity between 

input patterns paired with the forecast patterns. PSBFMs are 

characterized by simplicity. The number of parameters here is 

small, which implies a simple procedure of model 

optimization. Models with fewer number of parameters have 

better generalization properties. 

PSBFMs can predict individual y-pattern components or an 

entire vector y (MISO or MIMO models, respectively). In the 

latter approach, the y-pattern may have any number of 

components, depending on the discretization of the time 

series. Increased number of model outputs usually complicates 

its structure, expanding the set of estimated parameters and 

make the learning more difficult. Examples for this can be 

neural networks or neuro-fuzzy systems. Other models such as 

ARIMA and exponential smoothing are only MISO-type. In 

the case of PSBFMs the number of outputs does not affect the 

number of parameters and their estimation method, which 

should be considered as another valuable property.   

PSBFMs construct the forecast using nonparametric local 

regression. The local nature of the model leads to its 

simplification and accuracy improvement in the neighborhood 

of the query pattern. For a new query pattern a new local 

model is built. But building a new model is not very hard task 

due to the small number of parameters which are estimated in 

simple and fast procedures (in STLF practice time for 

preparation of forecast is sufficient to optimize the model). 

The simulation studies have shown high accuracy of 

PSBFMs, especially for one day ahead forecasts. The 

proposed models are strong competitors for other popular 

univariate models such as the reference ones: ARIMA, 

exponential smoothing and multilayer perceptron. It is 

noteworthy that PSBFMs work correctly in the case of 

incomplete input information. The loss of even half of the 

components of the input pattern only slightly increases the 

forecast error. For other models, such as the above-mentioned 

reference ones, the lack of input variables is unacceptable. 

Future work will focus on: 

 taking into account additional input variables 

(exogenous) such as weather conditions. It can be done 

by defining “contexts” of the forecast patterns. A context 

expresses the curve or characteristics of factor correlated 

with the load, such as daily curve of atmospheric 

temperature. The weight of the construction pattern is 

strengthened depending on the similarity of its context to 

the context corresponding to the query pattern. Another 

idea is to construct a model that corrects forecasts 

generated by PSBFMs depending on the context 

similarity. 

 using patterns in other forecasting models, e.g. based on 

neural and neuro-fuzzy networks, regression trees, 

random forests and multiple linear regression. 

 committees of forecasting models. Aggregation of the 

results of the component models can reduce forecast 

error and strengthen stability of the final model. 

 specialized forecasting models for an untypical days. The 

untypical days (public and  religious holidays, days 

before and after holidays) are characterized by a specific 

load curve. This curve can be predicted on the basis of 

analogies to previous years when the untypical day 

occurs cyclically every year. 

 introduction confidence degrees to the training data. 

Each training pattern is labeled with the confidence 

degree that expresses its representativeness. This reduces 

the impact of outliers on the forecast. In PSBFMs the 

confidence degrees can be additional weights of the 

construction y-patterns in the regression function. 

 probabilistic forecasting using pattern similarity-based 

methods. 
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