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Models for the short-term load forecasting based on the similarity of patterns of seasonal cycles are
presented. They include: kernel estimation-based model, nearest neighbor estimation-based models and
pattern clustering-based models such as classical clustering methods and new artificial immune systems.
The problem of construction of the pattern similarity-based forecasting models and the elements and
procedures of the model space are characterized. Details of the model learning and optimization using
deterministic and stochastic methods such as evolutionary algorithms and tournament searching are
described. Sensitivities of the models to changes in parameter values and their robustness to noisy and
missing data are examined. The comparative studies with other popular forecasting methods such as
ARIMA, exponential smoothing and neural networks are performed. The advantages of the proposed
models are their simplicity and a small number of parameters to be estimated, which implies simple
optimization procedures. The models can successfully deal with missing data. The increased number
of the model outputs does not complicate their structure. The local nature of the models leads to their
simplification and accuracy improvement. The proposed models are strong competitors for other popular
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univariate methods, which was confirmed in the simulation studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The importance of the short-term load forecasting (STLF) in the
power system control, scheduling and security translates into a
large number of forecasting models. In the last few decades various
forecasting methods have been proposed. They can be generally
divided into conventional and unconventional methods. Conven-
tional STLF models use regression methods, smoothing techniques
and statistical analysis. Regression methods, linear and nonlinear,
parametric or nonparametric, are usually applied to model the rela-
tionship between load consumption and other factors (weather,
day type, customer class). Examples of semi-parametric additive
models were recently presented in [ 1], whilst the nonparametric
model using kernel estimators was presented in [2].

Gross and Galiana in their review paper |3] consider two basic
conventional STLF models: time-of-day models and dynamic mod-
els. The former defines the load as a linear combination of a finite
number of explicit time function, usually sinusoids with a period
of 24 or 168 h. The latter take into account the most recent behav-
ior of the time series and also exogenous variables and random
component. Dynamic models are of two basic types: autoregressive
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moving average (ARMA) and state-space models. These approaches
are used successfully up to today. Some examples such as ARIMA,
exponential smoothing and the structural time series models are
presented in the first part of this work [4]. Nowadays the con-
ventional methods are often hybridized with new computational
intelligence methods. As an example a new self-organizing model
of fuzzy autoregressive moving average with exogenous input
variables proposed in [5] can be given. In this approach a com-
bined use of heuristics and evolutionary programming scheme is
relied on to solve the problem of determining optimal number
of input variables, best partition of fuzzy spaces and associated
fuzzy membership functions. Good overview of the autoregres-
sive moving average and other statistical approaches to modeling
and forecasting electricity loads and prices can be found in [6].
Some conventional approaches to load forecasting such as static
and dynamic state estimation are described in book [7].

The rapid development of computational intelligence observed
in recent years has brought new methods of STLF. They are based
on artificial neural networks (ANNs), fuzzy logic and expert sys-
tems. Also intelligent searching methods, such as evolutionary
algorithms and swarm intelligence, are often applied to optimize
the STLF models.

The multilayer perceptron (MLP), ANN which is most often
applied in load forecasting, is an attractive tool to modeling of
nonlinear problems due to their universal approximation property.
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Abstrac® Models for the shortterm load forecasting based on Gross and Galiana in their review paper [3] consider two
the similarity of patterns of seasonal cycles are presented. They basic conventional STLF models: timé&day models and
include: kernel estimationbased model, nearest neighbor dynamic models. The former defines the load as a linear
estimation-based models and pattern clusterindpased models combination of a finite number of explicit time function,

such as classical clustering methods and new artificial immune . . . .

systems. The problem of (?onstruction of the pattern similarity ysually sinusoids with a period of 24, or 168 h. The Iattgr take
based forecasting models and the elemesnand procedures of the |nt0 aCCOunt the mOSt recent behaVIOI’ Of the tlme series and
model space are characterized. Details of the model learning and also exogenous variables and random component. Dynamic
optimization using deterministic and stochastic methods such as models are of two basic typesutoregressive moving average
evolutionary ~ algorithms ~and tournament _ searching are  (ARMA) and statespace models. These approaches are used
described. Sensitivities of the models to changes parameter successfully up to today. Some examples such as ARIMA,

values and their robustness to noisy and missing data are . . . .
examined. The comparative studies with other popular exponential smoothing and the structural time series models

forecasting methods such as ARIMA, exponential smoothing and are presented in the first part of this work [4].viémlays the
neural networks are performed. The advantages of the proposed conventional methods are often hybridized with new

models ae their simplicity and a small number of parameters to  computational intelligence methods. As an example a new
be estimated, which implies simple optimization procedures. The geltorganizing model of fuzzy autoregressive moving average
models can successfully deal with missing data. The |ncreasedWith exogenous input variables proposed in [5] can be given.

number of the model outputs cbesnot complicatetheir structure. In thi i bined f heuristi d uti
The local nature of the models leads to their simplification and n this approacia combined use of heuristics and evolutionary

accuracy improvement. The proposed models are strong Programming scheme is relied on to solve the problem of
competitors for other popular univariate methods, which was determining optimal number of input variables, best partition

confirmed in the simulation studies. of fuzzy spaces and associated fuzzy membership functions.
o _ Good overview of the autoregréss moving average and
Index Terms Artificial Immune Systems, Nonparameric = oer statistical approaches to modeling and forecasting
Regt:e(sjsmn, ShorTerm Load Forecasting, Similarity-based electricity loads and prices can be found in [6]. Some
Methods : . o
conventional approaches to load forecasting such as static and
dynamic state estimation are described in book [7].
I, INTRODUCTION bThe (rjapid developmenr;t ofb corrrllputational hin(tjelligfence
. . observed in recent years has brought new methods of STLF.
.H Etlr:nportance of tthe shotetrml Ioadhfc(ereI(_:astlng d(STLF)_They are based on artificial neural networks (ANNSs), fuzzy
In the power system conlrol, scheduiing an secun%gic and expert systems. Also intelligent searching methods,

1ttr:?/\r;s.ljatesd mtovar:argefn:meetrir?f fr?]retﬁazt'”g r\r)odbels.n 'mf“e Self-inh as evolutionary algdnins and swarm intelligence, are
ew decades various lorecasting methods have been propoggfy, applied to optimize the STLF models.

They can be generally divided into conventional an8

. : The multilayer perceptron (MLP), ANN which is most
unconventional methods. Conventional STLF models usO en applied in load forecasting, is an attractive tool to

regres;ion methqu, smoothing techniql_Jes and statis_ti%;i\ deling of nonlinear problems due to their universal
analysis. Regre_ssmn methodiaear _and nonlinear, parametric , proximation poperty. Its other useful properties are:
or nonparametric, are usgally applied to model the relations assive parallelism among a large number of simple units
between load consumption and other factors (weather, d rning capabilities, robustness in the presence of noise, and

typg, Icustomer class).tlExampIes tOf dspamramletr;]qmadd;tr:ve fault tolerance. Many forecasting models based on the MLP is
models —were recently ~ presented —in [11, hi € d,lsed in practice by electric mpanies. An example would be

nonparametric model using kernel estimators was presente WANSTE system, which uses more than 40 companies from
[2]. the U.S. and Canada [8]. Examples of some new publications

on the use of MLP in STLF are: [9], where the complexity of
The study was supported by the Research Project N N516 411 MLP applied to STLF problems has been controlled Hiy t

financed by the Polish Ministry of Science asigher Education. Bayesian approach, [10], where a new hybrid forecasting
G. Dudek is with the Department of Electrical Engineerir  method composed of wavelet transform, MLP and
Czestochowa University of Technology,-220 evolutionary algorithm is proposed, [11], where a generic
Czestochowa, AlArmii Krajowej 17, Poland (enail: framework that combines similar day selection, wavelet
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combined with wavelet transform and particle swarnare: the ability to respond accurately to unexpected changes in
optimization [13], where an approach of MLP with rough setghe input variables, the ability to learn from experience, and
for complicated STLF with dynamic and ntinear factors is the ability to syrttesize new relationships between the load
proposed and [14], where the neural model generates thdemand and the input variables. Examples of such STLF
predictian intervals models are: 30], where the neurfuzzy system is used to
A radial basis function (RBF) network is an alternative tadjust the results of load foredast obtained by RBF
MLP in STLF. The RBF network approximates the targetetwork, B1], where two neurduzzy networks ee proposed:
function by a linear combination of radial functions (usualla wavelet fuzzy neural network using the fuzzified wavelet
Gaussian), which nonlinearly transform the input data. THeatures as the inputs and fuzzy neural network employing the
learning #gorithms for RBF are simpler than for MLP. TheChoquet integral as the outputs3Z, where an efficient
RBF network has a property of universal approximation. Sonaslaptive fuzzy neural network is proposed which can reduce
new publications concerning the STLF modeésdd on the its complexity removing lte unneeded hidden units33],
RBF network are: 15], where RBF is combined with fuzzy where an integrated approach which combines a- self
inference gstem and genetic algtinim, [16], where a model organizing fuzzy neural network learning method with a
to STLF is established by combining the RBF network withilevel optimization method34] where a neurduzzy system
the adaptive neurduzzy inference system and7], where working on the seasonal cycle pattia proposedand B3],
RBF is combined with the wavelet transform. where fuzzy logic is combined with wavelet transform and
A self-organizing feature map (SOFM) is an another ANMeural network
used in STLFR.This network is trained using unsupervised Another useful tools for STLEre: support vector machines
competitive learning to produce a Iladimensional [36], [37], [38], clustering methods 1], [20], [39 and
representation of the input pattern space. The input patteerssembles of modeld()], [41], [42]. An interesting approach
are grouped and represented by neurons. Some examplesvioith can be classified as the similaribpsed oneis
STLF models using SOFM areld], where a terarchical presented in43]. It uses the clustering of the normalized daily
model composd of two SOFM is presentedld], where an curves for definitiomew inputs: sequencesthie group labels
adaptive twestage hybrid network with SOFM and supporfor the successive day$he sequences are pairadth load
vector machine is proposed®(], where SOFM is combined curves of the next day The forecasts composed from the
with MLP and a flexible smooth trangiti autoregressive daily curves paired with the sequences from the hisidrigh
model, and 21], where nonlinear model based on SOFM an@re the same athe current sequencénother interesting
predictors determined using curvilinear component analysis sgnilarity-based mdel for STLF is described ind4fl]. The
described. forecastis calculated as the a weighted average of past daily
Many other types of neural networks have been used fload segments, the shape of which is similar to the expected
STLF including: recurrent networks, generalized regressi@hape of the load segment to be predicted.
ANN [22], probabilistic ANN, daptive resonance theory It is noteworthy that many of the models developed in
ANN, functional link network and counterpropagation ANN.recent years are hybrid solutions (most papeoncerning
The survey of ANN applicans to STLF can be found i23] STLF published in IEEE Transaction on Power Systems in the
and R4. last 10 years relate to just such models). These approaches
Fuzzy logic allows to take into account imprecisecombine data preprocessing methods (e.g. wavelet transform)
incomplete and ambiguous information in the STLF eled with approximation models (such as neural and néuray
Fuzzy models are often simpler and more accurate thaetwaks) and methods of optimization and learning of these
standard statistical models and allow to enter inpuhodels (e.g. evolutionary and swarm algorithms). Sometimes
information by rules formulated verbally by experts. Thdorecast is adjusted depending on additional factors affecting
advantage of fuzzy inference systems is that they describe the load demand and not included in the basic model.
behavior of complex sysis by using linguistic expressions, This paper presents theivariate STLF models based on
mimicking the action of man. The fuzzy rule base consists similarities between patterns of the daily cycles of the load
if-then statements that are almost natural language. To obtaiinze series. The principles of the models were described in the
set of ifthen rules two approaches are wused. Firsfirst part of this work [4]. The main advantage of the pattern
transforming human expert knowledge aexperience, and similarity-based forecasting modelsP¥BFMs) is their
second, automatically generating the rules from examples. simplicity: they have a clear structure and comprehensible
fusion of neural networks and fuzzy logic in nefuazy principles of operation. The number of parameters is low and
models achieves readability amearning ability (extracting the optimization and learning procedures are fast.
rules from data) at onc@he fuzzyinference mechanism leed  The remainder of this paper is divided irgevensections.
to a nonlinear global model, which is an interpolation of localhe pioblems of construction of the PSBFMs in Sectibare
models implemented in the individual rules. The fuzzy STLpresented. In Sectidil i V the STLF models based on pattern
models are &sed on: fuzzy interpolatior?$], fuzzy linear similarity including nomparametric regression methods and
regression6], fuzzy GregressionZ7], TakagiSugeneKang clustering mdtods are presented. In Sectionwé analyzehe
model P8], fuzzy inductive easoning 29] and neurefuzzy proposed forecasty methods and we compare the results to
networks. The main advantages of the latter hybrid approacther STLF methods: ARIMA, exponential smoothing and



MLP. An overview of the work is given in Sectidfl . [45]. For example in high dimensions data points are closer to
the boundary of the sample space than to any other data point,
Il. CONSTRUCTION OFPSBFMs so the prediction is much more difficult. It requires

The forecasting models considered in this work argXtrapolation from neighboring sample points rather that
memorybased inductive approximiah models which learn iNterpolate between them. Another problem is that in high
the relevant relationships between variables on the basisdfnensions the training samples sparsellly populate the input
observed instances. Instances (examples or samples) are piRce. Their density is proginal to N*. The distance
of x- and ypatterns extracted from the load time series usirgftween the closest points increases, and the distances
the functionsf, andf, (see Sectiodll in [4]). Instances form between. all pairs of pomtg are S|mllar.l The- funct|or1
the serieS={(x, y1), (a1 y2) » & yoh(i= 1, N2x, G@mplexity can grow exponentially with the dimension, and if
i X=a"y i Y=3a" whereX and Y are domain and & want to estimate the function with h|gh accuracy wedn
codomain, respectively. The goal is to approximate the vectdf€ Size of training set to grow exponentially as well. In STLF
valued functiorg : X- Y. We can decompose this problem b)}he xpattern sizen IS 24, 48.or 96 for hpurly, haﬁourly or
treating the vectevalued function as vectors of scataiued quarterhourly load time series, respectively. Meanwhile, the

functions and approximiaig these functions separatety: X length of the time series is limited to the period of several

i _ _ . ears, which gives the size of the learning samleof
Vi _.ﬂ ' t._ L, . n2\ve emgct that the quel generate%undreds or thousands instances. This is insufficient. Since the
approximating functiorf(x,f), f 1 F, whereF is a set of

) ; acquisition of additional samples is unreal, the solution is to
acceptable values of parametefs which approximates

Iv th k v by th . reduce the dimension of vecter But it should be noted that
accurately the unknown (seen only by the reates) target the compoents of xpatterns are highly correlated which

function g or g. In the proposed PSBFMs the regressiof,ons that in the input space there are regions with greater
function has the nonparametric fomx) (see (5)). density and regions which are empty. This reduces

The opt.|mall model |s.sellected during segrchmg the mod& favorable phenomenon of the curse of dimensionality and
space, which is a combination of the following elements ang -, o< 1o approximate the function dblg in the denser

procedures: regions with greater accuracy.
The measure of the space filling by a set of random points
M ={f(z)), f,(z)).s(xa %), selx), can be a fractal dimension. Among many different types of
L, L(L),wW(X,,X,),MX),Q(M),O(M)}, (1) fractal dimensions we chee the correlation dimensiodd],
which is based on the cotation integral defined according

where: to:
fzy), f(zy) 1 functions which map the original time series y

g]ements £} intg X- a_nd ypatterns, respectively, C(r) = lim iz 3 H (r - d(x, ,xj)), @)
S(XaXp) T the pattern similarity function, N-= N° G

selx) i the feature selection predure,

L the training sample to estimation of the model parametergyhere Hy(.) is the Heaviside step functionjs the radius and
L(L) i the learning mode, which determines how the elemengg ) is the distance between two points.
of the learning sample are used during learning 1Q(r) is proportional to the total number of pairs of points
estimate the generalization error (e.g. cresifdation, closer therr to eachother. For smalt the correlation integral
bootstrap), grows like a powerC(r) ~ r°, and 3 is interpreted as the
W(Xa,Xp) T the weighting function, which gives the weights tocorrelation dimension. If the number of points is sufficiently
patterns according to their similarities to the queryarge a loglog graph of the correlation integral versuswill

pattern, yield an estimate of. For the hourly load time series of the
m(x) I the nonparametric regression function, Polish power system the correlatidimension was 2.01 (X3.1
Q(M) i the measure of the model quality, patterns were usetl see Sectiorll in [4]), whilst for the
O(M) T the optimization procedures. random points distributed uniformly in the same region
The funcions defining patterns and the similarity measureg 59.
are described in Sectidi of the first part of this work [4] Another Simp|e measure of the space f||||ng is proposed:

The aim of the feature selection is to reduce thge length of the transition path at all pojnigherein each
dimensionality of the spattern vector by elimination of point is visited once and the next step is performed to the
irrelevant, redundant and unpretive components. The-X ynvisited nearest neighbor. This path was three times longer
pattern composed with selected features should ensures ff}e points uniformly filling the space than for points
best quality of the learning model. The dimensionalityepresenting spatterns for the Polish power system regardless
reduction is related to the curse of dimensionality problem. ¢ the starting point.
concerns especially similarityased methods, whereevinfer The shorter path and smaller correlation dimension indicate
about the target function based on the neighborhood of that the intrinsic dimension of the set epattern is less than
query pattern. There are manyanifestation of this problem 24. Feature selection procedure can reduce dimensionality as



well as feature extraction methods such as [paic or distance between patterns and x. Usually its value
component analysis. In the experimental part of this work tltecreases monotonically with the distance and
genetic algorithms antbhurnament searching methodi/] are
used as wrappers to the feature selection. N

Next element of model (1) is the learning sample. In [4] it w(x, x;) =1. (6)
was shown that the propies and performance of PSBFMs =
are better when the learning sample contains patterns o ) , )
representing the same day of a week as the query pattem;eﬂi?;nsof the weighting function are described in the next
the proposed approach for each forecasting task, i®: o i
forecasting the daily load curve of the dayf or, after The quality measures of the modg(M) are mainly based

decomposition, load at the tinteof this day, the individual on the error which is m|n|m|zedn the training process
model is learned and optimized. This allows to finee the (MAPE here). They can also include a component related to

model to the specifics of this task. The learning sample in tht © merI complexny. Typ|cal egamplgs .Of such a measure are
Akaike or Bayesian information criterions.

case includes pairs of patterns representing the same days "ilhe goal of the model optimization process is to find its

week from the history as the query instangg ¥i): L = {(X;, -
S o e , strudure and parameter values to get the minimum of the
ypY J = 0i7q, iT7(qil ) , ii® whereq = &ii1)/70 The oo : . .
: L objective function measuring the model quality. The
outliers are removed from the training set. C
nodotlmlzatlon procedure©(M) are dependent on the model

To estimate the generalization error in the learning a o .
L o parameters and the objective function character. Most
optimization processes the leawereout crossvalidation . - .
greferably is to optimize the model in thepace of all

(LOO) is used. This procedure can be applied in two loc o o .
versions. In the first case (LO@) the validation samples are parameters, but usually it is unrealistic because of the different
' b {Mges of these parameters (continuous, integer, binary,

chosen one by one from the set of nearest neighbors of enumeration), the huge size of the space and multimodality of

query pattern. We do not need to learn the modelech the objective function. The solution is the decompositién
training sample but only for some samples from th

: . : . the optimization problem into subproblems, each of which

neighborhood of query-gattern. Thus we gain savings in.
L e . includes some subset of the parameters. These subproblems

computation time and more accurate fitting of the model in the :

; .are solved alternately or one by one. This approach leads to
neighborhood of the query pattern. In the second local versign .

. e local optimum, rarely to the global one.

of leaveoneout (LOO-v2) we determine the error for each The proposed PSBEMSs have fearameters. which is their
training point (global LOO) and we estimate the brop I '

o . . . reat advantage. To optimization of these models the
generalization error averaging these errors with the weight . . . . L
. . . xhaustive search method is even possible after discretization
dependent on the distance between training points and

of the continuous parameters. In the experimental part of this

query point: work evolutionary algorithms and tournament seggh
N methods are used as well. Their advantage is the ability to
av APE,, | simultaneogsly optimizati_on of the parameters of Qiﬁ_‘ere_nt
WMAPE,, = j=1 . , 3) types (contmuqus and dlsgrete) an_d the gllobal opumlzatlon
N property. The implementation details of this algorithms are
ja;lvi described lar in this work.
where . . lll. KERNELESTIMATION-BASED MODEL
a ad(x*,x,)ea @ . o
v, =exge %*]8 o (4) Tht_a ke_rnel methods are charact(_anzed b)_/ erX|_b|I_|'Fy in the
: ge g s 29 estimation of the regression function(.). This flexibility is

due to the local nature of fitting of the simple regression
models. The most populastémator from this group is the

APE is the absolute percentage ersdrjs the query pattern, .
b g ‘ query p NadarayaWatson estimator (NVE):

d(.,.) is the distance function arglcontrols the width of the
Gaussian function (4).

Equation (3) expresses the weighted mean absolute percentage N KéX- X; Q

error. (MAPE is traditionally used as an error measure in Ja:1 %T@/J

STLF) m(x) =——% o (7)
The regression functiom(x) in (1) has the nonparametric a K%X' X; §

form: = ¢ h ¢

whereK(.,.) is a kernel function antdis a bandwidth .
When we put vectoy; in (7) instead of scalay; we get a
vector valued function like (8). In the expaental part of this

m(x) :% WX, X )Y (5)

j

The weighting functiorw(x,x;) is dependent on the similarity



work we use both: scalgy getting MISO model and vectgy  The final value ofl results from the stop criterion such las

getting MIMO model. iterations without improvement in results. This grid method
For multidimensional input variables the kernels aréGM) is suboptimal and searches sets of discrete values of the

expressed using a multidimensional product kernel functiooomponents of h. The multidimensional optimization

In this case the estimator is defined a problem is here replaced with a simple alimensional
optimization problem (searching afvalue instead of;, h,,
N R AY - Y. A ...,hn).
] axt th Q . .. . . .
a O Kgi'g,/j To the individual, independent tuning of each bandwidth
m(x) = j=l t=1 h 2 8 the evolutionary algorithm (EA) arttie tournament searching
(®) (TS) are used. In EA the vectots are individuals. The

¢
N A o
a OKg——-8 population of individuals is initialized by the Scott's rule (10).
' B The evolutionary process consists of mutation, recombination
and selection. The mutation operator adds themmponent
The selection of the kernel function form is not as important &% h the random disturbance from the normal distribution
the selection of its bandwidth. We choose a normal kernel angiin mean zero and standard deviation
the estimator is now of the form:

hi=h +x, t=1,2,..n, (12)
N a (XI - th)z a
ex -0
ja; Fé% ta:‘l 20’ Ey‘ The standard deviatiors determines the mutation range
m(x) = N & n (% - X )20 9) (diversity of mutants). It isssumed that; = w;s hf, where
s it .
a ex% a 5 21 g ws = constl a*. Thus the mutation range in thé¢h direction
=g = h + is dependent on the initial value lnf i.e. on the variance of.

The arithmetic recombination (intermediate)49] was
Estimator (8) is a linear comlaition of vectorsy; (or scalars applied. This operator produces two new individuals by taking
y;: in scalasvalued version of the model) weighted by thewo linear combinatios of the parent individuals which are
normalized kernel functions (to satisfy constraint (6)) whickelected by random:
nonlinearly map the distance between patterad ;. The
greater the distance the lower the weighhe distance is hj, =h,, +c(h, - h,,), (13)
parameterized by the bandwidths. The parametgr .
strengthens or weakens the share oftithecomponent of in M =hy, +elhe, - ), (14)
the distance. This is an analogy to the weighted feature
selection where weights are not binary but continuous. THderec~U(,1),t= 1, n2, €,
bandwidthvalues decide about the bigariance tradeoff of AS @ selection operator the toament selection was applied
the estimator. Too small bandwidth values result 49 The tournament siz& deternines the selection pressure.

oversmoothing. Thus the selection of the bandwidth valuesifgividual in the population is copied to the next population.
a key problem. The simplest way is to atithe h values from The EA parameters are: the population size, the number of

the formula proposed by Sco#td for the normal product generations, the tournament size, prolitgoof mutation and
density estimators: probability of recombination.

The TS method has been proposed 7] to feature
0 L selection problem as an alternative to the more complex
S:sﬂ\l w4 (10) combinatorial optimization algorithms such as genetic
algorithm and simulated annealing. In apgtion to the
70 . - continuous optimization problem of estimation of the
where s, is the standard deviation of tith component ok bandwidth vaILFJ)es it is rede?ined and labeled as TSc. The TSc
estimated from the learning sample. explores the solution space starting frofrdetermined by the
The nextstep is to search the neighborhood of the poicott's rule and generating new solutions by perturbing it.

hS=[h® h’ & h°]to adjust the bandwidths to our problemWhenthe set of new candidate solutionshy h, € hj} is
The simplest method is the iteration process wherehthegenerated I(is_ called the to_urnament size), their costs are
vectors are generated accogiio the scheme: calcu_lated using the Iear_nlng mo_del. The best candidate
solution (the tournament winner), with the lowest value of the
cost function is seleetl and it replaces the parent solution,
1512, (11)  even in case it is worse than the parent solution (this prevents
getting stuck in local minima). The only operator is the move
wherea, = ag+D(Ii 1), a1 s* ¢ 1, Dis the step defining the operator which is identical to the mutation operator (12). The
density of search. standard deviation of mutan s and the tournament side

h, =ah®



decide about the exploration/exploitation properties of the

algorithm. If the tournament size is equal to 1, this procedure \
comes down to the random walk. On the other hand, when 0-8“\\
increases the neighborhood of the paremat®on is sampled 0sk N
densely (local searching) and this method becomes more g
greedy. o4 N
The TS méhod in binary version (TSb}] was applied to 0.2f !
the selection of the -pattern components. The solution is 0 . . T RN
represented by a binary vector composed of bits cometpgp 0 02 04 06 0B !

ks
to n components ofk: b = [by, by, éd,]. The bit value el

indicates whether the component is selected (1) or not (0). The o _ . )
. . C Fig. 1. The weighting function (16) fg= 0 - solid line, g= 5 - dashed line
starting solution is initialized by random. The move operato&z -0.8- dotted linep = 1- black.p = 0.25- gray

generates | { 1, 4}, candidate solutions by switching
the vale of the randomly chosen bit (different for each N
candidate solution) of the parent solution. Fer 1 we get a a v(x,xj)yj
random walk, and fol = n we get a hill climbing procedure. _ja
The former has a global search property, the latter is the Iocgf(x) Y ' (15)
deterministic seah method. The tournament size decides a v(x.x;)
about the exploration/exploitation properties, as in the case of =
TSc. The best candidate solution replaces the parent solutiolq . N . )
in the next generation. wherev(x,x;) is the weighting function of the form:
To the component selection the genetic algorithm (GA) and . .
two deerministic suboptimal methods: sequential forward 261- d(x,x;) 8
selection (SFS) and sequiatbackward selection (SBSH() _ @ dxx" 0
are also used. The solution representation in all thes\é(x’xi) B paeij)' 1§+1’ (16)

algorithms was the binary vectbr the same as in TSb. The
GA consists of the billip mutation, onepoint crossover and
tournament selection. i
Results of the bandwidth optimization and selection of the! Qu(X), Q«(x) is the set of thé& nearest neighbors af X" is
x-pattern components are obviously dependent on each otiHBe k-th nearest neighbor of, p | [0, 1] is a parameter that
For simultaneous optimization of the model in these tweontrols the degree of differentiation of weighis? 71 is a
spaces the algorithm baseth TS is proposed (labeled asparameter that controls the convexity of the fiorc
TScb). The algorithm processes two connected vectors:For p = 1 the weights are the most diverse, for 0 all
encoding binary the selected compongatedh encoding the weights are the same, equal to 1. Wlgen 0 the weighting
bandwidths. The vectots andh are initialized as in TSc and function (16) is linear, whe> 0 it decreases more rapidly
TSb, respectively. There are two types of the move operatétian a linear function, and wherx 0 it decreases slower than
one for theb vector and second for thevector. The former is a linear function. The weighting function is shown in Fig. 1.
the sane as in TSb. The latter has form (12), wherein only The number of the nearest neighbdrss a parameter
these components ofare modified which correspond to 1s incontrolling the degree of smoothing. It performs a similar

? gd(x,xk) 9

the pairedb vector. The tournament sizeli$ { 1 , 2}, fénction to the bandwidths in the-WE. Whenk = 1, the
The best candidate solution becomes the parent solution in thgression function is a stepnction exactly fitted to the
next iteration. learning points. Increasirigleads to smoothing the regression
function, which implies an increase in the bias and the
IV. NEARESTNEIGHBORESTIMATION-BASED MODELS reduction in variance of the model. TkRé&N estimator gives

The nearest neighbor estimata(x) is defined as the the regression function, which is less sntotitan in the case
weighted average of the response variables in a varyiﬁéthe Gaussian kernel estimation. It is discontinuous: in the
neighborhood ofx. This neighborhood is defined throughPOints where the set of the nearest neighbors is modified the
those xpatterns which are among thenearest neigbors of jumps on the function graph appear.
the query pattern. The value kfdetermine the number of In the NWE the kernel functions are stretched over each
pattern from which the regression function is constructdg@rning pointThis gives the opportunity to decide about the
(these patterns are called the construction patterns). If ghduence of individual points on the shape of the regression

estimator idefined as: function is one, stretched over the query point. Thus there is

no possibility of such dlexible control of the impact of the
individual points on the regression curve. Moreover the
number of the construction points are limitedkto

In the abovelescribed approach the neighborhood of the



(b)

i

query point include thé nearest neighbors. Ir5]] a fuzzy @
membership of the learning points to the neighborhood of the os
guery point was introduced. In this case, each learning point os
belongs to this neighborhood but with a different degree. The®
number of the construction points is equal to the learning
sampk sizeN. The weighting function has a form of the o ———
membership function, e.g.: 0 0.05 01 0 0.05 01

0.2

d(x,xj) d(x,xj)
a éd(x X ) Oﬂ I) Fig. 2. The membership functions: Gaussian functions (a), Cauchy fui
mxx;) = exigs _— a7 ©.
e ¢ S Q0
¢ T+
or in combination with the grid search. In SectidA the SFS
. Ll and SBS methods are used as well.
a 3 0
ad(xx;)0 g
) = +§— Y
n(X’XJ) g e S 8 0’ (18) V. PATTERN CLUSTERING-BASED MODELS
¢ i

The aim of clustering is to extract clusters of patterns
representing similar shapes of the load curves. Grouping
patterns allows to decrease in the number of construction
patterns, which now represent the clusters of original patterns.
This can lead to the reduction of the impact of errors affecting
the data on the estimator accuracy, and improvements in
generalization. Two forecasting procedures based on pattern

Gaussian function, which provides gegter influence of the | stering and two new approaches based on the artificial
more distant points on the regression curve. immune systems ardescribed below
The forecasting models based on nearest neighbor

estimators are characterized by a small number of parametéys. Forecasting Procedures

There are only three parameters inkHgN model:k, p andg In the first forecasting procedure (FP1) the paired vectors
The values ofthese parameters can be estimated in a grihdy are concatenated and form veator [x' y']". When we
search procedure fdt= 1, K p=0,D, 2D, ¢, forecast the daily load curve for the day tyypé Monday,
9=a, % 6 In fuzzy neighborhood models (FNMs) thereSunday), the vectora that irclude ypatterns for day are

are two parametersa and s, which can be stimated in the sellected and grouped. After the clustering phase, each cluster
same way. In§1] to the estimtion of these parameters twoC IS represented by a single vect_nr(prototype of a clu.ster),
local optimization methods were used: the Nelgad which has two parts corresponding to and ypatterns:m,

simplex method and quabiewton method. To increase theand m,. The prototype vectom is a pont located inside the

. o . . cluster. Its position depends on the clustering method. In the
probability of finding global minima the multistart was used. forecasting phase the querypattern is presented and it is
The components of the vectorcan be selected usiribe

assigned to the clustéer represented by the closest prototype
same methods as for the WE. In [51] to component . ihe query pattern:

selection for the FNM the weighted feature selection was
applied, where the importance of the components werg =argmind(x,m,,), (19)
expressed using not binary weights but continuous ones from  i=12..x ’
the range of [0, 1]. The diste@ measure in (17) and (18) is
based on the components)omultiplied by the corresponding whereK is the number of clusters ama,; is the xpart of the
weights. To estimation of the weights two methods were usdeth cluster prototype.
the (7 /) evolution strategy and the evolutionary algorithmlhe y-part of the closest cluster prototype is the estimator
with the continuous representation, Gaassi mutation, M(X):
uniform crossover and tournament selection.

For the simultaneous search of the feature space and tA#x) =m,. . (20)
width parameter spacé& ¢r s) a combination of the TSb and
the grid search is proposed. Each solutiorepresenting the The forecasted-pattern is the mean ofpatterns forming the
selected components x is evaluated for each value of the nearest cluster. The number of clust&sis predefined or
or s from the assumed rangs is discretized). The best scoreadjusted during the learning phaseKI¥ 1 this method comes
and the width parameter value at which it was achieved aewn to thek-NN method withk = 1 andv(x, x)) = const. In
assigned to the solution. The solutions are modified using this case the variance of the estimator is the highest and its
the move operator for TSh deiird above. The best solution bias is thdowest. Increasing dk causes the increasing in bias
among | candidate solutions replaces the parent solutioRNd decreasing in variance. THashould be chosen carefully

Instead of TSb other feature selection method can be appli@fEnSure a compromise between bias and variance.
In the second forecasting procedure (FP2) inspiref2ily

where a and s are parametersontrolling the shape of the
function (see Fig. 2).

These functions have a maximum iu(x, x) = O.
Membership function (17) is a Gaussigpe function
whereas (18) is a Cauchype function with fatter tail than the



patternsx and y are grouped nidependently intoK and L 1. Concatenation of the paired x - andy - patterns in
clusters, respectively. In the forecasting task for day $ythe the pattern z.
subset of the learning set is selected containing only th%e Grouping of paterns z:

.~ Presentation of the query pattern x and assigning

pairs &, y) which include ypatterns representing day of type it 1o the nearest group (19).

s. Patterns from this subset are gradip@d two populations of 4. Reconstruction of the y - pattern paired with the
clusters are create@, and C, represented by the prototypes  guery patterm based on the y - part of the nearest
cluster prototype m (20).

m, and my, respectively. After grouping the successive pairs
(x, y) from the learning subset are presented, and the empirig@orithm 1: The first forecasting procedure (FP1).
conditional probabilitied(C,,|C, ) thatthe forecast patterp

belongs to clusteiC,;, when the corresponding pattesn 1. Independent grouping of patterns x and y.
belongs to cluste€,, are estimated. In the forecasting phas@- Estimation of the conditional probabilities
the xpattern is assigned to the groGp;-. The forecasted-y 5 PGy il -

. oo ; Presentation of the query patt ern x and assigning
pattern paired with it is determined from theototypesm, it to the nearest group (19).
weighted by the conditional probabiliti®$C,,|Cy i): 4. Reconstruction of the y - pattern paired with the
query pattern based on the cluster prototypes m
L and probabilities P(C.1| C. ) (21).
a_- P(CyJ |C><vi* m vl Algorithm 2: The second forecasting procedure (FP2).
m(x) == : (21)
4 P(C, IC,.) -
1=1
part x (p) paity (@)
. 11F %b\ J
wherem,, is the prototype of the clustey,,. |
: , . Poob
The prototypes of these-glusters have the largest share in > af ; VA
mean (21), which probability of occurrendea observing the 4 A
cluster C,;~ including the query pattern is the highest. The 0.9 )
number of clusters determine the bias and variance of the
model as in FP1. 08 ‘ : ‘ ‘
. . 0 10 20 30 40 50
The cluster prototypes determined in FP1 and FP2 are Component
potential construction patterns. Note that P2Fprototypesny Fig. 3. The antigen and antibody structure in AIS1.

representing periods preceding the forecasted periods and

prototypesm, representing forecast periods are not paired asghtierns. Unlike epitopes paratopes are modified during

was assumed for patterrsandy so far, but connected Using yaining. The paratope and epitope structure in Fig. 3 is shown.

conditional prob_abllltles. . . ) AB have the recagtion regions or receptive fields
The forecasting procedureseasummarized in Algorithms represented by the-dimensional hyperballs of radius> 0

1 and 2. . : : N
The clustering méiod applied to FP1 and FP2 should returr\1NIth <_:e_nters in the p0|r_1t|s. The rac_husr IS called t_he_ cross
the prototype vectors which represent groups of patterns inreact|V|ty threshold. It is unchanging, fixed a priori and the
same for each AB. Thketh AB can le seen as a paivy r).

U, X'or ¥ spaces. Many popular clustering methods can bIene cluster represented by an AB includes those AGs, whose

used, e.g.k-meansin crisp and fuzzy variants39], self . o .
organizing maps and neural g&]. These algorithms belong x-epitopes d_e_monstrate the afﬂmty_ for theparatope of this
: AB. The affinity depends on the distance between vectors

to the sequential clustering or partitioning ones, where the -
N andp as well as the croggactivity threshold.
measure of similarity between patterns and clusters are base L : . .
n the training phase the immune memory is formed (i.e.

on the distance meastaipx,m). The goal s to partitiohl data the population of ABs) which represents a set of clusters

points intoK disjoint groups so as to mininezthe within covering the population of the learning AGs. The quality of

cluster surrof-squares criterion. In the next sections two newy . . -
. A this memory is measured using an average forecast error.
methods dedicated to STLF and based on the artificial immune : ! :
In the forecasting phasan incomplete AG is presented

systems are described. These methods use the forecasting %rg(\)/{ng only the sepitope (query pattern). It is recognized by a
in the grouping phase. This distinguishes these metfiods ‘

the mentioned above ones, and enables to adjust the prototgﬁteOf ABs from the immune memory which demonstrate the

positions so as to minimize the forecasting error ity for this AG. We can infer about thegpitope of this
' AG on the basis of the-pgaratopes of thactivated ABs and so

B. Artificial Immune System AIS1 reconstruct it.

AIS1 was proposed irbB] and operates according to FP1. The steps of AIS1 are presented in Algorithm 3 and
The concatenated pattemsndy are representedytantigens  described in detail below.
(AGs) with epitopesi. Antigens are recognized by antibodies Step 1 The training AG population contains AGs with y
(ABs) which play a role of clusters. Epitopes correspond #@Pitopes representing historical daily curves of the same day
antibody paratopes (cluster prototypes) which are constructdfe as the forested day.
analogously to the epitopes:= [p' q']", wherep | X =a" Step 2 The AB paratopes are created by copying the

corresponds to-patterns, and i Y = s corresponds to-y €Pitopes of the training AGsi = u, k=1, N Thee,
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starting AB population has the same size as the training Aaining (immune memory creation)

population. The croseeactivity thresholdr is initiated by a 1. Loadingof  the training population of antigens.
2. Generation of the initial antibody population.
constant. 3. Calculation of affinity of antibodies for
Step 3 and 5.2The affinity of thek-th AB for thej-th AG " antigens. Y
depends on the distance between their paratope and epitopes. Evaluation of antibodies.
5. Do until the stop criterion is reached (clonal
selection loop).

€0, if d(p,,x;)>r 5.1. Do for each antibody.
_1 5.1.1. Clonnin g.
a(pk vXj) -1 d(pk ,X,-) . (22) 5.1.2.  Clonal hypermutation.
j1- —————, otherwist 5.2. Calculation of affinity of clones for
I r antigens.

5.3. Evaluation of clones.
5.4. Clonal selection.

It is assumed that H(py, x;) > 0 then thg-th AG is recognized Z.eSt

wherea(py, x;) I [0, 1].

Antigen  presentation  with X - epitope  and
by the k-th AB or the k-th AB is activated by thé-th AG. detection of the activated antibodies.
Affinity a(px, x;) informs about the degree of membership of’- Reconstruction — of the 'y _ -epitope using q
the j-th AG to the cluster represented by théh AB. The paratopes of the ac tivated antibodies.
affinity is maximal wherp,= x;. Algorithm 3: Artificial immune system AIS1.
Step 4 and 5.3For each AB the set of AGs lying in ts
recognition region is determined (i.e. AGs having the nonzero

affinity for this AB). For each AG from the s¥t the forecast i
of the load curve encoded in the AGpitope on the basis of A\ /A,x
the AB gparatope is determined and its error is calculated:

_ 100 | Zses = 1 @/ )| 23) a A
n t=1| Ziysy |

where:j | Y, Y is the set of AGs lying in the recognition Fig. 4. Hypermutation: shifts of the clondB) gowards antigens®§ lying in
region of thek-th AB, 7., is thet-th time series element in the the receptive field of the parent antibo@)(

forecast period+ ¢ (load) encoded in the-gpitope of thg-th i
the clone towards this AG. New paratope of jkté clone

AG: Y, = (2 1), Ty G/ ;) is the inverse function generated from thieth AB after hypermutation is:
for y-patterns (see Sectioll in [4]) which returns the
forecast ofz.,. on the basis of thk-th AB ¢-paratope and the Vli =V, +/7|j ;- vy, (25)
variables/ determined for th¢th AG epitope.
The evaluation measure of AB is the average forecast error

for all AGs lying in its recognition region: where;j [ Y, vﬂ'< is the paratope of the clone secreted by the
1 k-th AB and shifted towards theth AG, hgi [0, 1) is the
d, = A aa, - (24)  shift coefficient calculated from the sigid function:
k Lty
2

-1, (26)

j =

Step 5.In the clonal sel_ection loop successive popatai e = 1+expt b @ 1% )
of ABs are generated, which forecast the load curves encoded
in the AG yepitopes with the decreasing error. This loop .
include AB clonning, hypermutation, evaluation and the clonéf> Olis the slope parameter a,m;i~ N(L, 5).
selection. The stop condition is: there is no decreasing of the The valug of the shift coefficient depends on the edpr
averageorecast error if§ successive iterations. and takes higher values for larggy as well ash. The random

Step 5.1.1AB secrets as many clones as many AGs are Rerturbationx; with intensity reglated by s introduces a
its recognition region. Thus in the dense AG clusters mofhsturbance of the shift coefficient to prevent stagnation of the
clones are generated. learning process due to trapping into the local minima of the

Step 5.1.2The goal of the hypermutation is to modificateerror function.
the AB pamtopes to maximize their recognition and The shifts of clones are illustrated in Fig.The clones are
forecasting abilities. For a certain parent AB secreting cloné§ifted in the paratopspace from their initial position (at the
the hypermutation results in a shift of each clone towardrent AB) towards the AG#s we can sethehypermutation
different AG lying in the receptive field of this AB. The 9enerates newclones inside the region of the cluster
greater error (23) for thieth AG results in the greater shift of
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represented by the parent AElones do not exceed the subspaceX — .- Subspace Y ,
receptive fields of the parent AB. . 4 4
Step 5.4. For each training AG the s€ of ABs activated 3 X 24_,)0./’
by this AG is determined (this is a subset of the set consisting \g \ PN N
of the parent ABs and all clones generated from them in the x % ~ .~ TSR

current iteration of the clonal selection loop). The AB with the .~ N x oA Ae S
best score (24is selected from the s€ and become one of \E‘ >6( T : Q,;;;Cj’/””/ : ‘A
the parent AB in the next iteration. This clonal selection: ¥ ,,H' g : S Ous O
process is repeated for each AG. The maximum number of\\ L% [/ AB Ax’

ABs in the next population is thus equal to the number of . % >9< x 9 RN

AGs, but the actual number of ABs isua#ly smaller, since e A 3

the same AB can be SeleCt,e(,j by several AGs. The AB numqgé. 5. Subclusters in ir;(’e/subsanerepresented by the AB recognit
depends on the crossactivity thresholdr. The largerr
implies less ABs.

Step 6 and 7ABs contained in the immune memory have
paratopes formed during training representing ¢lusters of The number of clusters (ABs) results from the cesctivity
AGs in the best manner in terms of the forecasting ability. #yreshold and their compactness in the subspéc&he
the forecast phase the AG is presented having o@igiope.  prototypes of the subclustersXmandY are the gparatope and
The setQ of activated ABs is determined. Thepgratopes of qg-paratope, respectively. These paratopes are shaped
these ABs store information aboutepitopes of the tiaing  simultaneously by the hypermutation operator.
AGs which xepitopes were classified to the same clusters. The model parameters are: the crmeactivity threshold,
The y-epitope of the query AG is reconstructed from these ghe slope parameter of the sigmoid function the width

regins and corresponding subclusters in subsp‘é,ce/vhere:T are p
paratopesQ are gparatopes? are xepitopes an@ are yepitopes.

paratopes. The regression function is of the form: parameter of the normal distributianregulating intensity of
By the random perturbation of thghift coefficient 4, and the
a a(py, X)dy number of iterationsS determining the stop condition of the
mx)=+*2——. (27)  clonal selection loop.
9Qa(pk,x) The large value of the crossactivity threshold implies the

larger numbers of AGs in the reception fields of ABs and the

AB showing a greater affinity for the query AG have a greatd®9€r SetsQ of activated ABs. In this case the forecast is
impact on the reconstruction of itsepitope. When AG is not c@lculated by averaging morepgratopes. This implies an
recognized by any ABt imeans that the-&pitope represents a increase in the model bias and decrease in its variance. The

new load curve which is dissimilar to those contained in tHBCde! is less sensitive to noise in the training data, but also
training set and represented bypitopes of AGs. less accurate. Decreasing bét value has the opposite effect.

It also reduces the detection ability of new AGs.

In comparison to the aboweentioned methods of data
clustering, AIS1 during clustering uses the forecast errors.
This leads to such cluster positions in space thatmmze the
forecast error. More difficult regions in subspaie are

Discussion.In the immune memory creation process the
average forecast error for all ABs is minimized:

1.5 -
Ea k= covered by more ABs, which allows these regions to be
k= B ) represented more accurately. The number of groups is
15 1 L1000 | Zjes - Ty (e o/ ,-)| : adaptively adjusted depending on the data arrangement in
=—a a—a - min. (28) Lo o
KalYeliy, N & Zp space, which is an additial advantage.

C. Artificial Immune System AIS2

where the number of ABK{ is determined adaptively during ~ AIS2 operating according to FP2 includes the immune
training. memory consisting of two populations of ABs. The population
Subsequent populations of ABgenerated in the clonal of ABs of type x (ABx) recognize AGs representing the x
selection looprepresent the population of AG with lowerpatterns (AGx), whilst the population 88s of type y (ABY)
error. The final ppulation of ABs optimized itthis process is recognize AGs representing thepgtterns (AGy). Patterns
the immune memory. This population corresponds to the setgte the epitopes of AGxs and paratopes of ABxs, and patterns
the overlapping clusters iU space. These clusters arey are the epitopes of AGys and paratopes of ABys. Epitopes
composed of the spherical subclusters in the subspaaed and paratopes are fixed. ABx has the cresstivity threshold
subclusters in the Subspaﬁ’e The subcluster size iiX is r deﬁning the recognition region or receptive f|e|d]-(
limited by the radius. A subcluster inY is understood as a set dimensional hyperball) of radiuswith center in the poink.
of y-epitopes of these AGs, which are assigned to the sa®gnilarly, ABy has a receptive field of radissvith center in

subcluster in the SUbSpaKe This is illustrated in Flg 5. The the p0|nty Radii r and s are adjusted |nd|v|dua||y during
immune memory is complete, i.e. it cosall training AGs.
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training, so that AB covers AGs which epitopes are similar tdraining (immune memory creation)

the AB paratope. AG can activate or stimulate many ABs df ;gfi‘d'e”ngs of the training population of x - andy -
the same type .(x or y). Stimulation occurs when thg AG i§ i Gengeratibn of the initial x - and vy -antibody
the receptive field of AB. The strength of the stimulation  population.

(affinity) is dependet on the distance between an epitope an# (':)’fe)tﬂm;ﬂﬁgggig; the cross - reactivity thresholds
a paratope. AB represents a cluster of similar AGS. in th@ Determination of.the Cross - reactivity thresholds
feature spac&X or Y. Thek-th ABx can be seen as a pgik,( ofy -antibodies.

r), Wherepy = X« is a paratope recognizing and representing Dets”t‘:_ilq.""“on Ofp }rg igp"ica' conditional
AGx epitopes, and theth ABy can be seen as a paifu(S), 1o probabiities (ABY ABX,).
whereq = y is a paratope recognizing and representing AGY. ~ x. antigen presentation and detection of the
epitopes. Number of AGs and ABs of both types is equal to activatedx - antibodies. _ _ _
the number of learning patterns. Sizes of the recognitioh ;i‘i’ggjité:‘ct'o” (:Df(t/zg){d Aij)ar?gtelgfei:itiipsl.tope using y
regions of ABs depend on the data distributiorhie spaceX
andy. Algorithm 4: Artificial immune system AIS2.
After the two populations of the immune memory have
been created, the empirical conditional probabilit¢&By |
ABx),j, k= 1, N thatthej-th AGy stimulates thé&-th . . )
ABy, when the correspondingth AGx stimuldes thej-th y-patterns returning the forecast zf,;; using the epitope of
ABX, are determined on the training population of AGs. Thedg€]j-th AGy and the variables determined for thé-th ABy
probabilities are used to determine the forecast patyern€PItOPe.
paired with the query pattesq as well as the affinities. If the conditiong; ¢ d is satisfied, wheré is the error
The AIS2 is presented in Algorithm 4 and described ifhreshold value, it is assumed that jité AGy is similar to
detail béow. This is a modified version of the artificial thek-th ABy, and itis classified to class 1 as well as jria
immune system for forecasting semal time series proposed AGX, paired with it. When the above condition is not met the
in [54] and 5. j-th pair AGx, AGY) is classified to class 2. Class 1 indicates
Step 1 The training AGy population contains AGsthe high similarity between ABy and AGy. The classification
representing historical dailyurves of the same day type as th@rocedure is performed for each ABx. As a result, the pairs of
forecasted day ¢patterns) and the training AGx populationAGs are split into two classes for each ABX.
contains AGs representing Corresponding da||y curves The cross*eactivity threshold of th&-th ABX is defined as

Gee = Fy(Zera &), Fy (Y00 &) is the inverse function for

preceding the daily curves encoded in AGypétterns). follows:
Step 2 The paratopes of ABs of both types are @ddty
copying the epitopes of the training AGs = X Gk = Yk, "k = d(Pw:Xa) +dd(Py,X5) - d(Py,XA)], (30)

k= 1, N2The mumber of AGs and ABs of both types is

fixed and is the same as the number of learning pattérns whereB denotes the nearest AGx of class 2 tokiite ABXx,

The crosgeactivity thresholdsr and s do not require and A denotes the furthest AGx of class 1 satisfying the

initialization. conditiond(py, Xa) < d(p, Xg). The parameteri [0, 1) allows
Step 3 The recognition region of tHeth ABx should be as to adjust the crosseactivity threshold value fromyin = d(px,

large as possible and cover only the AGxs that satisfy twQ) to rimax= d(px, Xs)-

conditions: The reception field of thk-th ABx covers only these AGxs
(i) their epitopsx are similar to the paratog, and which are located in its geometrical neighborhood and are
(i) the AGy paired with them have epitopesimilar to thek-  characterized by similarity of AGys paired with them to khe

th ABy parabpei q. th ABy. This is illustrated in Fig. 6, where the reception field

A measure of similarity between tiith AGx and thek-th  of ABx, coversAGx,, AGx, AGx, andAGx,, because they are
ABx is the distance between their epitope and paratop@ar theABx, in X space and paired with theAGy, AGy,
d(pw, ;). Similarity between thg-th AGy and k-th ABy, AGy, andAGy, are similar toABy,. AGx; is outsidethe ABx,
mentioned in (ii) is measured using the forecast error of theception fieldbecauseAGys is not similar toABy, (to big
daily load cuve encoded in the paratope of tith ABy. This  error (29) forAGys). AGy,; andAGy, are also outside thaBx,
curve is forecasted using the epitope of e AGy. The reception field becaugte distance between them ahBXx, is

forecast error is: greater than the distance betwe&Bx, than AGx (AGx
cannot be included in the recigpt field of ABxy).
d = 100." |zk+tv1 - fy'l(yj,[ J k)| 29) Step _4 The_ recognitioq r_egion of thk-th ABy coptains
ki~ Tta1| z, | ' AGy which epitopes are similar to the paratope of this ABy. A
=. +t

measure of the similarity is error (29). The classification of the

_ _ . . AG pairs carried out in step 3 classify to cldsthose AGys
where: .., is the t-th time series element in the forecasiyhich are similar to th-th ABY.

period i+ ¢ (load) encoded in the petope of thek-th ABY: The crosgeactivity threshold of thekth ABy is
determined analogously to the threshold-tih ABXx:
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Space X Space Y
S =d(x,y A) +b[d(y.Ys) - d(d,Y )], (31) Aéx‘, o xdGx A
Aé AGy,
whereB denotes the nearest AGy of class 2 tokite ABY, ' o 4G,
and A dendes the furthest AGy of class 1 satisfying the ! Abx, 46x 5 Aéya
conditiond(qy, Ya) < d(Qw Ys). The parameteb | [0, 1) has ' AGx, 4B, 4o, ;
the same function as the parametéer (30). s A
In the recognition region of thieth ABy there are AGys S A oA Ay A0y

paired with AGxs lying in the recognitiong®n of thek-th Ao, AGy
ABX, bUt_m this .reglon there Can be a!so AGys palre(_j Wlﬂl}ig. 6. A cluster in the spacerepresented by the ABx recognition region
AGxs laying outside the recognition region of #ith ABX if  corresponding cluster in the spaverepresented by the ABy recognit
for these AGys the following condition is satisfiel{gy, Y) <  region, wherel is the paratop, O is the paratope, ® are epitopes andD
d(agx, Yg) (see Fig. 6). are epitopey.
Step 5 When both populationsf the immune memory are
created, the successive pairs of learning AGs are presentedsters inY. Thresholds of ABy are adjusted so that theyAB
(AGx, AGY), | = 1, R., For éach pair the sets of receptive field covers a tight cluster Yo The compactness of
stimulated ABx and ABy are determined and the conditiondlnis cluster is measured with the forecast error of the load
probabilities are estimate@(ABy|ABx) = Lji/N, whae L;; is curve encoded in the ABy paratope. This forecast is
the number of simultaneous stimulations ofjtle ABy andi- ~ determined using AGy belonging to the same cluster.
th ABx by the paired AGs. The number of groups isgaal to the number of learning
Step 6 and 7 In the forecast procedure new AGx,patterns, and locations of the cluster prototypeXiand Y
representing the query pattexnis presented to the immunespaces (xand yparatopes) are fixed and the same as the
memory. LetQ be a set of ABx stimulatebly this AGx. The locations of training patternsandy, respectively. Each AGx

forecasted patterty corresponding to the query pattern is(AGY) from the training set is covered by laast one ABx
estimated using regression function: (ABy). AGx located in dense clusters may be covered by

many ABX, especially when paired with them AGy are not

N outliers. AGx paired with an outlier AGy is covered by only
m(x)=a w; (X, (32)  one ABX, specialized to recognize this AGXx.

= The way of forming cluster in X makes their sizes
where dependent on the dispersion ofpatterns paired with -x

a P(ABy, | ABx)a(p;,X) patterns belonging to these clusters. To the cluster represented

w, (x)= Nii Q , (33) br?/ Alsk]mlghe)pgl:[ter:rxj is added _(incref?s_inglthe_cr_elxmctivirt]y

2on _ thresholdry), if the patterny; is sufficiertly similar to the

ka:‘l?;?P(AByk | ABX)a(p.X) paratope ofABy,. The pattern is sufficiently similar if it can

forecast the paratopgy with an error not greater than the

a(pi, x) | [0, 1] is the affinity informing about the threshold value Such a clustering procedure ensures that the
membership degree ofh¢ query AGx to the cluster forecast error for the training patterns is goeater than the
represented by thieth ABx defined as: threshold error.

The relationship between ABx and ABy are expressed in
probabilitiesP(ABy|ABX). The regression function is defined
using these probabilities and affinities ABx for AGx. The

(34)  share of the paratopg in forming of the regession curve
depends on the similarity between paratppeaired withg;
and the query pattem This paratope); has the larger share

Thus the forecast is the weighted average of ABy paratop&é?iCh is paired with ABx showing greater affinity for the

Weights express the sums of products of affinities of tH& €Y AGx, and for which a greater probabilty of
stimulated ABx for the query AGX and probliies simultaneos occurrence of the cluster they represent and the

P(ABYABX). clusters to which the query AGx was assigned is observed.

The learning procedure is deterministic and requinely
Discussion.The ABs in AIS2 represent clusters ¥oandy ©n€ Pass of the training datéhe determinis_tic_: nature of the
spaces. These clusters have a spherical shape, may overlapn&(ﬁ%el means stable respessand short training time. AlS2
are limited by the crossactivity thresholds, as in AIS1, but N@s three parameters: threshold eoand parameters andc
these thresholds are not the same. They armined adjusting thecrossreac_tlwty thresholds. Incr_easmg the yalues _
individually for each AB. The cros®activity thresholds of of these parameters implies an increase in cluster sizes. This
ABx determining the size of the groups X are adjusted to gives higher bias and sme_lller vari_ance of the model. During
the training data so that the clustersXircorrespond to tight the forming of clusters the information about the forecast error

€0, if d(p;,x)>r; orr, =0

1
apX) =1, M otherwise

l
| i
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is used which @tinguishes this forecasting model from others TABLE |
based on the classical clustering methods. FORECASTERRORS FORN-WE MODEL USINGDIFFERENTMETHODS OF
ESTIMATION OF BANDWIDTHS
January July Average
VI. EVALUATION OF PSBFMs Method  \  PE  MAPE. MAPE. MAPE. MAPE. MAPE

In this section we illustrate the proposed PSBFMs onScott 6 162 120 154 092 158 105
examples and we analyze their performance and features. In GV 158 121 151 096 155 109

' . S EA 132 136 128 090 130 113
the first example we train andptimize models for tasks of TSc 130 123 125 093 128  1.08
hourly load forecasting with one day horizon for the Polish
power system. Then we study thensitivities of the models to TABLE II
changes in parameter values amddel robustness to noisy FORECASTERRORS FORN-WE MODEL USING DIFFERENTMETHODS OFX
and missing data. We compare our models witteopopular COMPONENTSELECTION
STLF models such as: ARIMA, exponential smoothing and Method January July Average
neural network in the forecasting tasks on several load tirre—¢ M’i\zs“' Mfzgs[ Mi\zg“a' MQSES‘ M?ZE“‘ Mfgss[
series and forecasting horizons up to 7 days. Finally the ggs 137 120 135 090 136  1.05
computational complexity analysis of PSBFMs is carried out. %Ab i.gi ﬁ; i.gg 8.38 igg 1.82

In these stdies we use X3.1 and Y3.1 pattern definitions TSch 155 120 121 086 123 103

(see Sectionll in [4]) and Euclidean metric as a measure of
distance between patterns.

A. Training andOptimization of PSBFMs !

The task $ to forecast the hourly load of the Polish power 08F
system at hour= 1, 6, 12, 18, 24 for the next dag< 1). We
use the NWE in MISO version and other PSBFMs described
above in MIMO versions. The time series is from the periodE 04r |‘ ‘ ‘ ‘

I srs I ses I ca [ 71sc [ ] Tseh

1 1

0 5 20 25

0.6

quency

T
1

20022004 (see Fig. 1 in4]; these data can be downloaded 02
from the website http://gdudek.el.pcz.pl/variatsiditd. The
test samples are from January 2004 (without untypical 1 0 5

Component number

January) and July 2004. _ . I
In the NWE the bandwidth values were estimated usir15|g. 7. The frequencies of the component selection in thiéENmodel.

Scottds rule (10), GM (11)., tRfesufsbfithe Eombined optiatidh df e Bhdwith S

these methods were: values and selection of thepattern compoents using TSch

i GM:a,=0.1,0=0.05,L = 20, are shown in Tabl# and Fig. 7.

I EA: population size = 30, number of generatidis= From Tablell it can be seen that the validation error was
100, tournament siz& = 2, cresover probability = 0.9, reduced compared to the case without selection but the test
mutation probability of the individual = W, = 0.1, errors are statistidgl indistinguishable (Wilcoxon signegink

{1 TSc: number of iterations! = 100,l = 30,w;s = 0.1. test was used). This can be caused by the insufficient

These parameters were adjusted in the preliminary tests. Thfrmation about the target function included in the learning
stop criterion in EA and TSc was: there is no improvement gample. Note that the number of the learning points is only
results in 0.2B1 successive iterations. about one hundred and their sizeuig to 24, so they are
In Table | errors for validation (global LOO) and testsparsely distributed in the space. In addition, points are
samples are presented. The optimization of the bandwidiistorted by noise. Thus the target function in the
results in the validation error reduction but it did not bring thaeighborhoods of the test points is poorly represented by the
expected effect on the test sampldsing the local versions of learning points.
LOO: LOOv1 and LOGv2, we did not improve results on the  The average reduction in the number afhponents was as
test samples as well. follows: for SFS- 76%, for SBS 52% for GA- 60%, for TSb
In the next experiment we select the components of the x67% and for TSch 57%. This means that rejeagj more
patterns using SFS, SBS, GA and TSb. The parameters of @&n half of the s»pattern components should not adversely
and TSb determined on the basigreliminary tests were: affect the accuracy of the model. The most information about
1 GA: population size = 8, number of generatibhs 100, theforecast is included in the last components, i.e. the system
tournament sizels = 2, crossover probability = 0.9, loads at hours 23 and 24 (see Fig. 7).
mutation probability = 0.05, In conclusion it should be noted that the most accurate
1 TSb: number of iterationd = 100,I = 8. model based on the Nadaray#atson estimator was obtained
The bandwi dt hs wer e dertle r whemtlkedsmoathing pagametehs evereSdateutt usirg sScott's
The errors in Tabldl are presentedFig. 7 shows how often rule. Any attempt to optimize the model for the analyzed
the components were selected as inputs when using differégrecasting tasks did not bring a statistically significant
feature selection methods. improvement of the accuracy on the test sample.
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In the k-NN model the number of nearest neighblarend TABLE Ill
parametersp and g were optimized using the grid search ~ CRECASTERRORSAND THE;\F:ILN;,E\IF:\;)UART'LERANGES FORK-NN
mgthoq: It was assumekl= 1, 2p= €0, 50., 2' 5, ﬁet’hod T a L fay July Average
gl {0, 70.8, 5}. The model performance was evaluated in the MAPEs IQRs« MAPEy IQRst MAPEy IQR«
global LOO procedure. The validation errors reached lower kNN 147 112 099 101 123 114
FNM 122 130 096 089 1.08 1.06

valuesfor higher valueof p. The validation MAPE ap = 1
were: 1.58 forg= 0 (the linear model), 1.60 f@=10, 8, and
1.57 forg= 5. When using the same nonzero weights for each TABLE IV

construction pattern in (15) the validation MAPE was 1.65. FORECASTERRORS FORFNM USING COMBINED METHODS OF

o R COMPONENTSELECTION AND ESTIMATION OF §
Whenp = 1 andg= 0 the weighting fuction is linear of the

. A K Method January July Average
form: V(X,Xj) =1i d(X, Xj)/d(X, X ) In Tablelll the errors for MAPE,s, MAPEs MAPE,y, MAPEs MAPE,, MAPE«
this model are presented. The optimal values of the nearestsSFS+GS 146 113 142 098 144 105

TSb +GS 1.44 1.19 141 0.93 142 1.06

The extensig studies of FNM reported ih]] showed that
this model is ot very sensitive to parameterin (17) and
(18). So in our study it was assumed- 2. The parametes

5 24
vyas chang.(.ad according to_the sche.mes: _ g " %; o a an —ma ;ﬂ; :
() S =Db0neg Wheredpeqis a median of distances between = e R L B IR 1T H ], E
X-patterns in the trainingsdt= 0. 02, 0. 04, 53”31,2| 1 ;i - g aiog o 1
(i) s=dx,xX)k= 1, 2, &, 50. - e Hi S - 2P
The lower errors were achieved when we used scheme (i). x N B

In all forecasting tasks the Cauchy function (18) gave higher 10 20 _ 30| b4° 50 60
errors than the Gaussian function (17). The average validati _. oS! sampe number .

. . . . Fig. 8. The components of-patterns selected using combined algor
errors were: 1.55 for the Gaussian function and variant ('$Sb+GS for FNM (black elements).
2.04 for the Cauchy function and variant (i), 1.63 for the
Gaussian function and variant (ii), and 2.15 for the Cauchy

function and variant (ii). The optimal value sfin the model

with the Gaussian function does not exceed @,34 at its M I\M\]\
modal value of 0.26),.4 The errors for FNM with the W \/\/\

Gaussian membership function asdletermined using (i) in
Tablelll are shown. The optimat values ranged from 0.080

to 0.161.
From Tablelll it can be seen that FNM outperforia$N M f\/\f\/\

model. In further studies we simultaneously select components \ \
of x and optimize the width parametsrin FNM using a Cluster 5 Cluster 6 Cluster 7

combination of the feature selection algorlthm and the gr'lq 9. The clusters created by FRImeans model for the forecasting tas

search (GS). _AS a feature Se|eCti9n a_Igorithm SFS, SBS aﬂﬁ 1, 2004 (black lines are tikister prototypes, gray lines are the pat
TSb are applied. Theournament size in TSb= 8 and the u assigned to the clusters).

number of iterationd = 100. The errors in Tabl&/ are
shown. As can be seen the validation and test errors wereln the model using FP1 andmeans (FP1kmeans) the
reduced, but the test error reduction is statisticallgnly parameter is the number of groulds Each group is
indistinguishable (Wilcoxon test was used). Thelested represented by a prototype vectar which is a mean of-
components of yatterns for each forecasting task in Fig. &atterns belonging to this group. 8K value was changed
are presented. The average number -paittern components from 1 to 40. Models were evaluated in L&® procedure.
was reduced as follows: SFS+&%$6%, SBS+GS 49% and The errors for optimal values &f in TableV are shown. The
TSb+GSi 59%. Components 18, 23 and 24 were most ofterlusters created for the forecasting task of July 1, 2004 in Fig.
selected. 9 are shown. The query pattern in this case wag@ead to
The forecasting models based on the clustering methodsster 1 (Fig. 10). Cluster 3 includes only one outlier pattern
were examined under the grans6]. As the clustering representing the daily curves of 1 and 2 January 2003.
methodsk-means in crisp and fuzzy variants, agglomerative A similar test procedure was carried out for FP2 &nd
hierarchical clustering, self organizing maps amdiral gas means (FP2k-means). The number of clustéfsandL were
were used. The models were tested on 8 electric load tireanged fom 1 to 40 and the GS was used to find their
series and 4 energy price time series. The forecasting modptimal values using LO@1 procedure to model evaluation.
using FP2 and the cridpmeans clustering turned out to be theErrors in TableV are shown. For the forecasting task of July
best one. So we limit further studies to the models based bn2004 the lowest errors were achieveddor 25 andL = 29.
the crispk-means. The FP1 and FP2 are both examined. The clusters created forightask in Fig. 11 are presented, the

Cluster 1 Cluster 2 Cluster 3 Cluster 4
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TABLE V
FORECASTERRORS AND THEIRINTERQUARTILE RANGES FOR . .
K-MEANS-BASED MODELS 025 i
Method January July Average A
MAPEs IQRs MAPEs IQRst MAPEs  IQRs 5 Uy N
FP1+#-means 1.85 1.37 1.06 0.89 1.45 1.11
FP2+-means 1.52 1.11 1.07 0.88 1.29 0.95 0.2 7
= Part x
04 r r : r
TABLE VI 0 10 20 30 40 50
FORECASTERRORS AND THEIRINTERQUARTILE RANGES FOR Component
ARTIFICIAL IMMUNE SYSTEMS-BASED MODELS
Method January July Average Fig. 10. The test pattern (continuous black line) assigned to cluste
MAPEst 1QRst MAPEs IQORst MAPEs  10QRs (dashed line is the cluster prototype) in the forecasting task of July 1,
AIS1 1.40 1.27 0.99 0.97 1.19 1.06 EP14-means model.
AIS2 1.32 1.39 1.01 0.81 1.16 1.11

Clusters C «

validation errors depending oK and L in Fig. 12a are {
presented and the probabiliti€¥C,,[C) in Fig. 12b are N
presented. The query pattern was assigned to cléter
number 20 and the forecast pattgrivas recostructed from
the prototypesm, of clysters 1, 18, 19 and 22The w
probabilities P(C, ||C20) for these clusters were: N/ 4N, ‘
2/N and 1N, respectively. The forecasteepwttern in Fig. 13 {
[

2
b

is shown. f/\

In the first stage of AIS1 optimization the crassctivty
threshold was changed accordingrte Dd, whered is the
average distance between each training AG and AB from the

2D
2

NERNEN B

stages other parameters were changedording to the

)
YLD GRRIRIA

Clusters C y
initial populationand= 0. 1, 0.15, é, 1.0. Wh pm
were kept constanty = 0.2,s = 0.1 andS = 10. In the case w
when the quer AG was not recognized by any AB, the
nearest AB was selected and itparatope was taken as the M M
predicted yepitope of the query AG. The lowest validation
errorsMAPE,, = 1.27 were obtained fdd = 0.3. In the next M M

2

RNRG EREER

schemes: \
i) b= 0.05, 0. D8(Q.3aéds =A.1, 0 0, at M
(i) s= 0. 025, 0. O=M®,3anéb,=02.. 200, at

B
0

Using schemes (i) and (ii) it was observed that the AIS1 m
model showed low sensitivitio changes in parametebsand

s. The validation error in these cases varied between 1.24 q‘—ﬂ;d 11. The clusters created by FRZweans model for the forecasting 1
1.27. It was assumed that the best values of parametei3 arg; j,1y 1, 2004.

=0.3,6=0.2,5 = 0.1 andS = 10. Errors for this parameter

values in TableVl are presented. Ehsize of the immune (5 ®
memory (number of clusters) was changing in 30 training
sessions from 52 to 84 and the number of iterations of the
clonal selection loop varied from 16 to 57 (the average value .
was 27). In Fig. 14 the se of activated ABs in the
forecasting task of July 1, 2004 and the reconstructed forecast,,
pattern are shown.

~

0

&
ate s
M

0]
1

number

C,
=
1S

|00

In the firststage of AlIS2 optimization we change= 1.00, 10
1.25, é, 3.00 keepinbp=actlihrer p cotom =
lower values oZmany validation AGs were unrecognized (up % 1 20 30 40 T 15w s
to 18%). The value off = 2.00 ensures recognition of 98% -::K::[ © number
AGs. Increasingyabove thé value leads to an increase in the 09 1 11 12 13 f):[m
validation error. In the second stage of the study the values o _
of b andc were reducedi(=c = 0.8, 0.6, & Ml I S copepite 0 v e o o

value ofd= 2. The validation error in these cases remained &isk of July 1, 2004.
a similar level, but the numberf ounrecognized AGs
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increased. The forecast errorsaat 2, b =c =1 in TableVI The noise in the load atia arises from errors of
are shown. Fig. 15a shows the empirical conditionaheasurements and load estimation. It is assumed that the
probabilitiesP(ABY|ABX) estimated on the training set in the
forecasting task of July 1, 2004. From this figure it ¢@n i T -
seen a specific pattern showing simultaneously activated ABs o2y 7 \
in both populations of immune memory. These are ABs
representing load curves of days lying in the same periods of -
the years. The weights (33) of activated ABs for this
forecasting task in Figl5b are shown and in Fig. 16 the
activated ABys and the reconstructegattern are presented. / ] ] ]
It is worth noting that all clustering methods except AlS2 4% 5 10 15 20 25
are stochastic and unstable. They can give different results for Component

the same input. Fig. 13. The prototypem, of clusters of nofzero conditional probabilitit
L P(Cy,|Cxi=20) (gray lines), the reconstructed forecast pattern (dashed lin
B. Sensitivity and Rotsiness of PSBFMs actual forecast pattern (continuous black line) for the forecasting task

In this section we analyze the sensitivity of PSBFMs td- 2004; FP2k-means model.
changes in parameter values and their robustness to noisy and
missing data. For nondeterministic models results presented in
tables and figures are averaged over 30 training sessions. /

The sensitivity measure to changes in parameter value is 0f ~ \ F ]
defined as follows: °

0.2

0.2

Part x and p Party and q

r r

S, = MAPE stmax = MAPEsimin A@oo, (35) 4 10 20 20 40 50
MAPEin Component

o . Fig. 14. The test pattern(continuous black line) recognized by a set of A
whereMAPEgmin andMAPEgmax are minimum and maximum (gray lines) and reconstructeeppttern (dashed line) in the forecasting tas

test errors, respectively, when the value of the paranpeteduly 1, 2004; AIS 1 model.
changes from O to 1.50%, p* is the value ofp ensuring the
minimal validation error.
Measure (35) informs about the relative percentag%‘)
difference between the maximum and minimum errors
MAPEg when the parameter varies in a given range. This
measure is calculated for each parameter keeping other
parameters constant at their optimal vallesTableVIl the
values ofS, are presented.
In many cases the parameter value ensuring minimum
validation error §*) is not the same as its value ensuring
minimum test errorgd ) . The differences between test errors
for p* andpd DMAPE = MAPE(p*) T MAPE(p6 ) ar e shown
in Table VII. DMAPE shows how much the forecast error
increases when we estimate model parameters in the
validation procedure like LOO. Fig. 15. The probabilitie®(ABy|ABx) (a) and weights of ABy (bjor the
The test error reached a minimum for the parameter valfggecasting task of July 1, 2004; AIS2 model.
estimated in the validation procedure in two cases:sfan
FNM anddin AlS2. The deviatiorDMAPE in no case exceed

(b)

the value of 0.1. The sensitivity of the-\ME model to the

width parameter was approximately twice higher than for o2r

FNM. The AIS1 model is the most sensitive to the parameter of

D determining the crossreactivity thresti@g, = 35.29%). The =

sensitivity of this model to other parameters is low (no more 0.2

than 3.56%). Also AIS2 is highly sensitive to the

crossreactivity threshold. The sensitivity to the number of 045 5 10 15 20 5
clusters in the models usifkgmeans is at the level of 116%. Component

FNM shows the lowest sensitivity to changes in paramete'(:r - 16. The activated ABys (gray lines), the reconstructed forecast |
ashed line) and actual forecast pattern (continuous black line) f

among the proposed PSBFMs. forecasting task of July 1, 2004; AIS2 model.



