
adfa, p. 1, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Short-Term Load Forecasting using Random Forests 

Grzegorz Dudek 

Department of Electrical Engineering, Czestochowa University of Technology,  
Al. Armii Krajowej 17, 42-200 Czestochowa, Poland  

dudek@el.pcz.czest.pl 

Abstract. This study proposes using a random forest model for short-term elec-
tricity load forecasting. This is an ensemble learning method that generates 
many regression trees (CART) and aggregates their results. The model operates 
on patterns of the time series seasonal cycles which simplifies the forecasting 
problem especially when a time series exhibits nonstationarity, 
heteroscedasticity, trend and multiple seasonal cycles. The main advantages of 
the model are its ability to generalization, built-in cross-validation and low sen-
sitivity to parameter values. As an illustration, the proposed forecasting model 
is applied to historical load data in Poland and its performance is compared with 
some alternative models such as CART, ARIMA, exponential smoothing and 
neural networks. Application examples confirm good properties of the model 
and its high accuracy. 
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1 Introduction 

Short-term load forecasting (STLF) is necessary for economic power generation and 
system security. The accurate load forecasts lead to lower operating cost which con-
tributes to savings in electric utilities. The importance of STLF accuracy has become 
even more evident for the deregulated electricity markets. To correct the forecast 
inaccuracy the utility has to buy or sell power in the real time market but it comes at 
the expense of higher real time prices. For these reasons, STLF is an integral part of 
planning and operation for electric utilities, regional transmission organizations, ener-
gy suppliers, financial institutions, and participants in the generation, transmission, 
and distribution of electricity. The key importance of STLF is reflected in the litera-
ture by many forecasting methods  that have been applied, including conventional 
methods and new computational intelligence and machine learning methods. The 
STLF is a complex problem because the load time series is nonstationary in mean and 
variance, with trend and multiple seasonal cycles (daily, weekly and annual). 

The most commonly employed conventional STLF methods are the Holt-Winters 
exponential smoothing (ES) [1] and the autoregressive integrated moving average 
(ARIMA) models [2]. In ES the time series is decomposed into trend and  seasonal 



components. An disadvantage of the ES models is that they involve initialization and 
updating of many terms (level, periods of the intraday and intraweek cycles). ARIMA 
models can be extended for the case of multiple seasonalities but a combinatorial 
problem of selecting appropriate model orders is an inconvenience. This order selec-
tion process is considered subjective and difficult to apply. Another disadvantage is 
the linear character of the ARIMA models. 

The rapid development of computational intelligence has brought new methods of 
STLF [3]. They are based mostly on artificial neural networks (ANNs) and fuzzy 
logic but also on support vector machines, clustering methods and expert systems. 

The multilayer perceptron (ANN which is most often applied in STLF) is an attrac-
tive tool to modeling of nonlinear problems due to its universal approximation proper-
ty. But learning of ANN is not easy, because of its complex structure and many pa-
rameters (hundreds or even thousands of weights to estimate).  

Fuzzy logic models allow us to enter input information by rules formulated verbal-
ly by experts and describing the behavior of complex systems by using linguistic ex-
pressions. Since it is difficult to gain knowledge directly from the experts, to generate 
a set of if-then rules the learning from examples procedure is applied in neuro-fuzzy 
networks. The neuro-fuzzy system structure is complex and the number of parameters 
is usually large (it depends on the problem dimensionality and complexity), so the 
learning is difficult and does not guarantee convergence to the global minimum. 

To sum up, the modeling the nonstationary time series with trend and multiple sea-
sonal cycles usually requires complex model with many parameters. The searching of 
such a model space is a hard and time consuming process. To find the globally opti-
mal solution intelligent searching methods, such as evolutionary algorithms and 
swarm intelligence, are often applied. The disadvantages of the complex models are 
their worse generalization ability, unclear structure and uninterpretable parameters.  

In this article we study the random forest as a univariate model for STLF. This is a 
simple model combining regression trees with only few parameters to estimate. Alt-
hough the random forests have been used for STLF (see [4]), the novelty of this work 
is data preprocessing. It simplifies the forecasting problem eliminating nonstationarity 
and filtering trend and seasonal cycles longer than the daily cycle.  

The paper is organized in a theoretical and an empirical part. In the beginning we 
introduce the main concepts of the random forests. Thereafter we present the STLF 
methodology based on random forests and patterns of the seasonal cycles of time 
series. In the last section we use real load data to provide an example of model build-
ing and forecasting in practice. 

2 Random Forests 

Random forests (RFs) are an ensemble learning method for both classification and 
regression problems [5]. RF is a collection of decision trees that grow in randomly 
selected subspaces of the feature space. The principle of RFs is to combine a set of 
binary decision trees (Breiman's CART – Classification And Regression Trees [6]), 
each of which is constructed using a bootstrap sample coming from the learning sam-



ple and a subset of features (input variables or predictors) randomly chosen at each 
node. Thus in contrast to the CART model building strategy, an individual tree in RF 
is built on a subset of learning points and on subsets of features considered at each 
node to split on. Moreover trees in the forest are grown to maximum size and the 
pruning step is skipped.  

After individual trees in ensemble are fitted using bootstrap samples, the final deci-
sion is obtained by aggregating over the ensemble, i.e. by averaging the output for 
regression or by voting for classification. This procedure called bagging improves the 
stability and accuracy of the model, reduces variance and helps to avoid overfitting. 
The bias of the bagged trees is the same as that of the individual trees, but the vari-
ance is decreased by reducing the correlation between trees (this is discussed in [7]). 
Breiman showed that random forests do not overfit as more trees are added, but pro-
duce a limiting value of the generalization error [5]. The RF generalization error is 
estimated by an out-of-bag (OOB) error, i.e. the error for training points which are not 
contained in the bootstrap training sets (about one-third of the points are left out in 
each bootstrap training set). An OOB error estimate is almost identical to that ob-
tained by N-fold cross-validation. The large advantage of RFs is that they can be fitted 
in one sequence, with cross-validation being performed along the way. The training 
can be terminated when the OOB error stabilizes. 

The algorithm of RF for regression in Fig. 1 is shown [7].  

 

Fig. 1. Algorithm of RF for regression. 

The two main parameters of RF are: the number of trees in the forest K and the 
number of input variables randomly chosen at each split F. The number of trees can 
be determined experimentally. During the training procedure we add the successive 
trees until the OOB error stabilizes. The RF procedure is not overly sensitive to the 
value of F. The inventors of the algorithm recommend F = n/3 for the regression RFs. 

Another parameter is the minimum node size m. The smaller the minimum node 
size, the deeper the trees. In many publications m = 5 is recommended. And this is the 

1. For k = 1 to K: 
1.1. Draw a bootstrap sample L of size N from the training data. 
1.2. Grow a random-forest tree Tk to the bootstrapped data, by recursively re-

peating the following steps for each node of the tree, until the minimum 
node size m is reached. 
1.2.1. Select F variables at random from the n variables. 
1.2.2. Pick the best variable/split-point among the F. 
1.2.3. Split the node into two daughter nodes. 

2. Output the ensemble of trees {Tk} k= 1, 2, …, K. 
 
To make a prediction at a new point x: 
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default value in many programs which implement RFs. RFs show small sensitivity to 
this parameter.  

It is noteworthy that using CART model, we get a classifier or an estimate of the 
regression function, which is a piecewise constant function obtained by partitioning 
the predictor space. This is a serious limitation of CART. But building an ensemble of 
CART we get results which are much smoother than from a single tree. 

Using RFs we can determine the prediction strength or importance of variables 
which is useful for ranking the variables and their selection, to interpret data and to 
understand underlying phenomena. The variable importance can be estimated in RF 
as the increase in prediction error if the values of that variable are randomly permuted 
across the OOB samples. The increase in error as a result of this permuting is aver-
aged over all trees, and divided by the standard deviation over the entire ensemble. 
The more the increase of OOB error is, the more important is the variable.  

3 Data Preprocessing 

Our goal is to forecast the load curve for the next day. The load time series  
{ zl} l= 1, 2, …, L is divided into daily cycles of length n. To eliminate weekly and annual 
variations the daily cycles are preprocessed to obtain their patterns. The pattern is a 
vector with components that are functions of actual time series elements. Two types 
of patterns are defined: the input patterns x and output (forecast) ones y. The forecast 
pattern yi = [yi,1 yi,2 … yi,n]

T encodes the successive actual time series elements zl in 
the forecasted daily cycle i+τ: zi+τ = [zi+τ,1 z i+τ,2 … zi+τ,n]

T, and the corresponding 
input pattern xi = [xi,1 xi,2 … xi,n]

T maps the time series elements in the daily cycle i 
preceding the forecast cycle: zi = [zi,1 zi,2 … zi,n]

T. Vectors y are encoded using current 
process parameters from the nearest past, which allows to take into account current 
variability of the process and enables decoding. Some definitions of the functions 
mapping the original space Z into the pattern spaces X and Y, i.e. fx : Z → X and  
fy : Z → Y are presented in [8]. The most popular definitions are of the form: 
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where: i = 1, 2, …, N – the daily period number, t, j = 1, 2, …, n – the time series 
element number in the period i, τ – the forecast horizon, zi,t – the t-th time series ele-
ment in the period i, iz  – the mean value of elements in period i. 

The function fx (1) expresses normalization of the vectors zi. After normalization 
they have the unity length, zero mean and the same variance. Note that the 
nonstationary and heteroscedastic time series is represented by patterns having the 
same mean and variance.     

The forecast patterns yi are defined using analogous function to fx, but the encoding 
parameters (iz  and dispersion measure in the denominator of (2)) are determined 



from the process history. This enables decoding of the forecasted vector zi+τ after the 

forecast of pattern yi is determined. We use the inverse function )( ,
1

tiy yf −  for this.  

From the set of pairs {(x1,y1), ..., (xN,yN)}, where yi represents the load at hour t for 
the next day (this is the t-th component of pattern yi for τ = 1), the learning set for RF 
is generated. For each query point (pattern x representing the k-th daily period) the 
learning set is prepared individually from the historical data. It contains M nearest 
neighbors of the query pattern representing the same days of the week (Monday, ..., 
Sunday) as the query pattern. This restriction to M nearest neighbors is due to our 
goal: we do not want to built a global model but a local one, which is competent for 
the query pattern. So there is no sense to use the distant learning points to train the 
model. Of course this model is not suitable for other query points and we have to built 
the separate model for each query point. But the cost and time of model building in 
this case are not limiting factors.  

4 Application Examples 

We illustrate the construction of RF forecasting model on the example of STLF using 
the hourly electrical load data of the Polish power system from the period 2002–2004.  
(This data can be downloaded from the website http://gdudek.el.pcz.pl/varia/stlf-
data.) Our goal is to forecast the load curve for the next day (τ  = 1). The test set in-
cludes 30 days from January 2004 (without untypical 1 January) and 31 days from 
July 2004. The training set containing M = 50 pairs (xi,yi) is generated individually for 
each forecasting task (load forecasting at hour t of the day j). In our example there are   
(30+31)⋅24 = 1464 forecasting tasks. For each of them the separate RF model is creat-
ed. 

In the first phase of our research we investigate how the model parameters affect 
an error. In Fig. 1 the OOB errors against K and F are plotted. From these figures it 
can be seen that MSE drops from K = 1 to K about 100 and then stabilize. When F 
increases to 8 MSE decreases and then gradually increases. Hence it is assumed that 
the best values of these parameters are: K = 100 and F = 8, i.e. n/3. 

Fig. 2 shows OOB error depending on the minimum node size m and the frequen-
cies of m values ensuring the lowest errors. This figure demonstrates the best accura-
cy for deepest trees in ensemble.  

   The variable importance for several forecasting tasks in Fig. 3 is shown. It is hard 
to formulate a rule concerning the variable importance observing these figures. In 
many cases the variable importance graphs in forecasting tasks for neighboring hours 
of the same day vary considerably. Some variables have negative importance. This 
indicates that permutation of these variable values leads to a lower error. 

Now we compare in simulations the proposed RF model with CART models in two 
variants: typical and with fuzzy nodes [9]. In the typical variant the trees were grown 
until the minimum node size m was reached. This parameter was adjusted individually 
for each forecasting task. In the fuzzy CART variant the trees were constructed in a 
classical way and then the crisp tests in nodes were replaced with fuzzy tests. The 
fuzzy test determines the membership degrees to the branches outgoing from the 



node. The slope parameters of the membership functions were tuned for each test 
node and for each forecasting task individually.    

 

Fig. 2. OOB MSE depending on the number of trees (left) and the  number of input variables 
randomly chosen at each split (right). 

 

Fig. 3. OOB MSE depending on the minimum node size (line) and the frequencies of m values 
(bars) ensuring the lowest errors. 

  

Fig. 4. The variable importance for several forecasting tasks. 

We compare the RF model also with popular STLF models such as: ARIMA, ex-
ponential smoothing (ES) and artificial neural network (ANN). These models are 
described in [10]. The time series are preprocessed for ANN in the same way as for 
RF (patterns of the daily periods are used). The ANN learns using the training sample 
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selected from the neighborhood of the query pattern (local learning). As shown in 
[10] for STLF in local learning procedure the one-neuron model is sufficient. To find 
the best ARIMA and ES models automated procedures implemented in the forecast 
package for the R system [11] were used.    

MAPE (mean absolute percentage error) is adopted here to assess the performance 
of the forecasting models. The results of the forecasts (MAPE for the test samples 
MAPEtst and the interquartile range (IQR) of MAPEtst) in Table 1 are presented. In this 
table the results determined using the naïve method are also shown. The forecast rule 
in this case is as follows: the forecasted daily cycle is the same as seven days ago. 
From table 1 it can be seen that the lowest errors were obtained by ANN and RF. 
Mean errors for RF and ANN are statistically indistinguishable (Wilcoxon signed-
rank test was used).  

The histograms of the percentage errors (PE) in Fig. 5 are shown. The most favor-
able error distributions are observed for RF and ANN. The distributions for ARIMA 
and ES are more flattened and asymmetrical.  

Table 1. Results of forecasting. 

Model January July Mean 
MAPEtst IQR MAPEtst IQR MAPEtst IQR 

RF 1.42 1.39 0.92 0.98 1.16 1.17 
CART 1.70 1.58 1.16 1.17 1.42 1.39 

Fuzzy CART 1.62 1.47 1.13 1.12 1.37 1.35 
ARIMA 2.64 2.34 1.21 1.24 1.91 1.67 

ES 2.35 1.88 1.19 1.30 1.76 1.56 
ANN 1.32 1.30 0.97 1.01 1.14 1.15 
Naïve 6.37 5.36 1.29 1.20 3.78 3.82 

 

 

Fig. 5. Histograms of errors. 
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5 Conclusions 

The purpose of the present study was to ascertain the effectiveness of using the RF 
models in STLF. The proposed approach allows us to forecast time series with multi-
ple seasonal variations. It is due to the data preprocessing and defining the patterns of  
the seasonal cycles on which the model operates. The target function is approximated 
locally in the neighborhood of the query point. This simplify the forecasting problem 
and leads to the better accuracy.  

The RF forecasting model is characterized by simplicity. The number of parame-
ters to be estimated is small, which implies a simple procedure of the model optimiza-
tion. This task is facilitated by the built-in cross-validation mechanism. It is worth 
noting that the model is not very sensitive to the parameter values.   

In application examples the RF model provided as accurate forecasts as ANN and 
outperformed the crisp and fuzzy CART, ARIMA and ES models. The RF model is 
simpler to train and tune than the above mentioned models, does not overfit and re-
duces variance due to averaging the outputs of many simple regression trees (weak 
learners) over ensemble.       
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