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Abstract. This study proposes using a random forest modedtort-term elec-
tricity load forecasting. This is an ensemble l@agnmethod that generates
many regression trees (CART) and aggregates thaiitse The model operates
on patterns of the time series seasonal cycleshwimoplifies the forecasting
problem especially when a time series exhibits tatimmarity,
heteroscedasticity, trend and multiple seasondesyd@he main advantages of
the model are its ability to generalization, binlteross-validation and low sen-
sitivity to parameter values. As an illustratione tproposed forecasting model
is applied to historical load data in Poland ascgirformance is compared with
some alternative models such as CART, ARIMA, exptiaesmoothing and
neural networks. Application examples confirm gqudperties of the model
and its high accuracy.

Keywords: Short-term load forecasting, seasonal time séviezasting, ran-
dom forests.

1 I ntroduction

Short-term load forecasting (STLF) is necessaryefmnomic power generation and
system security. The accurate load forecasts ledoMter operating cost which con-
tributes to savings in electric utilities. The imf@mce of STLF accuracy has become
even more evident for the deregulated electricigriiats. To correct the forecast
inaccuracy the utility has to buy or sell powettie real time market but it comes at
the expense of higher real time prices. For theasans, STLF is an integral part of
planning and operation for electric utilities, r@gal transmission organizations, ener-
gy suppliers, financial institutions, and partiaigg in the generation, transmission,
and distribution of electricity. The key importancESTLF is reflected in the litera-
ture by many forecasting methods that have be@fieap including conventional
methods and new computational intelligence and mackearning methods. The
STLF is a complex problem because the load timies& nonstationary in mean and
variance, with trend and multiple seasonal cyaliedly, weekly and annual).

The most commonly employed conventional STLF mesha the Holt-Winters
exponential smoothing (ES) [1] and the autoregvessntegrated moving average
(ARIMA) models [2]. In ES the time series is decarspd into trend and seasonal
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components. An disadvantage of the ES models tghieg involve initialization and
updating of many terms (level, periods of the idénaand intraweek cycles). ARIMA
models can be extended for the case of multiplscsedities but a combinatorial
problem of selecting appropriate model orders isnaonvenience. This order selec-
tion process is considered subjective and diffitolepply. Another disadvantage is
the linear character of the ARIMA models.

The rapid development of computational intelligehes brought new methods of
STLF [3]. They are based mostly on artificial néunmatworks (ANNs) and fuzzy
logic but also on support vector machines, clustemethods and expert systems.

The multilayer perceptron (ANN which is most oftgpplied in STLF) is an attrac-
tive tool to modeling of nonlinear problems duetsouniversal approximation proper-
ty. But learning of ANN is not easy, because ofcibsnplex structure and many pa-
rameters (hundreds or even thousands of weiglgstimate).

Fuzzy logic models allow us to enter input inforimatby rules formulated verbal-
ly by experts and describing the behavior of complgstems by using linguistic ex-
pressions. Since it is difficult to gain knowleddjeectly from the experts, to generate
a set of if-then rules the learning from examplescpdure is applied in neuro-fuzzy
networks. The neuro-fuzzy system structure is cemphd the number of parameters
is usually large (it depends on the problem dinmmaity and complexity), so the
learning is difficult and does not guarantee cogeace to the global minimum.

To sum up, the modeling the nonstationary timeesanith trend and multiple sea-
sonal cycles usually requires complex model witmyngarameters. The searching of
such a model space is a hard and time consumirgggsoTo find the globally opti-
mal solution intelligent searching methods, sucheaslutionary algorithms and
swarm intelligence, are often applied. The disathges of the complex models are
their worse generalization ability, unclear struetand uninterpretable parameters.

In this article we study the random forest as aanéte model for STLF. This is a
simple model combining regression trees with oely parameters to estimate. Alt-
hough the random forests have been used for STad-[8), the novelty of this work
is data preprocessing. It simplifies the forecaspmblem eliminating nonstationarity
and filtering trend and seasonal cycles longer thardaily cycle.

The paper is organized in a theoretical and an geapipart. In the beginning we
introduce the main concepts of the random foré&dtereafter we present the STLF
methodology based on random forests and patternbeoteasonal cycles of time
series. In the last section we use real load dapadvide an example of model build-
ing and forecasting in practice.

2 Random For ests

Random forests (RFs) are an ensemble learning mhdtiroboth classification and
regression problems [5]. RF is a collection of dieri trees that grow in randomly
selected subspaces of the feature space. Thepleérafi RFs is to combine a set of
binary decision trees (Breiman's CART — ClassifmatAnd Regression Trees [6]),
each of which is constructed using a bootstrap E&aogming from the learning sam-



ple and a subset of features (input variables ediptors) randomly chosen at each
node. Thus in contrast to the CART model builditrgtegy, an individual tree in RF
is built on a subset of learning points and on stésf features considered at each
node to split on. Moreover trees in the forest gmawn to maximum size and the
pruning step is skipped.

After individual trees in ensemble are fitted usbuptstrap samples, the final deci-
sion is obtained by aggregating over the ensenilgeby averaging the output for
regression or by voting for classification. Thi®spedure called bagging improves the
stability and accuracy of the model, reduces vagaand helps to avoid overfitting.
The bias of the bagged trees is the same as ttltaeahdividual trees, but the vari-
ance is decreased by reducing the correlation legtwrees (this is discussed in [7]).
Breiman showed that random forests do not ovesfimare trees are added, but pro-
duce a limiting value of the generalization errb}. [The RF generalization error is
estimated by an out-of-bag (OOB) error, i.e. thergfor training points which are not
contained in the bootstrap training sets (abouttbind of the points are left out in
each bootstrap training set). An OOB error estimgtalmost identical to that ob-
tained byN-fold cross-validation. The large advantage of RRbat they can be fitted
in one sequence, with cross-validation being peréat along the way. The training
can be terminated when the OOB error stabilizes.

The algorithm of RF for regression in Fig. 1 iswhd?7].

1. Fork =1 toK:

1.1. Draw a bootstrap sampleof sizeN from the training data.

1.2. Grow a random-forest tr@gto the bootstrapped data, by recursively re-
peating the following steps for each node of tke tuntil the minimum
node sizemis reached.

1.2.1. SelecF variables at random from timevariables.
1.2.2. Pick the best variable/split-point amongRhe
1.2.3. Split the node into two daughter nodes.

2. Output the ensemble of tre€Bfi=1, 2, . «-

To make a prediction at a new point

f<x>:§kz_l:mx> o)

Fig. 1. Algorithm of RF for regression.

The two main parameters of RF are: the numberegfstin the foresk and the
number of input variables randomly chosen at eg@tih 5. The number of trees can
be determined experimentally. During the trainimggedure we add the successive
trees until the OOB error stabilizes. The RF praceds not overly sensitive to the
value ofF. The inventors of the algorithm recommédnd n/3 for the regression RFs.

Another parameter is the minimum node sizeThe smaller the minimum node
size, the deeper the trees. In many publicatiors5 is recommended. And this is the



default value in many programs which implement R®ESs show small sensitivity to
this parameter.

It is noteworthy that using CART model, we get assifier or an estimate of the
regression function, which is a piecewise constanttion obtained by partitioning
the predictor space. This is a serious limitatib@ ART. But building an ensemble of
CART we get results which are much smoother thamfa single tree.

Using RFs we can determine the prediction stremgtimportance of variables
which is useful for ranking the variables and thsstection, to interpret data and to
understand underlying phenomena. The variable itapoe can be estimated in RF
as the increase in prediction error if the valuethat variable are randomly permuted
across the OOB samples. The increase in errorrasudt of this permuting is aver-
aged over all trees, and divided by the standaxihten over the entire ensemble.
The more the increase of OOB error is, the moreoitat is the variable.

3 Data Preprocessing

Our goal is to forecast the load curve for the nday. The load time series
{z}=1 » .. is divided into daily cycles of length To eliminate weekly and annual
variations the daily cycles are preprocessed taioliheir patterns. The pattern is a
vector with components that are functions of actimé series elements. Two types
of patterns are defined: the input pattexrend output (forecast) ongs The forecast
patterny; = [Vi1 Vi2 ... yi,n]T encodes the successive actual time series elements
the forecasted daily cycle- 7. z.; = [Zir1 Zisr2 - zp,m]T, and the corresponding
input patternx; = [X1 X2 ... xi,n]T maps the time series elements in the daily ciycle
preceding the forecast cyclg:= [z17, ... z,]". Vectorsy are encoded using current
process parameters from the nearest past, whiotvalio take into account current
variability of the process and enables decodingné&alefinitions of the functions
mapping the original space into the pattern spaces andY, i.e.f, : Z - X and
fy:Z - Yare presented in [8]. The most popular definitiares of the form:

i~ % Z.i~ %

fx(zi,t):n—i 1:y(zi+r,t):n—’
DAL, 2@, -2y

where:i = 1, 2, ...,N — the daily period numbet, j = 1, 2, ...,n — the time series
element number in the periodr — the forecast horizo,; — thet-th time series ele-
ment in the period, zZ — the mean value of elements in period

The functionf, (1) expresses normalization of the vectgrsAfter normalization
they have the unity length, zero mean and the saar&ance. Note that the
nonstationary and heteroscedastic time seriespieesented by patterns having the
same mean and variance.

The forecast patterns are defined using analogous functiorf,jdut the encoding
parameters % and dispersion measure in the denominator of §23) determined

(2)



from the process history. This enables decodinth@fforecasted vectar, ; after the
forecast of pattery; is determined. We use the inverse funct'rtgﬁ(yivt) for this.

From the set of pairs X{,y), ..., &n,Yn)} wherey; represents the load at hdufor
the next day (this is thieth component of pattery) for 7= 1), the learning set for RF
is generated. For each query point (pattemepresenting thé&-th daily period) the
learning set is prepared individually from the bigtal data. It contain$1 nearest
neighbors of the query pattern representing theesdays of the week (Monday, ...,
Sunday) as the query pattern. This restrictioMtmearest neighbors is due to our
goal: we do not want to built a global model bubeal one, which is competent for
the query pattern. So there is no sense to usdistent learning points to train the
model. Of course this model is not suitable foreothuery points and we have to built
the separate model for each query point. But thet aod time of model building in
this case are not limiting factors.

4  Application Examples

We illustrate the construction of RF forecastingdloon the example of STLF using
the hourly electrical load data of the Polish posistem from the period 2002—2004.
(This data can be downloaded from the website /fgudek.el.pcz.pl/varia/stif-
data.) Our goal is to forecast the load curve ligr next day £ = 1). The test set in-
cludes 30 days from January 2004 (without untypicdlanuary) and 31 days from
July 2004. The training set containikh= 50 pairsX;,y;) is generated individually for
each forecasting task (load forecasting at hadrthe dayj). In our example there are
(30+31)24 = 1464 forecasting tasks. For each of themeparste RF model is creat-
ed.

In the first phase of our research we investigate the model parameters affect
an error. In Fig. 1 the OOB errors agaiksandF are plotted. From these figures it
can be seen that MSE drops frétn= 1 toK about 100 and then stabilize. When
increases to 8 MSE decreases and then gradualiyaises. Hence it is assumed that
the best values of these parameterskare100 and- = 8, i.e.n/3.

Fig. 2 shows OOB error depending on the minimumensidem and the frequen-
cies ofm values ensuring the lowest errors. This figure diestrates the best accura-
cy for deepest trees in ensemble.

The variable importance for several forecastasks in Fig. 3 is shown. It is hard
to formulate a rule concerning the variable impacta observing these figures. In
many cases the variable importance graphs in fetiecatasks for neighboring hours
of the same day vary considerably. Some variabée® megative importance. This
indicates that permutation of these variable valeads to a lower error.

Now we compare in simulations the proposed RF maitel CART models in two
variants: typical and with fuzzy nodes [9]. In tiypical variant the trees were grown
until the minimum node size was reached. This parameter was adjusted indilydua
for each forecasting task. In the fuzzy CART varite trees were constructed in a
classical way and then the crisp tests in node® weplaced with fuzzy tests. The
fuzzy test determines the membership degrees tdotheches outgoing from the



node. The slope parameters of the membership Gnxtivere tuned for each test
node and for each forecasting task individually.
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Fig. 2. OOB MSE depending on the number of trees (left) tie number of input variables
randomly chosen at each split (right).
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Fig. 3. OOB MSE depending on the minimum node size (larg) the frequencies af values
(bars) ensuring the lowest errors.
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Fig. 4. The variable importance for several forecastisggta

We compare the RF model also with popular STLF risodech as: ARIMA, ex-
ponential smoothing (ES) and artificial neural natkv (ANN). These models are
described in [10]. The time series are preprocefsedNN in the same way as for
RF (patterns of the daily periods are used). Th&Adarns using the training sample



selected from the neighborhood of the query patfereal learning). As shown in
[10] for STLF in local learning procedure the oreron model is sufficient. To find
the best ARIMA and ES models automated procedungdemented in théor ecast
package for th&® system [11] were used.

MAPE (mean absolute percentage error) is adoptesltbeassess the performance
of the forecasting models. The results of the fasex (MAPE for the test samples
MAPE4 and the interquartile rangeQR) of MAPE,4) in Table 1 are presented. In this
table the results determined using the naive mednedlso shown. The forecast rule
in this case is as follows: the forecasted dailgleys the same as seven days ago.
From table 1 it can be seen that the lowest em@n®e obtained by ANN and RF.
Mean errors for RF and ANN are statistically insigtiishable (Wilcoxon signed-
rank test was used).

The histograms of the percentage errors (PE) inF-aye shown. The most favor-
able error distributions are observed for RF andNANhe distributions for ARIMA
and ES are more flattened and asymmetrical.

Table 1. Results of forecasting.

Model January July Mean
MAPE 4 IQR MAPE 4 IQR MAPE 4 IQR
RF 1.42 1.39 0.92 0.98 1.16 1.17
CART 1.70 1.58 1.16 1.17 1.42 1.39
Fuzzy CART 1.62 1.47 1.13 1.12 1.37 1.35
ARIMA 2.64 2.34 1.21 1.24 1.91 1.67
ES 2.35 1.88 1.19 1.30 1.76 1.56
ANN 1.32 1.30 0.97 1.01 1.14 1.15
Naive 6.37 5.36 1.29 1.20 3.78 3.82
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Fig. 5. Histograms of errors.



5 Conclusions

The purpose of the present study was to ascetaireffectiveness of using the RF
models in STLF. The proposed approach allows derexast time series with multi-
ple seasonal variations. It is due to the datarpegssing and defining the patterns of
the seasonal cycles on which the model operatestarhet function is approximated
locally in the neighborhood of the query point. §kimplify the forecasting problem
and leads to the better accuracy.

The RF forecasting model is characterized by siertgli The number of parame-
ters to be estimated is small, which implies a séngpocedure of the model optimiza-
tion. This task is facilitated by the built-in cesgalidation mechanism. It is worth
noting that the model is not very sensitive topgheameter values.

In application examples the RF model provided awiate forecasts as ANN and
outperformed the crisp and fuzzy CART, ARIMA and E®dels. The RF model is
simpler to train and tune than the above mentiamedels, does not overfit and re-
duces variance due to averaging the outputs of rsanple regression trees (weak
learners) over ensemble.
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