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Abstract. Medium-term electric energy demand forecasting plays an important
role in power system planning and operation as well as for negotiation forward
contracts. This paper proposes a solution to medium-term energy demand
forecasting that covers definition of input and output variables and the fore-
casting model based on a neuro-fuzzy system. As predictors patterns of the
yearly periods of the time series are defined, which unify input data and filter out
the trend. Output variable is encoded in tree ways using coding variables
describing the process. For prediction of coding variables, which are necessary
for postprocessing, ARIMA and exponential smoothing models are applied. The
simplified relationship between preprocessed input and output variables is
modeled using Adaptive-Network-Based Fuzzy Inference System. As an illus-
tration, we apply the proposed time series forecasting methodology to historical
monthly energy demand data in four European countries and compare its per-
formance to that of alternative models such as ARIMA, exponential smoothing
and kernel regression. The results are encouraging and confirm the high accu-
racy of the model and its competitiveness compared to other forecasting models.
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1 Introduction

Accurate medium-term electric energy demand forecasting plays an essential role for
electric power system planning and operation, and offers significant benefits for
companies operating in a regulated and deregulated energy markets. Generally, it is
used to optimize energy production and transmission and improve power system
reliability. It is necessary for scheduling and coordinate maintenance and production
across a power system, negotiation fuel purchases for power stations, and optimization
of renewable energy sources, such as wind farms.

Characteristic feature of the electricity demand time series is the yearly seasonality
corresponding to climatic factors and weather variations. Also a trend is observed
following the economic and technological development of a country, and random
component disturbing the time series. These features should be included in the fore-
casting process to increase the prediction accuracy.
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The medium-term load forecasting (MTLF) methods can be categorized into two
general groups [1]. The first group, referred to as the conditional modeling approach,
focuses on economic analysis, management and long term planning and forecasting of
energy load and energy policies. It takes into account changes in socioeconomic condi-
tions which impact energy demands. Input variables include historical load data and
weather factors as well as economic indicators and electrical infrastructure measures.
Efforts of researchers in this field are focused on definition of optimal set of input variables
and construction of appropriate forecasting models. An example of a model of this type
can be found in [2], where macroeconomic indicators, such as the consumer price index,
average salary earning and currency exchange rate are taken into account as inputs.

The second group, referred to as the autonomous modeling approach, requires a
smaller set of input information to forecast future electricity demand. Primarily past
loads and weather variables. This approach is more suited for stable economies. The
forecasting models used in this group include classical methods such as ARIMA or
linear regression [3] as well as computational intelligence methods, such as neural
networks [4, 5] and support vector machines [6].

The forecasting model proposed in this work can be classified to autonomous
modeling approach. It uses neuro-fuzzy network which works on preprocessed data.
Inputs are defined as patterns of yearly fragments of the demand time series, which are
normalized version of demand vectors. Outputs are encoded demands. The proposed
way of time series preprocessing unifies data and filters out a trend.

The remaining sections of the paper are organized as follows. In Sect. 2, time series
representation is described. Section 3 presents in detail a neuro-fuzzy forecasting
model. In Sect. 4, we evaluate the performance of the model in monthly electricity
demand forecasting using real-world data. Finally, Sect. 5 is a summary of our
conclusions.

2 Time Series Representation

Let us consider the task of prediction of the monthly electricity demand with horizon 7.
The predicted time series point is E;.,. As predictors we use preprocessed n points
preceding the forecasted point, i.e. the time series fragment X; = {E;_,,.., Ei_,42, ..., E;}.
This fragment is represented by input pattern x; = [x; 1 X;5 ... x,-,,,]T. The components of
this vector are defined as follows [7]:

Eini—E;
X =———— 1
Lt Di ( )
where: t=1, 2,..., n, E; is the mean value of the points in sequence X;, and

n
D; = \/ (Eicnsj— E;)* is a measure of their dispersion.
=1
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Note, that the x-pattern defined using the above equation is a normalized vector
Eips1 Einso ... Ej]". 1t has the unity length and the mean value equal to zero.
Moreover, x-patterns representing different fragments have the same variance. Thus,
the time series, which is nonstationary, is represented by unified patterns, having the
same mean and variance. The trend is filtered out. When n = 12 the x-pattern carries
information about the shape of the yearly cycle.

The output variable, E;,, is encoded in three ways. In the first approach (C1) the
forecasted value is encoded as follows:

Ei..—E;

el Al 2

- @

where E; and D; are determined from the sequence X;.

Note, that E; and D; are known at the moment of making the forecast (moment i)

and can be used for calculation the forecast of demand based on the forecast of y;
returned by the forecasting model. We use for this the transformed Eq. (2):

Eii.=yDi+E (3)

In the second approach (C2) E; and D; are determined from the annual period fol-
lowing the period X;, i.e. the period including time series fragment { E;, 1, E;\, ..., Eiy12}.
This approach is used for forecast horizon t € {1, 2,..., 12}. Note, that in this case coding
variables E; and D; are not available at the time of making the forecast. Thus, they should
be forecasted. In the experimental part of the work we use ARIMA and exponential
smoothing (ES) for forecasting the coding variables.

In the third approach (C3), which is used only for one-step ahead forecasts (t = 1),
the coding variables E; and D; are determined from the annual period including time
series fragment {E;_,.>, E; .13, ..., Eiy1}. In this case coding variables cannot be
calculated from time series elements because the value of E;,; is not known. Thus, E;
and D, should be predicted. Just like in the case of C2, we use for this ARIMA and ES.

3 Neuro-Fuzzy Forecasting System

The proposed forecasting model is based on Adaptive-Network-Based Fuzzy Inference
System (ANFIS) developed by Jang [8]. This is a multi-input, single-output
quasi-nonlinear model consisting of a set of linguistic if-then rules. Its architecture is
functionally equivalent to a Sugeno type fuzzy rule base. In Fig. 1 ANFIS architecture
in application to the energy demand forecasting is shown. Squares in this figure
indicate adaptive nodes, whereas circles indicate fixed nodes (without parameters).
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The functions of ANFIS nodes in subsequent layers are described below.
Layer 1. A node represents a membership function. In our case this is a Gaussian

function of the form:
X — 2
Hap (xe) = exp l_ (7,,1k> ] (4)
Oy

where m =1, 2, ..., M is the fuzzy set number, k=1, 2, ..., 12 is the x-pattern
component number, A}’ is the fuzzy set describing linguistically the input component
X, ¢t and o' are premise parameters: center and spread, respectively.

An output of the node expresses a membership degree of x; in the fuzzy set A}
The number of nodes is determined by the number of linguistic labels M and the
x-pattern length.

Layer: 1 2 3 4 5

X1 Xz Xqp

Fig. 1. ANFIS architecture.

Layer 2. A node expresses a firing strength of the mth rule. It is calculated as the
product t-norm:

12
o = T g (x0) (5)
k=1

The firing strength of the mth rule depends on the membership degree of each
x-pattern component in the relevant fuzzy set. It has the highest value if the x-pattern
components coincide with the centers of the membership functions.
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Layer 3. A node expresses a normalized firing strength for the mth rule:

m

= (6)

Layer 4. A node expresses a conclusion of the mth rule. Conclusion is determined
using the Takagi-Sugeno-Kang method, where the output membership functions are
either linear or constant (first or zeroth order Sugeno-type systems). Each rule weights
its output level by the firing strength of the rule. The node function for the first order
system is of the form:

12
=" (Z ayg'xi + bm> (7)
=1

where a; and b" are consequent parameters.
Layer 5. A node computes the overall system output as the sum of all incoming
signals:

M 12
M o™ (Z ayx; + b'”)
y= sz _m=l_ \i=l

M
m=1 ol
=1

(8)

J

Note, that the output of each rule is a linear combination of inputs and the final
output of the system is the weighted average of all rule outputs. Because the mem-
bership functions are nonlinear in our case, the weights (firing strengths) are dependent
on inputs nonlinearly, and the final output is nonlinear.

I our case the rule base is of the form:

12
If x; is A} and. . .and xj; is A{z then 7! = Za,lxk +b!
k=1
12
If x; s A% and. . .and xpy is A%Z then 7> = Zaka +b? )
k=1

12
If x; is Allu and. . .and xj, is A% then M = Zai”xk + M
k=1

The premise part of each rule defines a fuzzy region for the linear model included in
the consequence part. The inference mechanism interpolates smoothly between each
local model to provide a global model.
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Before the training, an initialization of ANFIS is required. Initial positions of the
membership functions in the premise parts of rules are determined using fuzzy c-means
clustering on the input data. The number of clusters corresponding to the numbers of
rules M is selected in leave-one-out cross-validation procedure. This parameter decides
about the bias—variance tradeoff. Increasing M we increase the model variance and
decrease its bias.

For ANFIS training, i.e. estimation of the premise and consequent parameters, a
hybrid learning algorithm is applied. It uses a combination of the least-squares and
backpropagation gradient descent methods to model the training data set. The error
measure minimized during training is defined by the sum of the squared difference
between actual and desired outputs.

4 Application Example

In order to assess the performance of the proposed forecasting model to obtain gener-
alized conclusions, we use it to forecast monthly electricity demand for four European
countries: Poland (PL), Germany (DE), Spain (ES) and France (FR). The data used
for the experiments were retrieved from the ENTSO-E repository (www.entsoe.eu).
The datasets contain monthly electricity demand from the period 1998-2015 for PL and
1991-2015 for other countries. The forecasts are made for 2015, using data from pre-
vious years as training data. The only model parameter is M (number of rules in ANFIS).
It was selected for each ANFIS model from the range 2-13 in the leave-one-out
cross-validation.

The forecasts were generated in two procedures. In the first procedure (A) the
forecasts for successive 12 months of 2015 are generated by 12 ANFIS models. Each
model gets the same input pattern representing time series fragment from January to
December 2014, and produces a forecast for kth month of 2015 (k = 1, 2,..., 12). Thus,
the forecast horizon for the model for January 2015 is t = 1, for the model for February
2015 is t = 2, etc. The output variable is encoded using C1 or C2 approach. In the
latter case coding variables E; and D; for 2015 are predicted using ARIMA and ES on
the basis of their historical values, i.e. values determined for 12 months of the suc-
cessive years. The results of forecasting in Fig. 2 are shown.
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Fig. 2. Forecasts of coding variables.
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In the second procedure of forecasting (B) one-step ahead forecasts are generated
(t = 1) for successive months of 2015. The input patterns for the models represent 12
preceding months, i.e. the model for January 2015 gets input pattern representing time
series fragment from January to December 2014, the model for February 2015 gets
input pattern representing time series fragment from February 2014 to January 2015,
etc. The output variable is encoded using C1 or C3 approach. The latter case needs the
coding variables E; and D; to be predicted. We use for this ARIMA and ES, as in the A
procedure.

The real and forecasted values of monthly demand are presented in Figs. 3 and 4,
and errors for each month of the test period in Figs. 5 and 6. Forecast errors for
validation and test samples in Tables 1 and 2 are presented. In these tables results of
comparative models are also shown: ARIMA, ES and Nadaraya-Watson estimator
(N-WE) [7]. As can be seen from the figures and tables, it is hard to select the best
model variant. For PL data the lowest errors gives variant C1 for both A and B
forecasting procedures, and the worst variant is C2-ES. C1 is also the best for DE,
variant B. For three out of eight cases the variants using ES, i.e. C2-ES and C3-ES,
turned out to be the most accurate among the proposed ones. And variants using
ARIMA were the best in two cases. When comparing errors of all models, it should be
noted that the classical ES model outperformed all other models in five of eight cases.

Comparing results for A and B procedures we can conclude that variant B which
generates one-step ahead forecasts, usually provides better results than variant A. An
exception is FR data, where higher errors in variant B are observed. Due to significant
contribution of the random component in the time series the errors for successive
months are very varied. Different level of heteroscedasticity in time series for different
countries and also occurrence of nonlinear trend in some of them cause deterioration in
the model accuracy.
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Fig. 3. Real and forecasted monthly demand for 2015, variant A.
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Fig. 6. Errors for consecutive months of 2015, variant B.
Table 1. Forecast errors, variant A.
PL DE ES FR
MAPE, ;| MAPE,, | MAPE, ;| MAPE,,, | MAPE,,, | MAPE,,, | MAPE,,; | MAPE,,
A-C1 2.27 1.57 2.96 4.93 2.63 4.58 3.57 3.81
A-C2-ARIMA | 1.57 2.43 1.82 3.92 2.00 3.04 2.64 4.02
A-C2-ES 1.57 321 1.82 3.66 2.00 2.99 2.64 343
ARIMA - 2.08 - 2.54 - 2.67 - 4.02
ES - 1.92 - 2.32 - 2.17 - 3.02
N-WE - 2.03 - 3.12 - 2.08 - 3.56
Table 2. Forecast errors, variant B.
PL DE ES FR
MAPE,,; | MAPE,,,| MAPE, ;| MAPE,,,| MAPE, ;| MAPE,; | MAPE, ;| MAPE,,
B-Cl1 2.04 1.06 2.70 2.87 2.33 3.92 3.14 5.95
B-C3-ARIMA | 1.67 2.19 2.32 3.33 1.92 2.66 2.64 4.01
B-C3-ES 1.67 2.80 2.32 2.91 1.92 2.92 2.64 4.49
ARIMA - 2.02 - 2.56 - 2.18 - 391
ES - 1.92 - 2.32 - 2.16 - 2.98
N-WE - 1.35 - 2.72 - 342 - 3.99
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5 Conclusion

This work presents an ANFIS model which is used for medium-term electric demand
forecasting. The model works on preprocessed time series fragments - patterns of yearly
cycles. The patterns unify data and reduce nonstationarity. The novelty of this work is
that output variable is encoded in three ways using coding variables determined from
history or forecasted using ARIMA or exponential smoothing. The advantage of the
ANFIS is that despite the complex structure, there is only one parameter to be tuned —
the number of rules.

In the light of the experimental study, it can be concluded that neuro-fuzzy infer-
ence models have been proven to be useful in medium-term load forecasting. Their
accuracy depend on time series features. For PL data set ANFIS model in its basic
variant (C1) provided the best results. But for other data sets other models generated
better results. In the future work, we are going to test the ANFIS forecasting model
thoroughly in medium-term electric demand forecasting for other European countries.
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