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Abstract. Multivariate regression tree methodology is used for forecasting time
series with multiple seasonal cycles. Unlike typical regression trees, which
generate only one output, multivariate approach generates many outputs in the
same time, which represent the forecasts for subsequent time-points. In the
proposed approach a time series is represented by patterns of seasonal cycles,
which simplifies the forecasting problem and allows the forecasting model to
capture multiple seasonal cycles, trend and nonstationarity. In application
example the proposed model is applied to forecasting electrical load of power
system. Its performance is compared with some alternative models such as
CART, ARIMA and exponential smoothing. Application examples confirm
good properties of the model and its high accuracy.

Keywords: Multivariate regression tree � Seasonal time series forecasting �
Pattern-based forecasting

1 Introduction

Multivariate or multi-output regression aims to simultaneously predict multiple output
variables. There are two general approaches for solving multi-output regression
problems: either by decomposing the problem into multiple single-output problems or,
by adapting a model so that it directly handles multi-output data. The former solution
can be time consuming task especially in the case of many outputs and large size of the
training data. Moreover, the relationships among the output variables are ignored
because they are predicted independently, which may affect the accuracy of the pre-
dictions. The latter solution is not as popular because of the complexity of the multi-
variate regression model. It should be able to capture not only the underlying
relationships between input and output variables but also the internal relationships
between output variables. According to past empirical works [1, 2] multi-output models
ensure better predictive performance especially when the output variables are
correlated.

The multivariate regression model learns from the training set W = {(x1, y1),
(x2, y2),…, (xN, yN)}, where x 2 X = ℝn is a n-dimensional input vector and y 2 Y = ℝm

is a m-dimensional output vector, a target function f which assigns to each input vector
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an output vector: f : X! Y. State-of-the-art multi-output regression methods are defined
as extensions of standard single-output methods such as statistical methods, support
vector machines, kernel methods, regression trees, and classification rules [3].

In the case of forecasting problems the input vector x includes predictors (past and
present data) and the output vector y includes forecasted variables (future data). The
output vector can contains variables of different types, which are dependent on the
same predictors, e.g. demand for m various goods, or a single variable in different
time-points, e.g. demand for a single good at time-points t + 1, t + 2, …, t + m, where
m is a forecast horizon. In the experimental part of this work we consider an example of
short-term load forecasting, i.e. electrical hourly demand forecasting for the next day.
Input vector includes power system hourly loads for the day preceding the forecasted
day (n = 24) and output vector includes hourly loads for the next day (m = 24). Load
time series exhibit multiple seasonal cycles of different lengths: daily, weekly and
annual (Fig. 1). The daily and weekly profiles change during the year. The daily profile
also depends on the day of the week. The load time series expresses trend and is
nonstationary in mean and variance. To deal with these all features the load time series
is preprocessed to filter out a trend, weekly and annual cycles. The way of time series
representation is described in Sect. 2.

Many various methods has been developed for load time series forecasting. They
can be roughly classified as conventional and unconventional ones. Conventional
approaches employ regression methods, smoothing techniques and statistical analysis
such as ARIMA and exponential smoothing. Unconventional approaches use compu-
tational intelligence and machine learning methods such as: neural networks (NN),
fuzzy inference systems, neuro-fuzzy systems and support vector machines. These
approaches are reviewed in [4, 5]. Most of them are single-output models, but others
are able to predict many outputs simultaneously. They include [6–8]: radial basis
function NN, generalized regression NN, counterpropagation NN, self-organizing
maps, artificial immune systems, nonparametric kernel regression, nearest neighbour
regression and clustering-based models.

Regression trees as universal regression methods have been used for load time
series forecasting as well [9]. They were originally developed as single-output models
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Fig. 1. The hourly electricity demand in Poland in three-year (a) and one-week (b) intervals.
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but they can be easily adapted to multi-output models. Advantages of multi-output
regression trees (MRT) are: much smaller size than a set of single-output regression
trees constructed for individual outputs, and taking into account the relationships
between outputs when the tree is constructed. In this paper we define and explore MRT
for power system load forecasting using patterns of daily cycles as inputs and outputs.

2 Time Series Representations Using Patterns

The daily periods of the load time series are preprocessed and are used as the input
vectors for the forecasting model. They express daily shapes or profiles of the time series
called x-patterns. The i-th daily period of the load time series Li = [Li,1 Li,2 … Li,n] is
represented by the input pattern xi = [xi,1 xi,2… xi,n] 2 X = ℝn. It is a normalized version
of the load vector Li. The components of x-pattern are defined as follows [10]:

xi;t ¼ Li;t � �Li
Di

ð1Þ

where: i = 1, 2, …, N is the daily period number, t = 1, 2, …, n is the time series
element number in the period i, Li,t is the t-th load time series element in the period i, �Li

is the mean load in the period i, and Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

l¼1
ðLi;l � �LiÞ2

s
is the dispersion of the time

series elements in the period i.
As normalized vectors x-patterns have unity length, zero mean and the same

variance. Note that the load time series, which is nonstationary in mean and variance, is
represented by x-patterns having the same mean and variance. The x-pattern carries
information about the shape of the daily load curve. A trend and also weekly and
annual variations are filtered.

An output vector y expresses the forecasted daily profile. When the forecast horizon
is s (in days), the forecasted load vector Li+s = [Li+s,1 Li+s,2 … Li+s,n] is represented by
an output pattern yi = [yi,1 yi,2 … yi,n] 2 Y = ℝn. Their components are defined as
follows:

yi;t ¼ Liþ s;t � �Li
Di

ð2Þ

where: i = 1, 2, …, N, t = 1, 2, …, n.
Note that in (2) we use the coding variables �Li and Di for the day i instead of the

day i + s. This is because their values for the day i + s are unknown at the moment of
forecasting. Using their known values for the day i we can calculate the forecasted load
value from transformed Eq. (2):

L
_

iþ s;t ¼ y_i;tDi þ �Li ð3Þ

where y_i;t is the t-th component of the y-pattern forecasted by the model.
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Due to preprocessing daily periods of the load time series using x- and y-patterns
we unify the input and output data and simplify relationships between them. This is
further discussed in [10].

3 Multivariate Regression Trees for Forecasting

Multivariate regression trees is an extension of CART (Classification and Regression
Trees [11]) proposed by Segal [12]. It works exactly the same way as classical CART,
except that there is multiple response variables instead of one. As in CART, the
response variables can be continuous or class symbols. Predictor variables can be of
different types: quantitative or qualitative. Due to dealing with different types of data,
decision trees are an attractive tool for classification and regression problems.

Tree-based methods partition the feature space X into a set of rectangles, and then
fit a simple model, usually a constant, in each one. Let us consider multivariable
regression problem with multi-input and multi-output continuous variables: x and y,
respectively (in our case x are n-dimensional input patterns and y are n-dimensional
output patterns). MRT is constructed with a standard top-down induction algorithm.
We are starting to build a tree splitting the X space into two regions: xj � t and
xj > t. This occurs in node 1 (root node). The variable xj and split-point t are chosen to
achieve the best fit. Then we model the response by the mean of y in each region. In the
next step one or both of regions are split into two more regions in the nodes at the next
level of the tree, and this process is continued, until some stopping rule is applied. The
result is a partition into the K disjoint regions. The corresponding regression model
predicts y with a constant y_k in region Rk:

y_k ¼
1
Nk

X

i : xi2Rk

yi ð4Þ

This model is represented by the binary tree. The full dataset of N samples is split
into two subsets in the root node. Samples satisfying the condition xj � t at each node
are assigned to the left branch, and the others to the right branch. The terminal nodes
(leaves) of the tree correspond to the final K regions.

The algorithm of growing a regression tree needs to automatically decide on the
splitting variable xj and split-point t at each node. We seek the splitting variable
j among all n variables and split-point t with a greedy algorithm testing all variables and
all possible split-points for them. To do so we define a function which is maximized
during the searching process. It bases on within node sum of squares (it plays a role of
the impurity measure of the node):

SSk ¼
X

i : xi2Rk

Xn

l¼1

ðyi;l � �ylÞ2 ð5Þ

where �yl is the average of l-th components of the samples in node k.
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The splitting function expressing reduction in impurity after split is of the form:

/kðj; tÞ ¼ SSk � SSl � SSm ð6Þ

and the best split maximizes this function:

max
j2f1;2;...;ng

t2Uj

/kðj; tÞ ð7Þ

where l and m are daughter nodes of the node k, which is split, and Uj denotes the set of
all split-points possible for variable xj.

The tree is constructed by recursively splitting nodes so as to maximize the above
criterion. Tree size is a tuning parameter governing complexity of the model. The
optimal tree size should be adaptively chosen from the data. We consider two
approaches which determine the tree size. The first one splits tree nodes if the value of
criterion (4) is positive (reduction of impurity) and the number of samples in the node is
higher than L. This approach produces a tree with internal nodes having at least
L samples and leaves having less than L samples. The second approach splits nodes if
the impurity is reduced and the variance of y-patterns in the node is higher than v:

Vark ¼ 1
Nkn

X

i : xi2Uk

Xn

l¼1

ðyi;l � �ylÞ2 [ v ð8Þ

Parameters L and v determine the tree size. Higher values of these parameters leads
to the smaller trees, which tend to underfitting. On the other hand, too small values lead
to bigger trees and overfitting. The optimal values of L and v are estimated in the local
version of leave-one-out cross-validation, which is presented in Fig. 2.

4 Application Example

In this section the proposed MRT model was applied to forecast the electricity load
demand. As it was described in Sect. 1 electricity load time series exhibits multiple
seasonal cycles. The data used for the experiments were retrieved from Polish power

Fig. 2. Algorithm of the local leave-one-out.
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system. They contain hourly electricity load data from 2002 to 2004 (the load time
series is shown in Fig. 1). The forecast horizon is s = 1, i.e. 24 h ahead. The MRT
models are constructed for 31 days of January 2004 and 31days of July 2004 (in total
62 models for 62 forecasting tasks). For each forecasting task (test sample) the learning
set is created individually from the historical data. It contains pairs of patterns repre-
senting the same days of the week (Monday,…, Sunday) as the query pattern x and
forecasted pattern y.

Two variants of MRT models are used, which differ in the node splitting criterion:

• MRT1, where the node is split if the impurity is reduced and the number of samples
in the node is higher than L,

• MRT2, where the node is split if the impurity is reduced and the variance in
y-patterns in the node is higher than v.

The model parameters: number of samples L or variance v, are estimated in the
local leave-one-out procedure, in which the validation samples are chosen one by one
from the set of k = 10 nearest neighbors of the query pattern. In these procedures
parameters were estimated using a grid search: L was searched from 4 to 50 with a step
size of 2, and v was searched from 0.001 to 0.005 with a step size of 0.0002.

In Fig. 3 an example of MRT1 is shown: tree constructed for July 1, 2004. The
optimal value of L was 32 in this case. As can be seen from this figure the tree has
fifteen nodes in total, of which eight are leaves. The training y-patterns included in
leaves are shown in Fig. 4. Note differences in shape between these patterns. They all
represent Thursdays from history (from the period of January 1, 2002–June 30, 2004).
Thick lines in this figure express average y-patterns, i.e. the tree response. Details of the
tree in Table 1 are shown. There are only six variables used in the node tests: 1, 17, 19,
20, 21 and 22. They are the most important variables among 24 ones in partitioning the

Node 1

Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Node 8 Node 9 Node 10 Node 11

Node 12 Node 13

Node 14 Node 15

Fig. 3. MRT1 built for July 1, 2004.
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input space X into regions. The largest reduction in impurity occurred in the root node
(5.58), and also in node 3 (5.36). In the root node the set of 122 samples (the whole
training set) was split into two subsets of 55 and 67 samples, respectively. In node 3 the
largest reduction in impurity was achieved by excluding only one sample. As we can
see form Fig. 4 this is an outlier sample. It represents January 2, 2002. It is atypical
because the y-pattern for this day is encoded using the mean load �Li and dispersion Di

for the previous day (see (2)), which is New Year’s Day. The lower mean load for New
Year’s Day causes rising of the y-pattern for the next day and consequently its atypical
character.

Trees constructed when using MRT2 strategy usually are bigger than trees con-
structed when using MRT1 strategy. This is shown in Fig. 5 presenting histograms of
the number of nodes in the trees for these two cases. The average number of nodes in
MRT1 is about 24 and in MRT2 about 36. For July 1, 2004 MRT2 built a tree having
49 nodes, of which 25 are leaves. Optimal value of v in this case was 0.0012. As in
MTR1 the largest reduction in impurity (5.58) occurred in the root node, where the
training set was split into two subsets of 55 and 67 samples. And also in node 3 (5.36),
where the outlier representing January 2, 2002 was separated.

Variables selected for splitting in nodes are shown in Fig. 6. The most often selected
variables are: 1, 7, 19 and 20, and the least often selected ones are: 15, 14 and 13.

For comparison the forecasts were performed using ARIMA, exponential
smoothing, and classical regression tree (single-output CART). To find the optimal
ARIMA and ES models the automated procedures were used implemented in the
forecast package for the R system [13]. Distributions of the forecast errors (percentage
errors PE) for the five models compared in Fig. 7 are shown. As we can see from this
figure for the tree-based models the similar results were obtained. ARIMA and ES
generate higher errors. The medians of PE were: 1.29 for ARIMA, 1.25 for ES, 1.01 for
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Fig. 4. Y-patterns in terminal nodes of MRT1 built for July 1, 2004; average y-patterns (tree
response) with thick lines.
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regression tree, 1.04 for MRT1, and 1.09 for MRT2. The Wilcoxon signed-rank tests
indicated that there is no statistically significant difference in errors between regression
tree, MRT1 and MRT2. But there is a significant difference in errors between
ARIMA/ES and each of tree-based models.

The proposed MRTs generate multi-output response, keeping the relationships
between the output variables (y-pattern components). In the case of single-output
models, like classical CART, these relationships are ignored because variables are

Table 1. MRT1 details for July 1, 2004 (leaves in bold).

Node Splitting variable j Split-point t Impurity reduction /(j,t) #samples Variance of
y-patterns
Var

1 19 0.1927 5.58 122 7.55E−03
2 20 0.1996 1.65 55 3.46E−03
3 1 −0.0686 5.36 67 7.43E−03
4 21 0.1684 0.21 34 1.37E−03
5 – – – 21 3.57E−03
6 22 0.0395 1.64 66 4.17E−03
7 – – – 1 0
8 – – – 16 1.04E−03
9 – – – 18 1.17E−03
10 – – – 14 1.76E−03
11 22 0.1284 1.40 52 3.50E−03
12 17 0.1364 0.29 34 1.84E−03
13 – – – 18 3.41E−03
14 – – – 9 9.40E−04
15 – – – 25 1.68E−03
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Fig. 6. Splitting variables in the trees.
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predicted independently. This may cause lack of smoothness in the forecasted curve.
Such example in Fig. 8 is illustrated. For January 5, 2004, in the case of regression tree
model we can observe zigzag effect in the middle part of the curve.

5 Conclusion

The proposed model based on multivariate regression trees generates forecasts of the
time series many steps ahead in the same time. The model is constructed taking into
account not only the underlying relationships between input and output variables but
also the internal relationships between output variables. This can lead to improvement
in predictive performance especially when the output variables are correlated. The
multi-output tree is much smaller than a set of single-output regression trees con-
structed for individual outputs. So, the learning process is easier and less time con-
suming. Another advantage of multivariate approach is that the zigzag problem, which
appears when single-output model is used for forecasting output variables indepen-
dently, is eliminated.

In the proposed approach a time series is represented by patterns of seasonal cycles,
which simplifies the forecasting problem and allows the model to capture multiple
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Fig. 8. Real load and forecasts for January 5, 2004.
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seasonal cycles, trend and nonstationarity. Additional time series transformations such
as decomposition, detrending or differencing are not needed.

In the application example the proposed model was applied to forecasting electrical
load of power system. It provided as accurate forecasts as classical regression tree and
outperformed ARIMA and exponential smoothing models.
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