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Abstract. Electricity demand forecasting is of important role in power system planning and operation. 
In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. 
The forecasting model was based on the pre-processed energy consumption time series, where input and 
output variables were defined as patterns representing unified fragments of the time series. Relationships 
between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric 
regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood 
of a query point. In an experimental part of the work the model was evaluated using real-world data. 
The results are encouraging and show high performances of the model and its competitiveness compared to 
other forecasting models. 

1 Introduction  
Electric energy consumption forecasting is an essential 
issue in power system planning and operation. Medium-
term forecasting is necessary for technical and 
operational purposes, such as: scheduling maintenance 
activities, planning of production levels and fuel 
purchases, and planning of network investments. From 
an economic viewpoint, energy consumption forecasts 
are fundamental for negotiating contracts between 
energy companies and concluding contracts with 
customers. 

Fig. 1 shows a periodical time series representing 
monthly energy consumption for four European 
countries (the data from ENTSO-E repository – 
www.entsoe.eu). In this figure, seasonal variations and 
rising tendency can be observed, caused by the influence 
of the economic and technological development on the 
electric market. Seasonal variations reflect the annual 
cycle and are dependent on climatic factors, which are 
comparable during the same month of different years. 
Other factors affecting directly or indirectly the level of 
energy consumption are political decisions and economic 
policy. They can disturb general rising trend and 
monthly fluctuations. They include: the emergence of 
alternative energy sources and technologies, fluctuating 
economic inflation, violent change in energy prices, 
industrial development, and global warming issues [1], [2]. 

The time series of monthly electric energy demand 
presented in Fig. 1 differ depending on the power system 
size and economic development of the country. Note 
significant share of random component in the time series 
and larger amplitude of annual cycles for France than for 
other countries. 

Two approaches have been developed for medium-
term electric energy consumption forecasting [3]. The 
first one, called conditional modelling approach, focuses 
on economic analysis, management and long-term 
planning and forecasting of energy load and energy 
policies. It considers socioeconomic conditions which 
impact energy demands, such as economic indicators and 
electrical infrastructure measures. These additional 
inputs are introduced to the model together with 
historical load data and weather-related variables. Such a 
model can be found in [4]. It includes macroeconomic 
indicators, such as the consumer price index, the average 
salary earning and the currency exchange rate. 

The second approach, called autonomous modelling 
approach, requires a smaller set of input information to 
forecast future electricity demand, primarily historical 
loads and weather factors. Because the economic factors 
are not taken into consideration, this approach is more 
suited for stable economies. 
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Fig. 1. Time series of monthly electric energy consumption. 

ITM Web of Conferences 15, 02005 (2017) DOI: 10.1051/itmconf/20171502005
CMES’17

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



 

Different forecasting models are used in this case 
such as classical autoregressive integrated moving 
average (ARIMA) and multiple linear regression [5], as 
well as computational intelligence methods, e.g. neural 
networks [6]. Examples of such models can be found in 
[7], where ARIMA, neural networks and neuro-fuzzy 
systems are employed to forecast future load demand 
based on various weather-related parameters and 
historical load profiles. Another example is a model 
presented in [8], where interval load forecasting is 
proposed using multi-output support vector regression. 
In addition, a memetic algorithm is used to select input 
variables among the variable candidates, which include 
time lagged loads and temperatures. In [9] neural 
network is used for forecasting load time series 
components extracted using digital filtering. Evolving 
fuzzy neural networks are proposed for monthly 
electricity demand forecasting in [4]. In this solution 
fuzzy neurons represent degree of importance of each 
input variable (loads, weather factors and daylight time). 
Different weights assigned to input variables lead to 
improved model accuracy and more precise prediction. 

The forecasting model proposed in this work belongs 
to the latter category. It uses fuzzy nearest neighbour 
regression (FNNR), based on patterns of the time series 
fragments. An underlying assumption in this model is: if 
two fragments of the time series are similar in shape, 
then the fragments following them are also similar in 
shape [10]. This approach is especially attractive when 
the time series expresses seasonal pattern. In our earlier 
works, we proposed models from the same class of 
pattern similarity-based nonparametric regression 
models: the model based on k-nearest neighbours (k-NN) 
[11] and Nadaraya-Watson estimator [12]. The proposed 
FNNR allowed to consider similarity degree between 
shapes of the time series fragments using fuzzy set theory. 

The remainder of the paper is organised as follows. 
In Section 2, a time series representation is described, 
using patterns of their fragments. In Section 3, 
forecasting model was defined, using fuzzy nearest 
neighbour regression. The model has been tested on real-
world data in Section 4. Finally, the work was concluded 
in Section 5. 

2 Patterns of time series fragments 
In the first stage of the proposed approach load time 
series were pre-processed using methods presented in 
[10]. Input and output patterns were defined. The input 
pattern was an n-dimensional vector representing a time 
series fragment preceding the forecasted one. Let us 
denote the forecasted fragment by Yi = {Ei+1 Ei+2 … 
Ei+m}, and the preceding fragment by Xi = {Ei–n+1 Ei–n+2 
… Ei}, where Ek is the monthly energy consumption and 
k is the time index. An input pattern xi = [xi,1 xi,2 … xi,n]T 
represented the fragment Xi. Components of that vector 
were pre-processed points of the sequence Xi. For 
example [11]: 
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a measure of their dispersion. 
A pattern defined using (1) is a copy of the sequence 

Xi without processing. Pattern components defined using 
(2) are the points of the sequence Xi divided by the mean 
value of this sequence. Patterns (3) are composed of the 
differences between points and the mean sequence value. 
Pattern (4) is the normalised vector [Ei–n+1 Ei–n+2 … Ei]T. 
All patterns defined using (4) have the unity length, 
mean value equal to zero and the same variance.  

The output pattern yi = [yi,1 yi,2 … yi,m]T, representing 
the forecasted sequence Yi, had the components defined 
similarly to the x-pattern components: 
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In the above formulas (5)-(8) iE  and Di are 
determined from the sequence Xi, and not from the 
sequence Yi. This is because the sequence Yi is not 
known at the moment of forecasting. To determine the 
forecast of the monthly energy consumption Ei+t on the 
basis of the forecasted y-pattern generated by the 
forecasting model, transformed equations have been 
used (5)-(8). For example, in the case of (8) the 
forecasted energy consumption is calculated as follows: 

 iititi EDyE  ,


 

Patterns xi and yi are paired (xi, yi). The set of these 
pairs determined from the history is used for learning the 
forecasting model. 

3 Fuzzy nearest neighbour regression 
The nearest neighbour estimate m(x) is defined as the 
weighted average of the y-patterns in a varying 
neighbourhood of the query x-pattern. Typically, this 
neighbourhood is defined through the x-patterns which 
are among the k nearest neighbours of the query pattern 
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[11]. The value of k determines the number of training 
patterns from which the regression function is 
constructed and controls the degree of smoothing. The k-
NN estimator gives the regression function, which is 
discontinuous. In the points where the set of the nearest 
neighbours changes, the jumps on the function graph are 
observed. To avoid this inconvenience, a fuzzy 
membership of the training points to the neighbourhood 
of the query point was introduced [13]. In this approach, 
each training point belongs to the query point 
neighbourhood with a degree depending on the distance 
between these points. 

The regression function m(x) has the nonparametric 
form:  
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where the weighting function w(x,xj) is dependent on the 
similarity or distance between patterns x and xj. Usually 
it decreases monotonically with the distance. When 
using fuzzy approach, the weighting function has a form 
of the membership function, e.g. a Gaussian-type 
function: 
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where  is a parameter controlling the width of the 
function, and d(x,xj) is a Euclidean distance between 
patterns x and xj.  

An estimator (10) is a linear combination of vectors 
yj weighted by the membership degree (11) which 
nonlinearly maps the distance d(x,xj). The greater the 
distance, the lower the weight. The width parameter  
decides about the bias-variance trade-off of the 
estimator. Too small  value results in undersmoothing, 
whereas too large value results in over-smoothing. Thus, 
the selection of the width parameter is a key problem. In 
a training procedure the optimal value of  is selected, as 
well as the optimal length of the input pattern n. These 
parameters are being searched using grid search method.  

The training set contains pairs of patterns (xi, yi), 
which are historical for the forecasted sequence, i.e. 
these ones for which i = n, n+1, ..., i*–m, where i* is an 
index of the last month before the forecasted sequence. 
The forecasting task is to generate the forecasts for 
months i*+1, i*+2, ..., i*+m.  

The forecasting procedure consists of four steps: 
1. Pre-processing of load time series into x- and y-
patterns. 
2. Calculating the weights for the training x-patterns 
using membership function (11). 
3. Calculating the forecasted y-pattern from (10). 
4. Decoding the forecasted y-pattern using transformed 
equations (5)-(8) to get the monthly electricity demand 
for consecutive months: i*+1, i*+2, ..., i*+m. 

 

4 Experimental study 
In this section, the proposed FNNR method was applied 
to model and monthly electricity load demand was 
forecasted. Then results were compared with results of 
several reported statistical and machine learning methods 
for load demand forecasting. Data used in this research 
were taken from the publicly available ENTSO-E 
repository (www.entsoe.eu). They included monthly 
electricity demand for four European countries: Poland 
(PL), Germany (DE), Spain (ES) and France (FR). The 
time range of data was 1998-2015 for PL, and 1991-
2015 for other countries. We constructed the forecasting 
models for 2015, using data from previous years to 
model learning. Two variants of forecasting were 
considered: 
• Variant A – a model generated forecasts for all 12 
months of 2015 (i* was an index of December 2014, 
m = 12), 
• Variant B – for each month of 2015 a separate model 
was created which generated one step ahead forecast (12 
models created for i* corresponding to: December 2014, 
January 2015, ..., and November 2015, m = 1). 

The model parameters,  and n, were selected using 
grid search in leave-one-out cross-validation procedure. 
The searched values of n were 3, 4, ..., 24 and   = 
admed, where dmed was a median of distances between x-
patterns in the training set, and a = 0.02, 0.04, …, 1.  

Tables 1-8 present optimal values of parameters and 
Mean Absolute Percentage Errors (MAPE) obtained with 
these parameter values: validation errors (MAPEval) and 
test errors (MAPEtst for 2015). Accordingly to the tables, 
the selection of the best way of pattern definition seems 
to be difficult. Results depend on the time series 
features, such as a trend and level of random, irregular 
influences. The optimal x-pattern lengths vary between 8 
and 24 depending on time series and pattern definition. 
Note that the optimal lengths are rarely equal to the 
annual cycle length, which is characteristic for these 
time series.  

Fig. 2 demonstrates test errors for individual months 
in both variants, A and B. Note that variant B, which 
generates one step ahead forecasts, does not always 
provide better results than variant A, in which the 
forecast horizon is 12 months. Errors for successive 
months are very varied. This is caused by the significant 
contribution of the random component in data. 

Examples of the forecasted y-pattern construction are 
presented in Fig. 3. Grey lines in these figures are the x- 
and y-patterns from the training set. A darker shade of 
grey indicates x-patterns which are closest to the query 
pattern and y-patterns paired with them. These patterns 
have higher value of the membership function (11), and 
consequently greater impact on the forecast. The query 
pattern and the true y-pattern paired with it are drawn 
with thick solid lines. The forecasted y-pattern is drawn 
with dotted line. Moreover, the optimal input pattern 
lengths are different for different pattern definitions (see 
Tables 1-8). 

In Tables 9 and 10 results of comparative models are 
shown: ARIMA, exponential smoothing (ES) and 
Nadaraya-Watson estimator (N-WE) [12]. The proposed 

ITM Web of Conferences 15, 02005 (2017) DOI: 10.1051/itmconf/20171502005
CMES’17

3



 

FNNR model belongs to the same group of 
nonparametric regression methods as N-WE; thus, 
results of both models are similar. When comparing 
errors of all models, it can be concluded that FNNR is 
competitive with other models, but it should be noted 
also that the classical ES model outperformed all other 
models in six of eight cases. 

5 Conclusion 
This work proposes a practical methodology to forecast 
the monthly electric energy consumption using fuzzy 
nearest neighbour regression. This model is based on the 
assumption that the similarity of the input patterns 
implies the similarity of the output patterns paired with 
them. The patterns representing time series fragments are 
the key element of this approach. They unify data, 
reduce nonstationarity and filter out the trend. 

Table 1. Results for PL, variant A. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 19 0.20 2.95 3.81 
(2)-(6) 10 0.24 3.02 2.68 
(3)-(7) 10 0.24 3.00 2.55 
(4)-(8) 17 0.16 2.83 1.94 

Table 2. Results for DE, variant A.  
Patterns n a MAPEval MAPEtst 
(1)-(5) 8 0.16 3.24 3.39 
(2)-(6) 12 0.26 3.09 2.18 
(3)-(7) 12 0.26 3.11 2.30 
(4)-(8) 10 0.24 3.16 3.07 

Table 3. Results for ES, variant A. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 24 0.14 2.82 1.99 
(2)-(6) 22 0.22 2.75 1.86 
(3)-(7) 9 0.26 2.81 2.71 
(4)-(8) 21 0.22 2.83 2.08 

Table 4. Results for FR, variant A. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 13 0.16 3.21 3.95 
(2)-(6) 12 0.14 3.28 3.56 
(3)-(7) 12 0.14 3.31 3.65 
(4)-(8) 12 0.16 3.36 3.53 

Table 5. Results for PL, variant B. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 10 0.20 2.37 3.57 
(2)-(6) 10 0.20 2.20 1.90 
(3)-(7) 10 0.18 2.18 1.71 
(4)-(8) 10 0.14 1.95 1.38 

Table 6. Results for DE, variant B.  
Patterns n a MAPEval MAPEtst 
(1)-(5) 8 0.14 2.46 2.43 
(2)-(6) 8 0.18 2.51 2.46 
(3)-(7) 8 0.18 2.50 2.40 
(4)-(8) 10 0.16 2.49 2.68 

Table 7. Results for ES, variant B. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 24 0.14 2.77 2.42 
(2)-(6) 15 0.24 2.25 2.89 
(3)-(7) 15 0.24 2.33 2.97 
(4)-(8) 13 0.20 2.27 3.44 

Table 8. Results for FR, variant B. 

Patterns n a MAPEval MAPEtst 
(1)-(5) 22 0.18 3.08 3.65 
(2)-(6) 14 0.14 2.90 3.70 
(3)-(7) 14 0.16 2.93 3.76 
(4)-(8) 14 0.14 2.89 3.91 
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Fig. 2. Forecast errors for consecutive months of 2015. 
Variant A - dark bars, variant B - light bars. 

Table 9. MAPE of the forecasting models, variant A. 

Model PL DE ES FR 
FNNR (4)-(8) 1.94 3.07 2.08 3.53 

ARIMA 2.08 2.54 2.67 4.02 
ES 1.92 2.32 2.17 3.02 

N-WE 2.03 3.12 2.08 3.56 

Table 10. MAPE of the forecasting models, variant B.  
Model PL DE ES FR 

FNNR (4)-(8) 1.38 2.68 3.44 3.91 
ARIMA 2.02 2.56 2.18 3.91 

ES 1.92 2.32 2.16 2.98 
N-WE 1.35 2.72 3.42 3.99 
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The main advantages of the model are the simple and 
understandable principle of operation and only two 
parameters to estimate: the length of the input pattern 
and the width of the membership function. Models with 
fewer parameters have better generalisability and do not 
require complex learning procedures. 

We demonstrate the effectiveness of our approach on 
real-world data. Comparing with commonly used 
methods, such as ARIMA and exponential smoothing, 

the proposed model results in similar errors on average. 
Better performance of the model is observed for more 
regular time series with lower noise component and 
stable relationship between input and output patterns. 
The factors which decrease this stability are the 
nonlinear trend and heteroscedasticity of time series. 
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Fig. 3. Construction of the forecast pattern when using 
different pattern definitions for PL data, variant A.  
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