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Abstract. This paper presents a method of forecasting temes with multiple
seasonal cycles based on Generalized RegressioralNéetwork. This is a
memory-based, fast learned and easy tuned typeusdhnetwork. The time se-
ries is preprocessed to define input and outputepet of seasonal cycles,
which simplifies the forecasting problem. The metli® useful for forecasting
nonstationary time series with multiple seasonales and trend. The model
learns with the help of differential evolution amgle enumerative method.
The performance of the proposed method is compaigdthat of other fore-
casting methods based on Nadaraya-Watson estimatral networks,
ARIMA and exponential smoothing. Application exangpleonfirm valuable
properties of the proposed method and its highasiracy among the methods
considered.

Keywords: Seasonal time series forecasting, generalize@ssigm neural net-
work, differential evolution, pattern similarity ed forecasting, short-term
load forecasting.

1 Introduction

Many time series exhibit multiple seasonal cycledifferent lengths. Good example
of such a time series is hourly electricity demaméPoland presented in Fig. 1. This
time series has three seasonal periods: daily, lweekl annual. The daily and week-
ly profiles change during the year. The daily deofiepends on the day of the week
as well. This time series expresses trend and ristatonary in mean and variance.
These all features have to be captured by theblleforecasting model.

A variety of methods have been proposed for fotetaseasonal data. The most
commonly employed classical models are exponesti@mothing (ES) and seasonal
autoregressive moving average models (ARMA). IntB&S time series is modeled
using a set of equations expressing level, growthesach seasonal cycle. These com-
ponents can be combined additively or multiplicaly Examples of using ES for
forecasting multiple seasonal data can be fourjdl]iand [2]. One of the drawback of
ES is overparameterization which involves initiation and updating of a large num-
ber of terms.
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Fig. 1. The hourly electricity demand in Poland in thresiy(a) and one-week (b) intervals.

A base ARMA model can be extended for fitting adiseries with a trend and sea-
sonal variations. This consists in appropriateedéhtiation of a time series. The sea-
sonal ARIMA can only deal with time series that atationary in variance. When the
variance changes in time transformation of a tiewes is needed. There are a very
large number of ARIMA models. The selection proce§sARIMA model and its
order is usually considered subjective and diffitcalapply. Another disadvantage of
ARIMA is the linear character of the model.

The rapid development of computational intelligeacel machine learning brings
new tools for forecasting. They include mainly faoial neural networks (ANNS),
fuzzy logic and intelligent searching methods, sashevolutionary algorithms and
swarm intelligence. ANNs are very attractive aslim@ar methods of forecasting due
to their universal approximation property, masgeeallelism among a large number
of simple units, learning capabilities, robustnesshe presence of noise, and fault
tolerance. Using fuzzy logic we can enter uncersaid imprecise data to the model.
The forecasting model is composed of the if-thdaguvhich can be formulated ver-
bally by experts or extracted from data in the néay process. Evolutionary algo-
rithms and related methods are useful for modahapation and learning. In a sto-
chastic searching process they are able to getfailie local optima and find better
solutions.

This paper focuses on the design of a forecastiethod for time series with mul-
tiple seasonal cycles based on General RegresgaraNNetwork. This is memory-
based locally weighted regression method. The iatqgart of this model is data pre-
processing and defining patterns of seasonal cyfléisne series as explanatory and
response variable vectors. Patterns simplify thiedasting problem filtering out the
trend and redundant seasonal variations of pefioager than the basic one. The
nonstationarity in mean and variance is also el@d. The parameters of the GRNN
model are estimated using differential evolutiorsionpler enumerative method.

2 Patter ns of the Seasonal Cycles

The input patterns representing explanatory vagmltdre defined as the trans-
formed time series elements taken from basic sehsyales (seasonal cycle of the



shortest length). The input pattetr= [% 1 X ... X,n] maps the time series elements
from thei-th cyclez, = [z, 7, ... 7] as follows:
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where:i = 1, 2, ...,M — the seasonal cycle number 1, 2, ...,n — the time series
element number in the cydlez; — thet-th time series element in the cytlez — the

mean value of elements in the seasonal dycle

Definition (1) expresses normalization of the vestn. After normalization they
have unity length, zero mean and the same variahlges the nonstationary time
series {} is represented by x-patterns having the same raedrvariance.

Similarly the output patterng = [yi1 Vi2 ... Yin] maps the elements from the sea-
sonal cycleé+7:2.;= [Z+71Zi+ 72 ... Z+ ], Wherer> 0 is a forecast horizon:

Zi+r _zi
Vi = ——— ()
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Note that vectory are defined using known current process paramé®rsand

the square root in the denominator as a measutespérsion of elements irth sea-
sonal cycle). This enables us to determine thec&steof vector;, ; using (2) after the
forecast of pattery is calculated by the model.

The input and output patterns are paired and imeclud the set = {(xq, y1), ...,
(Xm, Ym)} from which the training sets are generated. pa#s ;, y;) represent the
seasonal periods between which the distance inignmreThe model learns the map-
pingXx - y and then it forecasts the output pattern corredipgnto the input pattern
X (query pattern) which is presented to the model.

3 Generalized Regression Neural Network

Generalized Regression Neural Network (GRNN) isnal lof Radial Basis Func-
tion (RBF) neural network with a one pass learnahgorithm and highly parallel
structure. GRNN was introduced by Specht in 1991af3a memory-based network
that provides estimates of continuous variablee &lgorithm provides smooth ap-
proximation of a target function even with spars¢adin a multidimensional space.
The advantages of GRNN are fast learning and aasgg. The GRNN is composed
of four layers: input, pattern (radial basis layeymmation and output as shown in
Fig. 1.

Each neuron of the pattern layer uses a radiakbaaction as an activation func-
tion. This function is commonly taken to be Gaussia
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where:C; is a center vectos is a smoothing parameter or bandwidth and |[tfjes
Euclidean norm.

Fig. 2. GRNN architecture.

Each training vector is represented by one patteuron with the centeC; = x;,
j=1,2,...N, whereN is a number of training points. The neuron ougiresses
the similarity between the input vecterand thej-th training vector. So the pattern
layer maps tha-dimensional input space ind¢-dimensional space of similarity. The
GRNN output is an average of training y-patterngghied by the degree of similarity
between paired with them x-patterns and the quattiem:
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Note that the GRNN generates a vector as an oufjpet.dimension of this vector
does not affect the number of parameters to estimalike in other popular models
such as multilayer perceptron or neuro-fuzzy neksof his should be considered as
a valuable property.

The performance of GRNN is related with bandwidifgoverning the smoothness
of the regression function (4). Determining optirbahdwidth values is a major prob-
lem in GRNN training. In Section 4 we propose tliffecential evolution algorithm
for estimation of bandwidths.

The forecasting model similar to GRNN called NagarsVatson estimator was
presented in [4]. In this estimator the productniéris used as RBF. The product
kernel has different bandwidths for each compownért But for the different training
patterns the same set of bandwidths are used.elcabe of GRNN with Gaussian



functions for each training pattern there is ontg @andwidth but for each pattern the
bandwidth is different.

4 Differential Evolution for GRNN Training

The bandwidth values are tuned using the differential evolution (DEhisTis an
heuristic algorithm for global optimization overntmuous spaces [5]. It is consid-
ered as the one of the most powerful stochastionigation algorithm [6]. Unlike
traditional evolutionary algorithms, DE employsfditnce of the solution vectors to
explore the solution space.

In our case the solution vector is of the fagm [s;, S, ..., S\]. The initial popula-
tion of vectors is usually chosen randomly. New yapons are generated in DE
using mutation and crossover operators. During timutdor each population vector a
mutanty; is formed by adding the weighted difference betwbeo population vec-
tors to a third vector:

Vi = Sr1 + F(Sr2 _Sra) ’ (5)
where:ry, 1o, r3 0 {1, 2, ..., S\i are random indexes (different from each oth®i3,a
population size ané O [0, 2] is a coefficient controlling the mutaticange.

Thei-th vector is combined with its mutant using disererossover:

. V.j, if&;<CRorj=¢, 5
"o ls,, if &, >CRandj#(;,’ ©)
where;j = 1, 2, ...,N, §;is a random number from uniform distributioi0, 1), ¢ is

a randomly chosen index from {1, 2, N} which ensures that the new solution gets
at least one component of the mutanandCR O [0, 1] is a crossover constant.

The trial solutiors; = [Si1, Si2 ..., Sinl, Created as a result of mutation and cross-
over, replaces its parent solutignif the cost function value is smaller fgthan for
s. After repeating this mutation, crossover anda@la procedures far= 1, 2, ...S
we get a new population which is processed in dmeesway.

This is the basic strategy of DE. There are thargrol parameters here: the popu-
lation sizeS, the mutation scale factérand the crossover const@RR. The effect of
each of these parameters on the performance os@iS¢ussed in [6]. The inventors
of the algorithm recommend the valueSifetween B and 1@, andF = 0.5.

The paramete€R controls how many components in expectation aeangéd in a
solution vector. For smallR few components are changed and the stepwise move-
ment tends to be orthogonal to the current cootdiaaes. HigheCR value causes
most of the mutant components to be inherited priévg this effect. In the applica-
tion examples described in the next section theesbfF andCR were tuned exper-
imentally.



5  Application Examples

In this section we use the hourly electricity dethéime series to test our GRNN
model and compare it with other popular models dsedforecasting time series with
multiple seasonal cycles. The analyzed time sésishown in Fig. 1. (This data can
be downloaded from the website http://gdudek.elpbzaria/stlf-data.)

Our goal is to forecast one seasonal (daily) peaiogiad { = 1) for January (with-
out untypical 1 January) and July 2004. Thus tie®0 + 31 = 61 forecasting tasks.
For each forecasting task (test sample) the learsdt is prepared individually from
the historical data. It contains pairs of pattefnesn the setl representing the same
days of the week (Monday, ..., Sunday) as the gpattern and forecastgdpattern.
For each forecasting task the separate GRNN medakated and learned using DE.
The solutions generated in DE are evaluated idatal leave-one-out procedure, in
which the validation samples are chosen one byfrome the set of 12 nearest neigh-
bors of the query pattern.

In the first part of the study we investigate tliiceency of DE at different values
of its parameters:

« DE1:CR=0.1,F=0.5,
« DE2:CR=0.3,F=0.5,
« DE3:CR=0.9,F=0.5,
« DE4:CR=0.1,F=0.1,
« DE5:CR=0.1,F=1.0,
« DE6:CR=0.1,F=2.0.

The population size in all variants was cons&nt210.

The convergence curves for DE with different par@megalues in Fig. 3 are pre-
sented. The DE2 and DE3 variants with hig8& value than DE1 converge slower
than DE1. The best value Bf causing the fastest convergence turned out to.he 0
However the improvement on the validation samplesabserved the test error was
not reduced. Therefore, the simpler method forctiele of the bandwidths was used
as follows. The distances between the query point and its 5-th nearest ib@ign
the training set is determined. It is assumedtti@bandwidth for all neurons is equal
to alds, wherea is a discrete parameter tuned by enumeratingvahe ofa ensuring
the best results on validation samples was 0.5.
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Fig. 3. Comparison of convergence curves for different@Eants.



We compare the proposed GRNN model with the modsleth on Nadaraya-
Watson estimator (N-WE), two neural network mod&8F and multilayer percep-
tron (MLP) and two classical models: ARIMA and B&WE model is described in
[4], ARIMA, ES and MLP models are described in [dlist as GRNN the models
based on N-WE, RBF and MLP use patterns of seasymuéds as explanatory and
response variable vectors. In N-WE estimator thedbhadths were determined using
the Scott's rule [4], depending on the sample st@hdeviation, sample size and di-
mension. RBF neural network was designed in Matlaing newrb function. The
bandwidth of radial basis functions (the same fbneurons) was set to the distance
between the query point and kgh nearest neighbor in the training set. On th&sa
of preliminary experiments it was assunied 12. The MLP was learned in the local
learning procedure in which the training samplesewselected from the neighbor-
hood of the query pattern. The one-neuron modelsgtescted as an optimal solution.
To find the best ARIMA and ES models automated edoices implemented in the
forecast package for the R system [8] were used.

The results of forecasting: mean absolute percen&aprs for the test samples
MAPE,4 and their interquartile rangel$QR) in Table 1 are shown. For comparison the
results determined using the naive method are silswn. The forecast rule in this
case is as follows: the forecasted daily cycldiésgame as seven days ago.

Table 1. Results of forecasting.

Model January July Mean
MAPE 4 IQR MAPE 4 IQR MAPE 4 IQR

GRNN 1.21 1.22 0.90 0.93 1.05 1.04
N-WE 1.23 1.19 0.88 0.87 1.05 1.09
RBF 1.56 1.41 1.10 1.18 1.33 1.30
MLP 1.32 1.30 0.97 1.01 1.14 1.15
ARIMA 2.64 2.34 1.21 1.24 1.91 1.67
ES 2.35 1.88 1.19 1.30 1.76 1.56
Naive 6.37 5.36 1.29 1.20 3.78 3.82

The best forecasts were obtained by GRNN and N-Wiese two methods gave
statistically indistinguishable errors (Wilcoxorgsed-rank test was used). A little
worse results were obtained using MLP. The worstlte were achieved using classi-
cal models: ARIMA and ES. This is probably due le tearning sample used for
estimation of parameters in ARIMA and ES, whichtedms the time series fragment
(12-week fragment in our case) directly precedhgforecasted fragment. The irreg-
ularities in this preceding fragment affect advirdbe forecasts. In the proposed
approach the learning set is not limited to thegnant preceding the forecast but is
composed of the most similar patterns to the quuatgern. So irregular patterns,
which are not similar to the query pattern are inctuded in this set, unless their
irregularities correspond to the irregularitieghie query pattern.

Note that GRNN model optimized using enumeratiotho@ has only one param-
eter to estimateaj. This is a great advantage. Such a model is ®asptimize and
has good generalization properties.



6 Conclusions

The memory-based models operating on patternsasbsal cycles: GRNN and N-
WE turned out to be the most accurate in forecgdiime series with multiple sea-
sonal cycles compared to RBF and MPL neural netsvahd classical statistical
models: ARIMA and ES. The memory-based approacleesal estimate a global
model but defer the processing of data until adase is requested. The forecast is
derived from the neighborhood of the query poinbgsdocally weighted regression.
A key problem here is the selection of appropnagéghting functions to get the best
generalization performance given a set of sparsenaisy data. In the application
example an exact estimation of bandwidth valuesefimh neuron using differential
evolution did not bring an expected reduction ia tbst error. This is probably due to
the sparse data: there is not enough training idatae neighborhood of the query
pattern to build an accurate local model. The stmphumeration method for band-
width estimation where we are searching for theiwahea coefficient provided bet-
ter results. In this case GRNN has only one parantetestimate. The instant training
and easy tuning are great advantages of GRNN.

The proposed forecasting model owes its good peeace not only to the valua-
ble properties of GRNN but also to the initial séormations of data and appropriate
definitions of patterns of seasonal cycles. Theégpas simplify a forecasting problem
eliminating nonstationarity of time series in meamd variance and removing the
trend and seasonal variations of periods longer tha basic one.
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