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tation of the unit start-up and shut-down times is presented. The proposed definition of the decision vari-
ables and their binary representation reduce the solution space and computational time in comparison to
the classical genetic algorithm approach to unit commitment. The method incorporates time-dependent
start-up costs, demand and reserve constraints, minimum up and down time constraints and units power
generation limits. Penalty functions are applied to the infeasible solutions. Test results showed an
improvement in effectiveness and computational time compared to results obtained from genetic algo-
rithm with standard binary representation of the unit states and other methods.
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1. Introduction

The unit commitment (UC) problem involves scheduling the on/
off status of generating units as well as their real power outputs
within a power system over the future short-term period (from a
day to a week). The resulting schedule should minimize the pro-
duction costs and satisfy the required demand and a set of operat-
ing constraints at any time during the period. The optimal schedule
may save the electric utilities millions of dollars per year in pro-
duction costs and that is why the UC problem is so important in
the daily operational planning of each power system.

The UC problem is a complex optimization problem with both
discrete (unit commitment) and continuous (generation levels)
variables. Because the complete enumeration method for UC is
useless for practical systems (computer execution time for this
method is usually too immense), research efforts have been fo-
cused on efficient, suboptimal UC algorithms which can be applied
to realistic power systems. The method of UC can be divided as fol-
lows (Sen & Kothari, 1998; Sheblé & Fahd, 1994):

� Heuristic methods such as priority list.
� Classical optimization methods such as: dynamic programming,

Lagrangian relaxation, branch-and-bound, linear programming,
integer programming.
� Computational intelligence methods such as: expert systems,

neural networks, simulated annealing, genetic algorithms.
The simplest UC method and also easiest to implement is the
priority list method. The priority list specifies the order in which
units start-up and shut-down. Unfortunately the quality of the
solution is usually far from optimal due to the incomplete search
of the solution space.

Many methods belonging to the second group such as branch-
and-bound, dynamic and integer programming suffer from the
‘‘curse of dimensionality’’. This is manifested by the rapid increas-
ing of the problem size and in consequence the computation time
with the number of generating units to be committed. Several ap-
proaches have been adopted in order to reduce the search space.
Most of them are based on the priority list technique: dynamic
programming-sequential combination, dynamic programming-
truncated combination (Pang & Chen, 1976; Pang, Sheblé, & Albu-
yeh, 1981), thus the solution obtained is suboptimal.

Lagrangian relaxation is a relaxation method which approxi-
mates a difficult problem of constrained optimization by a simpler
one. In this approach the UC problem is decomposed into a master
problem and more manageable subproblems. Each subproblem is
solved independently and determines the commitment of a single
unit. The subproblems are linked by the Lagrange multipliers,
which are estimated at each iteration. This method has higher
computational efficiency and is more flexible for handling different
types of constraints compared to other approaches. However, be-
cause of the dual nature of the algorithm, its primary difficulty is
associated with obtaining solution feasibility. Furthermore, the
optimal value of the dual problem is not generally equal to that
of the primal (original) problem.

An expert system is developed by combining the knowledge of
experienced power system operators and unit commitment
experts to assist operators in scheduling generating units. The

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.05.010&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.05.010
mailto:dudek@el.pcz.czest.pl
http://dx.doi.org/10.1016/j.eswa.2013.05.010
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


G. Dudek / Expert Systems with Applications 40 (2013) 6080–6086 6081
knowledge is stored in an expert system rule base. However, a
great deal of operator interaction is required in this approach, mak-
ing it inconvenient and time-consuming.

Neural networks (most often multilayer perceptrons) are
trained to recognize the most economical UC schedule associated
with the pattern of the current load curve (Nayak & Sharma,
2000; Wong, Chung, & Wong, 2000). The training set contains typ-
ical load curves and corresponding UC schedules. If the neural net-
work solution is not feasible for the entire UC period, it will be used
as an initial starting point for a near-optimal solution.

Fuzzy logic provides an effective conceptual framework for
dealing with the problem of knowledge representation in an envi-
ronment of uncertainty and imprecision. Fuzzy approach allows
taking into account many uncertainties involved in the planning
and operation of power systems. The key factors such as load de-
mand and reserve margin are treated as fuzzy variables (Padhy,
2000; Padhy, Paranjothi, & Ramachandran, 1997). A fuzzy decision
system has been developed to select the units to be on or off based
on these fuzzy variables expressing the forecast error and the soft
limits of the spinning reserve requirements.

Simulated annealing is a powerful, general-purpose stochastic
method for solving combinatorial optimization problems such as
UC (Dudek, 2010; Mantawy, Abdel-Magid, & Selim, 1998). It has
the ability of escaping local minima and converges in the limit to
a globally optimal solution with probability 1. The main advanta-
ges of this method are that a complicated mathematical model of
the problem under study is not needed, the starting point can be
any given solution and it will attempt to improve it, the final solu-
tion does not strongly depend on the initial solution and it does not
need large computer memory. One main drawback and limiting
factor of this method is that it takes a great deal of CPU time to find
the near-optimal solution.

Genetic algorithm (GA) is an adaptive and parallel search
techniques based on the mechanism of natural selection, repro-
duction and mutation. GA works with a population of candidate
solutions (chromosomes or individuals) which encode the vari-
ables or parameters. GA can be used with both discrete and con-
tinuous variables. It uses probabilistic transition rules during
searching the solution space. A simple GA implementation using
the standard crossover and mutation operators can locate near-
optimal solutions. However, by adding problem-specific opera-
tors and by the proper choice of variables and their representa-
tion, better solutions to the UC problem can be obtained
(Dasgupta & McGregor, 1994; Dudek, 2004; Dudek, 2007; Kazar-
lis, Bakirtzis, & Petridis, 1996; Mantawy, Abdel-Magid, & Selim,
1999).

This paper presents a GA with binary representation of the unit
start-up and shut-down times to solve the UC problem. This defi-
nition of the decision variables reduces the solution space and
computational time. Now there is no need to use the complicated
algorithm such as GA with specialized mutation operators de-
scribed in (Dudek, 2004) to solve this simplified problem. The same
definition of the decision variables was investigated in (Dudek,
2007) but the integer representation was used.

In the proposed approach there are three fitness function defi-
nitions: one for feasible solutions and two for unfeasible ones,
which are dependent on the degrees of constraint violations. The
combinatorial optimization problem is solved using the GA while
the unit power generation levels are determined via the conven-
tional method of Lagrange multipliers.
2. The mathematical model of unit commitment

(The symbols that appear in the following description are listed
in Table 5 in Appendix A.)
The UC problem can be mathematically formulated as follows:
Objective function:

F ¼
XT

t¼1

XN

i¼1

ðaiðtÞCiðPiðtÞÞ þ aiðtÞ½1� aiðt � 1Þ�SCiðtoffiÞÞ ð1Þ

Constraints:

(a) Load balance
8t : / ¼ DðtÞ �
XN

i¼1

aiðtÞPiðtÞ ¼ 0 ð2Þ
(b) Unit power generation limits
8i; t : aiðtÞPmin i 6 PiðtÞ 6 aiðtÞPmax i ð3Þ
(c) Set of unit power generation limits
8t :
XN

i¼1

aiðtÞPmin i 6 DðtÞ ð4Þ
N

8t :
X
i¼1

aiðtÞPmax i P DðtÞ þ RðtÞ ð5Þ
(d) Minimum up/down time
8i : toffi P tdowni ð6Þ
8i : toni P tupi ð7Þ
The variable production cost of unit i at time t: Ci(Pi(t)) is con-
ventionally approximated by the quadratic function:

CiðPiÞ ¼ aiP
2
i þ biPi þ ci ð8Þ

and the start-up cost of unit i: SCi(toffi) is expressed as a function of
the number of hours the unit has been down:

SCiðToffiÞ ¼ ei expð�gitoffiÞ þ fi expð�hitoffiÞ ð9Þ

To take into account the costs connected with unit shut-down
at time t, in the event that it remains in an off state to the end of
time period T, it is assumed that:

� unit start-up costs are evenly distributed over the number of
hours of unit down time,
� unit start-up occurs at time s after the end of the optimization

period T (s {1,2,3, . . .}).

Taking these assumptions into account, unit (staying in down
time until the end of time period T) start-up costs in time period
T are calculated using the formula:

SCiðT � tÞ ¼ SCiðT � t þ sÞ
T � t þ s

ðT � tÞ ð10Þ
3. The proposed genetic algorithm approach

The GA implementation consists of random initialization, deter-
mination of unit power generation levels, cost calculations, repro-
duction, crossover, mutation, transposition, and elitism. The
determination of the optimal outputs of generating units is called
an economic dispatch problem. This problem is treated here as a
subproblem of UC and is solved for each time t using the Lagrange
multiplier method.

The binary tournament is used as the selection method in GA.
An elitism strategy is also used which copies the best individual
into the next population. GA is terminated when there is no signif-
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icant improvement in the solution after a pre-specified number of
generations or when the maximum number of generations is
reached.

3.1. Decision variables and their representation

In the presented approach the load demand is divided into time
intervals in which the load curve increases or decreases. It is as-
sumed that unit start-up can occur in the interval ½sj

up1; s
j
up2� on the

rising edge of the load demand curve and unit shut-down can occur
in the interval ½sk

down1; sk
down2� on the falling edge of the load curve (the

superscripts j and k denote the start-up or shut-down interval num-
ber respectively). These edges need not be monotonic. The intervals
for the hourly load demand curve that is assumed in the application
examples defined in Section 4 are shown in Fig. 1: ½s1

down1 ¼ 1;
s1

down2 ¼ 4�; ½s1
up1¼ 5; s1

up2 ¼ 13�; ½s2
down1 ¼ 14; s2

down2¼ 15�; ½s2
up1 ¼16;

s2
up2 ¼ 18�; ½s3

down1 ¼ 19;s3
down2 ¼24�. There are two start-up intervals

(j = 1,2) and three shut-down intervals (k = 1,2,3), which are sepa-
rated by the local minimum and maximum values of the load.

The unit start-up and shut-down hours are the integer decision
variables. For five intervals shown in Fig. 1, there are five variables
for each unit x = [x1,x2, . . . ,x5] defined as follows:

x1 2 U1 ¼ fs1
down1; :::; s

1
down2 þ 1g ð11Þ

x2 2 U2 ¼ fs1
up1; :::; s

1
up2 þ 1g ð12Þ

x3 2 U3 ¼ fs2
down1; :::; s

2
down2 þ 1g ð13Þ

x4 2 U4 ¼ fs2
up1; :::; s

2
up2 þ 1g ð14Þ

x5 2 U5 ¼ fs3
down1; :::; s

3
down2 þ 1g ð15Þ

Some assumptions are adopted about variable values:

� when the variable representing the shut-down time is equal to
sk

down2 þ 1, it means that the unit shut-down in the kth interval
does not occur: the unit is in on state during this interval,
Chromosome 001 1100 11 01 1
Interpretation x1 x2 x3 x4 x

for unit 1

Fig. 2. The chromosome a

Fig. 1. The unit start-up (light bars) an
� when the variable representing the start-up time is equal to
sj

up2 þ 1, it means that the unit start-up during the jth interval
does not occur,
� when the unit is in off state before the optimization period T,

the first interval is the shut-down type and x1 – 1, it is assumed
that the unit start-up is in the first hour,
� when the unit is in on state before the period T, the first interval

is the start-up type and x1 – 1, it is assumed that the unit shut-
down is in the first hour.

For example, x = [5,5,16,16,25] means that the unit is in on
state in the whole period T; x = [1,14,14,19,19] means that the
unit is in off state in the whole period T; x = [2,7,14,18,25]
means that the unit is in the on state in the intervals: until
the 2nd hour, between the 7th and 13th hours and from the
18th hour to the end of period T, while it is in off state in the
intervals: between the 2nd and 6th hours and between 14th
and 17th hours.

GA searches the solution space through the evolution of a
population of solutions. Each individual of the population is rep-
resented by an binary string composed of genes encoding con-
secutive variables xi for each unit (the integer representation is
also possible (Dudek, 2007)). The Gray code is used where two
successive values differ in only one bit. The gene length depends
on the range of xi. To encode the five decision variables de-
scribed above B = 14 bits are needed for each unit (the number
of bits for the following decision variables are: 3, 4, 2, 2, 3).
There is redundancy in such encoding: a gene can encode more
values than the number of possible values of variable xi. The
solution is the possibility to assign two values of gene to one va-
lue of xi.

The chromosome and its interpretation in Fig. 2 is presented. In
Table 1 the decimal values of genes and corresponding to them the
decision variable values are shown.
11 … 011 1001 10 11 110

5 …. x1 x2 x3 x4 x5

for unit N

nd its interpretation.

d shut-down (dark bars) intervals.



Table 1
Decimal values of genes and the variable values corresponding to them.

Variable Number of bits Decimal value of gene

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x1 3 1 1 2 2 5 5 3 4
x2 4 5 5 6 6 8 8 7 7 14 14 12 13 9 9 11 10
x3 2 14 15 16 16
x4 2 16 17 19 18
x5 3 19 20 22 21 25 25 23 24
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3.2. Economic dispatch

Since the production cost (8) is a quadratic function (convex
and continuous), the economic dispatch problem for each t is
solved using the method of Lagrange multipliers (Wood & Wollen-
berg, 1996). The Lagrange function is composed of the cost func-
tion (total variable production cost (8) of all units working at the
time t) and the constraint function (2) multiplied by an undeter-
mined multiplier k:

L ¼
X

i2XðtÞ
CiðPiðtÞÞ þ k/ ð16Þ

The necessary conditions for a minimum of the total variable
cost function result when we take the first derivative of the La-
grange function with respect to each of the independent variables
(power outputs Pi(t) and undetermined Lagrange multiplier k) and
set the derivatives equal to zero:

@L
@Pi
¼ dCiðPiðtÞÞ

dPiðtÞ
� k ¼ 0; i 2 XðtÞ: ð17Þ

The minimum cost operating condition is that the incremen-
tal cost rates of all units is equal to some undetermined value of
k. To this necessary condition we must add the constraint equa-
tion that the sum of the power outputs must be equal to the
power demanded by the load D(t). In addition inequalities (3)
must be satisfied. To find the best value of k we use the lamb-
da-iteration method (Wood & Wollenberg, 1996). This is an iter-
ative procedure in which we change in a systematic way the
value of lambda:

1. Set an initial value for k.
2. Find the corresponding output power of each generating unit.
3. If the total power is less than the load demand, increase k and

go to step 2.
4. If the total power is higher than the load demand, decrease k

and go to step 2.
5. The lambda-iteration procedure converges very rapidly to the

global minimum for this particular type of optimization prob-
lem. Note that this method guarantees that load balance (2) is
met and unit power generation limit constraints (3) are met if
the set of unit power generation limit constraints (4) and (5)
are met.

3.3. Cost calculations and the procedure with infeasible individuals

The solutions generated by GA can be divided into three groups:
(i) satisfying all constraints (2)–(7), (ii) satisfying constraints (2)–
(5) but violating minimum up/down time constraints (6) or (7),
and (iii) violating set of unit power generation limit constraints
(4) or (5). For solutions which satisfy all constraints generation lev-
els Pi(t) are determined using lambda-iteration method. Then we
calculate unit production costs (8) and the value of objective func-
tion (1).

For solutions belonging to the group (ii), a penalty function is
created (Dudek, 2004; Dudek, 2011):
F 0 ¼ M 1þ
XN

i¼1

½gðiÞ þ hðiÞ�
 !

ð18Þ

where M is a constant calculated according to:

M ¼ T
XN

i¼1

CiðPmax iÞ ð19Þ

g(i) and h(i) are discrete functions defining the level of constraint
(6) and (7) violation defined as follows:

gðiÞ ¼
Xndowni

k¼1

biðkÞ tdowni � toffiðkÞ
� �� �

ð20Þ

hðiÞ ¼
Xnupi

k¼1

ciðkÞ tupi � toniðkÞ
� �� �

ð21Þ

where:

biðkÞ ¼
1; iftoffiðkÞ < tdowni

0; iftoffiðkÞP tdowni _ soniðkÞ > T

�
ð22Þ

ciðkÞ ¼
1; iftoniðkÞ < tupi

0; iftoniðkÞP tupi _ soffiðkÞ > T

�
ð23Þ

For solutions belonging to group (iii), a penalty function is de-
fined as follows (Dudek, 2011):

F 00 ¼W 1þ
XT

t¼1

f ðtÞ
 !

ð24Þ

where W is a constant calculated according to:

W ¼ M 1þ T
2

XN

i¼1

½ðtdowni � 1Þ þ ðtupi � 1Þ�
 !

ð25Þ

and f(t) is calculated as follows:

f ðtÞ ¼

X
i2XðtÞ

Pmin i � DðtÞ; if
X

i2XðtÞ
Pmin i > DðtÞ

DðtÞ þ RðtÞ �
X

i2XðtÞ
Pmax iifDðtÞ þ RðtÞ >

X
i2XðtÞ

Pmax i

0;otherwise

8>>>>><
>>>>>:

ð26Þ

Such fitness function definitions ensure that individuals violating
constraints (4) or (5) are evaluated worse than individuals violating
constraints (6) or (7) (because W in (24) is higher than the maxi-
mum value of function (18)). This leads to their earlier elimination
from the population. The penalty function (18) ensures a worse val-
uation of individuals violating constraints (6) or (7) from feasible
ones (M in (18) is higher than the maximum value of objective func-
tion (1)). Both penalty functions (18) and (24) are linearly depen-
dent on the level of violation of constraints.

During the initial phase of the evolution process, when there is
no feasible solutions, the level of violation of constraints (4) and (5)
is minimized. After individuals meeting these constraints have
been found, they are evaluated using function (18). This solutions



Fig. 3. An illustration of the transposition.
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become the majority in the population because their fitness is better
than the fitness of the solutions violating constraints (4) and (5). At a
certain point in the searching process individuals that are feasible
according to (6) and (7) start to appear and become the majority in
the population. In this stage GA searches the feasible solutions.

Due to the using of binary tournament (not proportional selec-
tion) better fitted individuals do not strongly dominate, which al-
lows the avoidance of a premature convergence of the population
into a superindividual.

3.4. Genetic operators

Three types of genetic operators are applied: crossover (one-
point, multi-point and uniform), classical binary mutation and
transposition.

The crossover and mutation operators used in this application
are conventional GA operators (Michalewicz, 1994). Transposition
introduced in (Dudek, 2004) is untypical operator dedicated to the
UC problem. It operates on one chromosome and generates off-
spring by exchanging fragments of the chromosome that encode
all decision variables of two randomly chosen units. Transposition
occurs with probability pt. This operation can considerably help the
evolution process, particularly in the last phase, penetrating the lo-
cal minimums by changing the work states of pairs of units.

The transposition operator is illustrated in Fig. 3.

4. Application example

The proposed GA was verified on a practical UC problem with
12 units and 24-h scheduling time horizon. The number of all deci-
sion variables is 5 � 12 = 72. Calculations were performed in
Matlab.

The unit and load data can be found in Table 2 and Fig. 1,
respectively. The spinning reserve R(t) for all t is equal to 5% of
the maximum daily load demand, i.e. 175 MW. It is assumed:
Table 2
Characteristics and initial state of units.

Unit Initial statusa (h) Initial Pi (MW) a ($/(MW2 h)) b ($/(M

1 �24 0 0.004531 7.3968
2 �4 0 0.004683 7.5629
3 �4 0 0.004708 7.4767
4 on 180 0.004880 7.4742
5 on 199 0.004214 7.2995
6 on 182 0.004582 7.3102
7 on 180 0.004267 7.5494
8 on 325 0.003572 6.6577
9 on 180 0.004788 7.7184

10 on 350 0.003485 6.2115
11 on 332 0.003658 6.5492
12 on 349 0.003671 6.4137

a ‘‘on’’ indicates unit is in the on-state, ‘‘�x‘‘ indicates unit is in the off-state for x hou
s = 7 in (10) and i: Pmini = 180 MW, Pmaxi = 350 MW,
tdowni = tupi = 5 h.

In the first stage of our tests we run the algorithm many
times to find the best settings and parameter values. In this
study the UC problem was reduced to three units (units 1, 2
and 3). The initial status of the units was assumed to be
�24 h and load demand was reduced to one fourth of the load
demand assumed for 12 units. This simplification to 15 decision
variables made it possible to find an optimal solution using
the enumeration method and compare with solutions found
by GA.

It is worth noting that the algorithm without transposition
rarely found the optimal solution, whilst using this operator the
optimal solution was found in each run. One-point, multi-point
and uniform crossover gave similar results.

On the basis of these preliminary experiments the following GA
parameters were assumed in 12-unit UC problem:

� population size: 100,
� maximum no. of generations: 1000,
� probability of chromosome mutation: 0.5,
� probability of chromosome transposition: 0.25,
� crossover operator: one-point crossover,
� probability of crossover: 0.9.

The optimal solution in Table 3 is shown. The results are pre-
sented in Table 4 (marked by GA1), where: Fmin, Fmax and Fav are
the minimum, maximum and average costs of the best solutions
found by the algorithm in 10 runs, F is the standard deviation of
the cost, fopt is the frequency of finding the optimal solution, nopt

is the average number of evaluations necessary to find the optimal
solution and topt is the average computational time necessary to
find the optimal solution.

In the same table the results of other optimization methods to
the same UC problem are presented:
W h)) c ($/h) e ($) f ($) g (h�1) h (h�1)

643.24 �2889.45 5466.28 0.3680 �0.0112
666.27 �2893.81 5474.51 0.3680 �0.0112
672.77 �2888.84 5465.13 0.3680 �0.0112
686.58 �2882.77 5453.66 0.3680 �0.0112
601.53 �2863.94 5418.07 0.3680 �0.0112
641.99 �2843.13 5378.74 0.3680 �0.0112
609.07 �2876.16 5441.15 0.3680 �0.0112
531.63 �2903.29 5492.22 0.3680 �0.0112
678.40 �2892.73 5472.47 0.3680 �0.0112
503.60 �2928.65 5540.14 0.3680 �0.0112
528.19 �2894.88 5476.32 0.3680 �0.0112
527.81 �2915.53 5515.34 0.3680 �0.0112

rs.
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Fig. 4. Cost of the best solution and the average cost of the population in successive
generations.

Table 4
Result comparision.

Algorithm Fmin ($) Fmax ($) Fav ($) F ($) fopt nopt topt

(min)

GA1 644,951 645,065 645,013 57 0.4 33,800 47
GA2 644,951 646,229 645,264 381 0.2 70,650 135
GA3 644,951 645,065 645,042 48 0.2 36,550 50
SA 644,951 645,344 645,116 180 0.5 57,637 145
GrA 692,317 716,938 704,549 12,310 0 – –
MC No feasible solutions
HM 649,589 649,589 649,589 0 0 – –
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�

GA2 is the GA with binary representation of on/off unit status using
transposition and the specialized mutation operator in which the
probability of mutation is made dependent on the load demand
curve, unit production and start-up costs (Dudek, 2004).
� GA3 is the GA with integer representation of unit start-up and

shut-down times using transposition, one-point crossover and
uniform mutation (Dudek, 2007).
� SA is the simulated annealing method with an adaptive cooling

schedule and specialized operators: mutation and transposition
(Dudek, 2010).
� GrA is the greedy algorithm where the standard mutation oper-

ator is employed to generate new solutions.
� MC is the Monte Carlo method where points in the solution

space are randomly chosen from the uniform distribution,
remembering the best solution.
� HM is the heuristic method of limit time characteristics (Toroń,

1962), which was used for many years in the Polish Power
System.

The number of evaluations of the cost function in these algo-
rithms has been set at 100,000, similar to the proposed GA, and
the calculations for every algorithm are done ten times.

The proposed GA found the optimal solution in 4 out of 10 trials.
The average value of the best solution costs is the lowest for the
proposed algorithm, as well as the number of evaluations neces-
sary to find the optimal solution and the computational time,
which is almost three times lower than the computational time
for GA and SA with binary representation of on/off unit status.
The results for GA1 are quite stable (F = $57).

In Fig. 4 the convergence of the proposed algorithm is shown.
From this figure it can be seen that the algorithm quickly finds
solutions which are feasible according to constraints (4) and (5),
and then, after about 40 generations, solutions feasible according
to all constraints.
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5. Conclusions

The UC problem is a very important one in daily operational
planning of power systems. The scheduling optimization of the
generating units can bring significant savings in production costs.
If instead of the limit time characteristic method used for years
in the Polish Power System, the proposed method was applied to
the system with 100 units (this corresponds to the Polish Power
System), nearly 13 million dollars in cost savings per year can be
expected.

In the proposed method we decide at which intervals of the day
units can start-up and shut-down, and in this way we reduce the
solution space. The size of the solution space for the application
example using the classical binary representation is 2N�T -
� 5 � 1086, and now in the proposed representation is reduced to
2N�B � 4 � 1050, so about 1036 times. In general the reduction de-
gree is exponentially dependent on the number of units: (2T�B)N.

The proposed GA for the UC problem gives a stable and accept-
able solution that is near-optimal. The difference between the cost
of the best and worst solution found in 10 runs of the algorithm
was only 0.018% ($114). The new way of the decision variable def-
inition and their binary encoding improve algorithm efficiency as
well as the problem specific operator, transposition searching
through local minimums.
Appendix A

Table 5

List of symbols.

Symbol Description

ai(t) on/off status of the ith unit at the tth hour, ai(t) {0,1}
sdown1,

sdown2

initial and final hour of the shut-down interval

soffi(k),
soni(k)

shut-down/start-up hour of unit i after the kth on/off state
period

sup1, sup2 initial and final hour of the start-up interval
Ui set of hours in the ith shut-down or start-up interval
X(t) set of units in on state at time t
ai, bi, ci production cost function parameters of unit i
B number of bits encoding the decision variables for one unit
Ci(Pi(t)) variable production cost of unit i at time t ($/h)
D(t) load demand at the tth hour (MW)
ei, fi, gi, hi start-up cost function parameters of unit i
F, F0 , F00 cost functions for the feasible solutions, the solutions that

violate constraints (6) or (7) but do not violate constraints (4)
and (5) and the solutions that violate constraints (4) or (5),
respectively

N total number of units
ndowni, nupi number of periods in which unit i is in continuous off/on state

during the optimization period T
Pi(t) power generation of unit i at time t (MW)
Pmini(t),

Pmaxi(t)
lower and upper generation limit of unit i, respectively (MW)

R(t) spinning reserve requirement at the tth hour (MW)
SCi(toffi) start-up cost of unit i after toffi hour off state ($)
T number of hours in the optimization period
toffi(k),

toni(k)
down/up time period of unit i during the kth period of off/on
state (h)

tupi, tdowni minimum up/down time of unit i (h)
xl decision variables
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