
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Forecasting Time Series with Multiple Seasonal Cycles
using Neural Networks with Local Learning

Grzegorz Dudek

Department of Electrical Engineering, Czestochowa University of Technology,
Al. Armii Krajowej 17, 42-200 Czestochowa, Poland

dudek@el.pcz.czest.pl

Abstract. In the article a simple neural model with local learning for forecast-
ing time series with multiple seasonal cycles is presented. This model uses pat-
terns of the time series seasonal cycles: input ones representing cycles preced-
ing the forecast moment and forecast ones representing the forecasted cycles.
Patterns simplify the forecasting problem especially when a time series exhibits
nonstationarity, heteroscedasticity, trend and many seasonal cycles. The artifi-
cial neural network learns using the training sample selected from the neighbor-
hood of the query pattern. As a result the target function is approximated locally
which leads to a reduction in problem complexity and enables the use of sim-
pler models. The effectiveness of the proposed approach is illustrated through
applications to electrical load forecasting and compared with ARIMA and ex-
ponential smoothing approaches. In a day ahead load forecasting simulations
indicate the best results for the one-neuron network.

Keywords: seasonal time series forecasting, short-term load forecasting, local
learning, neural networks.

1 Introduction

Time series may contain four different components: trend, seasonal variations, cycli-
cal variations, and irregular component. Seasonality is defined to be the tendency of
time series data to exhibit some pattern that repeats periodically with variation. Some-
times a time series contains multiple seasonal cycles of different lengths. Fig. 1 shows
such a time series, where we can observe annual, weekly and daily variations. This
series represents hourly electrical load of the Polish power system. From this figure it
can be seen that the daily and weekly profiles change during the year. In summer they
are more flat than in winter. The daily profile depends on the day of the week as well.
The profiles of the weekdays are similar to each other in the same period of the year.
To the characteristic features of this time series its nonstationarity and
heteroscedasticity should be included as well. These all features have to be captured
by the flexible forecasting model.

The most commonly employed methods to modeling seasonal time series include
[1]: seasonal autoregressive integrated moving average model (ARIMA), exponential

smoothing (ES), artificial neural networks (ANNs), dynamic harmonic regression,
vector autoregression, random effect models, and many others.

Fig. 1. The load time series of the Polish power system in three-year (a) and one-week (b)
intervals.

The base ARIMA model with just one seasonal pattern can be extended for the
case of multiple seasonalities. An example of such an extension was presented in [2].
A combinatorial problem of selecting appropriate model orders is an inconvenience in
the time series modeling using multiple seasonal ARIMA. Another disadvantage is
the linear character of the ARIMA model.

Another popular model – the Holt-Winters exponential smoothing was adapted by
Taylor so that it can accommodate two and more seasonalities [2]. An advantage of
the ES models is that they can be nonlinear. On the other hand it can be viewed as
being of high dimension, as it involves initialization and updating of a large number
of terms (level, periods of the intraday and intraweek cycles). In [1] more parsimoni-
ous formulation of ES is proposed. New exponentially weighted methods for forecast-
ing time series that consist of both intraweek and intraday seasonal cycles can be
found in [3].

Gould et al. [4] introduced the innovation state space models that underlie ES
methods for both additive and multiplicative seasonality. This procedure provides a
theoretical foundation for ES methods and improves on the current approaches by
providing a common sense structure to the models, flexibility in modeling seasonal

 2002 2003 2004

10

15

20

Year

L,
 G

W

(a)

0 24 48 72 96 120 144 168
10

12

14

16

18

20

22

Mon Tue Wed Thu Fri Sat Sun

Hour

L,
 G

W

 winter

spring
summer

autumn

(b)

patterns, a potential reduction in the number of parameters to be estimated, and model
based prediction intervals.

ANNs being nonlinear and data-driven in nature, may be well suited to the season-
al time series modeling. They can extract unknown and general information from
multi-dimensional data using their self-learning ability. This feature releases a design-
er from a difficult task of a priori model selection. But new problems appear: the se-
lection of network architecture as well as the learning algorithm. From many types of
ANN most often in forecasting tasks the multilayer perceptron is used, which has a
property of universal approximation. ANNs are able to deal with the seasonal time
series without the prior seasonal adjustment but deseasonalization and also detrending
is recommended [5].

The time series decomposition is used not only in ANNs, but also in other models,
e.g. ARIMA and ES. The components showing less complexity than the original time
series can be modeled independently and more accurate. Usually the time series is
decomposed on seasonal, trend and stochastic components. Other methods of decom-
positions apply the Fourier or wavelet transform. The simple way to remove seasonal-
ity is to define the separate time series for each observation in a cycle, i.e. in the case
of cycle of length n, n time series is defined including observations in the same posi-
tion in successive cycles.

This paper considers simple neural forecasting model that approximates the target
function using patterns of seasonal cycles. Defining patterns we do not need to de-
compose a time series. A trend and many seasonal cycles as well as the
nonstationarity and heteroscedasticity is not a problem here when using proper pattern
definitions. The proposed neural model learns in a local learning procedure which
allows to model the target function in the neighborhood of the query pattern. As a
result we get a local model which is better fitted in this neighborhood.

2 Patterns of the Time Series Seasonal Cycles

Our goal is to forecast the time series elements in a period of one seasonal cycle of
the shortest length. In the case of the time series shown in Fig. 1 this is a daily cycle
containing n = 24 elements (hourly loads). The time series is divided into sequences
containing one seasonal cycle of length n. In order to eliminate trend and seasonal
variations of periods longer than n (weekly and annual variations in our example), the
sequence elements are preprocessed to obtain their patterns. The pattern is a vector
with components that are functions of actual time series elements. The input and out-
put (forecast) patterns are defined: x = [x1 x2 … xn]

T and y = [y1 y2 … yn]
T, respective-

ly. The patterns are paired (xi, yi), where yi is a pattern of the time series sequence
succeeding the sequence represented by xi. The interval between these sequences is
equal to the forecast horizon τ.

The way of how the x and y patterns are defined depends on the time series nature
(seasonal variations, trend), the forecast period and the forecast horizon. Functions
transforming series elements into patterns should be defined so that patterns carry
most information about the process. Moreover, functions transforming forecast se-

quences into patterns y should ensure the opposite transformation: from the forecasted
pattern y to the forecasted time series sequence.

The forecast pattern yi = [yi,1 yi,2 … yi,n] encodes the successive actual time series
elements z in the forecast period i+τ: zi+τ = [zi+τ,1 z i+τ,2 … zi+τ,n], and the correspond-
ing input pattern xi = [xi,1 xi,2 … xi,n] maps the time series elements in the period i
preceding the forecast period: zi = [zi,1 zi,2 … zi,n]. Vectors y are encoded using current
process parameters from the nearest past, which allows to take into consideration
current variability of the process and ensures possibility of decoding. Some defini-
tions of the functions mapping the original space Z into the pattern spaces X and Y, i.e.
fx : Z → X and fy : Z → Y are presented in [6]. The most popular definitions are of the
form:

∑∑
=

+

=

−

−
=

−

−
=

n

l

ili

iti
tiy

n

l

ili

iti
tix

zz

zz
zf

zz

zz
zf

1

2
,

,
,

1

2
,

,
,

)(

)(,

)(

)(τ , (1)

where: i = 1, 2, …, N – the period number, t = 1, 2, …, n – the time series element
number in the period i, τ – the forecast horizon, zi,t – the tth time series element in the
period i, iz – the mean value of elements in period i.

The function fx defined using (1) expresses normalization of the vectors zi. After
normalization these vectors have the unity length, zero mean and the same variance.
When we use the standard deviation of the vector zi components in the denominator
of equation (1), we receive vector xi with the unity variance and zero mean. Note that
the nonstationary and heteroscedastic time series is represented by patterns having the
same mean and variance.

Forecast pattern yi is defined using analogous functions to input pattern function fx,
but it is encoded using the time series characteristic (iz) determined from the process

history, what enables decoding of the forecasted vector zi+τ after the forecast of pat-
tern y is determined. To calculate the forecasted time series element values on the

basis of their patterns we use the inverse function)(,
1

tiy yf − .

3 Local learning

The training data can have different properties in different regions of the input and
output spaces thus it is reasonable to model this data locally. The local learning [7]
concerns the optimization of the learning system on a subset of the training sample,
which contains points from the neighborhood around the current query point x*. By
the neighborhood of x* in the simplest case we mean the set of its k nearest neighbors.
A result of the local learning is that the model accurately adjusts to the target function
in the neighborhood of x* but shows weaker fitting outside this neighborhood. Thus
we get model which is locally competent but its global generalization property is
weak. Modeling the target function in different regions of the space requires re-
learning of the model or even to construct different model, e.g. we can use a linear

model for linear fragments of the target function while for the nonlinear fragments we
can use a nonlinear model. The generalization can be achieved by using a set of local
models that are competent for different regions of the input space. Usually these mod-
els are learned when a new query point is presented.

The error criterion minimized in local learning algorithm can be defined as fol-
lows:

))(,()*),,((*)(
1
∑

=

=
N

i

iii fhdKE xyxxx δ , (2)

where: N – number of training patterns, K(d(xi,x*),h) – kernel function with band-
width h, d(xi,x*) – distance between the query pattern x* and training pattern xi,
δ(yi,f(xi)) – error between the model response f(xi) and the target response yi when
input pattern xi is presented (this response can be a scalar value).

Various kernel functions might be used, including uniform kernels and Gaussian
kernels which are ones of the most popular. The kernel is centered on the query point
x* and the bandwidth h determines the weight of the ith training pattern error in (2).
When we use uniform kernel the training patterns for which d(xi,x*) ≤ h = d(xk,x*),
where xk is the kth nearest neighbor of x*, have unity weights. More distant patterns
have zero weights, and therefore there is no need to use these points in the learning
process. For Gaussian kernels all training points have nonzero weights calculated
from the formula exp(–d2(xi,x*)/(2h2)), which means that their weights decrease mon-
otonically with the distance from x* and with the speed dependent on h. In order to
reduce the computational cost of determination of errors and weights for all training
points we can combine both kernels and calculate weights according to the Gaussian
kernel for only k nearest neighbors of x*. The computational cost is now independent
of the total number of training patterns, but only on the number of considered neigh-
bors k.

In the experimental part of this paper we use local learning procedure with uniform
kernel.

4 Experimental Results

As an illustrative example of forecasting time series with multiple seasonal cycles
using neural networks with local learning we study the short-term electrical load fore-
casting problem. Short-term load forecasting plays a key role in control and schedul-
ing of power systems and is extremely important for energy suppliers, system opera-
tors, financial institutions, and other participants in electric energy generation, trans-
mission, distribution, and markets.

In the first experiments we use the time series of the hourly electrical load of the
Polish power system from the period 2002–2004. This series is shown in Fig. 1. The
time series were divided into training and test parts. The test set contained 31 pairs of
patterns from July 2004. The training part Ψ contained patterns from the period from
1 January 2002 to the day preceding the day of forecast.

We define the forecasting tasks as forecasting the power system load at hour t = 1,
2, …, 24 of the day j = 1, 2, …, 31, where j is the day number in the test set. So we
get 744 forecasting tasks. In local learning approach for each task the separate ANNs
were created and learned. The training set for each forecasting task is prepared as
follows:

• first we prepare the set Ω = {(xi, yi,t)}, where i indicates pairs of patterns from Ψ
representing days of the same type (Monday, …, Sunday) as days represented by a
query pair (x*, yt*),

• then based on the Euclidean distances d(xi, x*) we select from Ω k nearest neigh-
bors of the query pair getting the training set Φ = {(xi, yi,t)} ⊂ Ω ⊂ Ψ.

For example when the forecasting task is to forecast the system load at hour t on Sun-
day, model learns on k nearest neighbors of the query pattern which are selected from
x-patterns representing the Saturday patterns and tth components of y-patterns repre-
senting the Sunday patterns.

ANN (the multilayer perceptron) learns the mapping of the input patterns to the
components of output patterns: ft : X → Yt. Number of ANN inputs is equal to the x-
pattern components. To prevent overfitting ANN is learned using Levenberg-
Marquardt algorithm with Bayesian regularization [7], which minimizes a combina-
tion of squared errors and net weights. The resulting network has good generalization
qualities.

In the first experiment we assume k = 12. Since the target function ft is modeled lo-
cally, using a small number of learning points, rather a simple form of this function
should be expected, which implies small number of neurons. We tested the networks:

• composed of only one neuron with linear or bipolar sigmoidal activation function,
• with one hidden layer consisting of m = 2, ..., 8 neurons with sigmoidal activation

functions and one output neuron with linear activation function. Such a network
architecture can be seen as a universal approximator .

APE and MAPE (absolute percentage error and mean APE) is adopted here to as-
sess the performance of the forecasting models. The results (MAPE for the training
and test samples and the interquartile range (IQR) of MAPEtst) of the 9 variants of
ANNs are presented in tab. 1. Test errors for these variants are statistically indistin-
guishable (to check this we use the Wilcoxon rank sum test for equality of APE medi-
ans; α = 0,05). It is observed that for the two-layered networks in many cases most
weights tends to zero (weights decay is a result of regularization), thus some neurons
can be eliminated. As an optimal ANN architecture that one with one neuron with
sigmoidal activation function is chosen. This one-neuron ANN is used in the next
experiments.

In the second experiment we examine the network performance depending on the
number of the nearest neighbors k, i.e. the size of the training set Φ. We change k
from 2 to 50. The results are shown in Fig. 2, where MAPE for the cases when the
ANN is trained using all training points representing days of the same type as days
represented by query pair, i.e. points from the set Ω, is also shown. As we can see

from this figure the test error remains around 1 when k ∈ [6, 50]. For these cases
MAPEtst are statistically indistinguishable when using Wilcoxon test. When we train
ANN using patterns from the set Ω MAPEtst is statistically distinguishable greater than
for k ∈ [6, 50].

Table 1. Results of 9 variants of ANNs.

 Number of neurons
 1 lin 1 sig 2+1 3+1 4+1 5+1 6+1 7+1 8+1

MAPEtrn 0.80 0.88 1.12 1.11 1.09 1.09 1.08 1.09 1.10
MAPEtst 1.03 0.98 0.98 0.98 1.00 1.00 1.02 1.02 1.01
IQRtst 1.09 1.03 1.02 1.03 1.06 1.02 1.05 0.99 1.04

Fig. 2. MAPE for the training sets (rings) and test set (crosses) depending on k.

In the local learning approach the thorny issue is the ratio of the training points
number to the number of free parameters of the network. This ratio for our example
even for one-neuron ANN is too small (12/25), which means that the model is over-
sized (it has too many degrees of freedom in relation to the problem complexity ex-
pressed by only a few training points). The regularization which has a form of a pen-
alty for complexity is a good idea to solve this problem. Another idea is the feature
selection or feature extraction as a form of dimensionality reduction. The most popu-
lar method of feature extraction is the principal component analysis (PCA). This pro-
cedure uses an orthogonal transformation to convert a set of multidimensional vectors
of possibly correlated components into a set of vectors of linearly uncorrelated com-
ponents called principal components. The number of principal components is less
than or equal to the dimension of original vectors. In the next experiment we trans-
form the 24-dimensional x-patterns into patterns with a smaller number of uncorrelat-
ed components using PCA. Fig. 3 shows relationship between MAPE and the number
of principal components. From this figure it can be seen that the levels of errors are
very similar. MAPEtst are statistically indistinguishable for different number of princi-
pal components. Using only first principal component we can built good neural fore-
casting model for our data. Such a model has only two parameters. The percent vari-

0 10 20 30 40 50
0.5

0.75

1

1.25

1.5

Number of nearest neighbors k

M
A

P
E

MAPE
trn

 for

MAPE
tst

 for Ω

Ω

ance explained by the corresponding principal components are shown in Fig. 4.
The first principal component explains 30% of the total variance.

Fig. 3. MAPE for the training sets (rings) and test set (crosses) depending on the number of
principal components.

Fig. 4. The percent variance explained by the corresponding principal components.

Now we compare the proposed one-neuron ANN with other popular models of the
seasonal time series forecasting: ARIMA and ES. These models were tested in the
next day electrical load curve forecasting problem on three time series of electrical
load:

• PL: time series of the hourly load of the Polish power system from the period
2002–2004 (this time series was used in the experiments described above). The test
sample includes data from 2004 with the exception of 13 untypical days (e.g. holi-
days),

• FR: time series of the half-hourly load of the French power system from the period
2007–2009. The test sample includes data from 2009 except for 21 untypical days,

• GB: time series of the half-hourly load of the British power system from the period
2007–2009. The test sample includes data from 2009 except for 18 untypical days.

0 2 4 6 8 10 12
0.75

0.875

1

1.125

1.25

Number of principal components

M
A

P
E

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Principal component

V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
)

In ARIMA the time series were decomposed into n series, i.e. for each t a separate
series was created. In this way a daily seasonality was removed. For the independent
modeling of these series ARIMA(p, d, q)×(P, D, Q)m model was used:

 t
m

t
dDmm BBczBBBB ξθφ)()()1()1)(()(Θ+=−−Φ , (3)

where {zt} is the time series, {ξt} is a white noise process with mean zero and vari-
ance σ2, B is the backshift operator, Φ(.), φ(.), Θ(.), and θ(.) are polynomials of order
P, p, Q and q, respectively, m is the seasonal period (for our data m = 7), d and D are
orders of nonseasonal and seasonal differencing, respectivelly, and c is a constant.

To find the best ARIMA model for each time series we use a step-wise procedure
for traversing the model space which is implemented in the forecast package for the
R system for statistical computing [8]. This automatic procedure returns the model
with the lowest Akaike's Information Criterion (AIC) value.

ARIMA model parameters, as well as the parameters of the ES model described
below, were estimated using 12-week time series fragments immediately preceding
the forecasted daily period. Untypical days in these fragments were replaced with the
days from the previous weeks.

The ES state space models [9] are classified into 30 types depending on how the
seasonal, trend and error components are taken into account. These components can
be expressed additively or multiplicatively, and the trend can be damped or not. For
example, the ES model with a dumped additive trend, multiplicative seasonality and
multiplicative errors is of the form:

,)(:Forecast

),1(:Seasonal

,)(:Growth

),1)((:Level

11

111

11

mtttt

tmtt

ttttt

tttt

sbl

ss

blbb

bll

−−−

−

−−−

−−

+=
+=

++=
++=

φµ
γξ

ξφβφ
αξφ

 (4)

where lt represents the level of the series at time t, bt denotes the growth (or slope) at
time t, st is the seasonal component of the series at time t, µt is the expected value of
the forecast at time t, α, β, γ ∈ (0, 1) are the smoothing parameters, and φ ∈ (0, 1)
denotes a damping parameter.

In model (4) there is only one seasonal component. For this reason, as in the case
of the ARIMA model, time series is decomposed into n series, each of which repre-
sents the load at the same time t of a day. These series were modeled independently
using an automated procedure implemented in the forecast package for the R system
[8]. In this procedure the initial states of the level, growth and seasonal components
are estimated as well as the smoothing and damping parameters. AIC was used for
selecting the best model for a given time series.

In Table 2 results of PL, FR and GB time series forecasts are presented. In this ta-
ble the results of forecast determined by the naïve method are also shown. The fore-
cast rule in this case is as follows: the forecasted daily cycle is the same as seven days
ago. The Wilcoxon test indicates statistically significant differences between MAPEtst

for each pair of models and each time series, so we can indicate the one-neuron ANN
as the best model for this data and ES as the second best model.

Table 2. Results of forecasting.

Model
PL FR GB

MAPEtst IQR MAPEtst IQR MAPEtst IQR
ANN 1.44 1.41 1.64 1.70 1.65 1.70

ARIMA 1.82 1.71 2.32 2.53 2.02 2.07
ES 1.66 1.57 2.10 2.29 1.85 1.84

Naïve 3.43 3.42 5.05 5.96 3.52 3.82

The last experiment concerns time series forecasting up to seven daily periods

ahead. In such tasks the y-patterns are defined using τ = 1, 2, …, 7. For each horizon τ
the one-neuron ANN is trained using the same local learning scheme as for τ = 1 de-
scribed above. The forecast errors for PL, FR and GB time series in Fig. 5 are pre-
sented. For FR and GB data ANN gave the lowest errors. For PL data and τ > 2 ES
model is better, and for τ > 3 also ARIMA model is better. The actual and forecasted
fragments of the time series are shown in Fig. 6.

Fig. 5. The forecast errors for different horizons.

Note that in the case of ARIMA and ES the model parameters are estimated on the
basis of the time series fragment (12 weeks in our example) directly preceding the
forecasted fragment. ANN learns on the training set composed of patterns represented
daily periods from longer history. In local learning case the training patterns are se-
lected using criterion based on the similarity to the current input pattern.

5 Conclusions

In this article we examine a simple neural model with local learning for forecasting
seasonal time series. At the initial stage of the forecasting procedure data are prepro-
cessed to get patterns of the time series seasonal periods. An approach based on the
patterns of the seasonal cycles simplify the problem of forecasting of the
nonstationary and heteroscedastic time series with trend and many seasonal varia-

2 4 6
1

2

3

4

Forecast horizon

M
A

P
E

ts
t

PL

ARIMA

ES
ANN

2 4 6

2

3

4

5

6

FR

Forecast horizon

M
A

P
E

ts
t

2 4 6
1.5

2

2.5

3

3.5

4
GB

Forecast horizon

M
A

P
E

ts
t

tions. After simplification the problem can be modeled using simpler tools. The exist-
ence of many seasonal cycles is not a problem when we use forecasting model based
on patterns. We resign from the global modeling, which does not necessarily brings
good results for the current query point. Instead, we approximate the target function
locally in the neighborhood of the query point. The disadvantage of the local learning
is the need to learn the model for each query point. Since the local complexity is low-
er than the global one, we can use a simple model that is quickly learned.

Fig. 6. The fragments of load time series and their forecasts for different horizons.

0 24 48 72 96 120 144 168
10

11

12

13

14

15

16

17

18

t, h

L,
 G

W

PL, 01.07.2004 - 07.07.2004

τ =1 τ =2 τ =3 τ =4 τ =5 τ =6 τ =7

ARIMA

ES
ANN

La

0 24 48 72 96 120 144 168
30

35

40

45

50

55

60

65
FR, 01.07.2009 - 07.07.2009

t, h

L,
 G

W

τ=1 τ=2 τ =3 τ=4 τ=5 τ =6 τ =7

0 24 48 72 96 120 144 168

20

25

30

35

40

45
GB, 01.07.2009 - 07.07.2009

t, h

L,
 G

W

τ =1 τ =2 τ =3 τ =4 τ =5 τ =6 τ =7

This approach is acceptable when we have enough time (some seconds) to learn
model and prepare forecast. The learning speed is penalized by the selection of the
nearest neighbors. As shown by simulation studies to model the local relationship
between input and output patterns the one-neuron model is sufficient. This model
turned out to be better than the conventional models (ARIMA and exponential
smoothing) in one-day ahead forecasting of the electrical load time series and compet-
itive in forecasting over longer time horizons.

Acknowledgments. The author would like to thank Professor James W. Taylor from
the Saïd Business School, University of Oxford for providing French and British load
data. The study was supported by the Research Project N N516 415338 financed by
the Polish Ministry of Science and Higher Education.

References

1. Taylor, J.W., Snyder, R.D.: Forecasting Intraday Time Series with Multiple Seasonal Cy-
cles Using Parsimonious Seasonal Exponential Smoothing. Department of Econometrics
and Business Statistics Working Paper 9/09, Monash University (2009)

2. Taylor, J.W.: Short-Term Electricity Demand Forecasting Using Double Seasonal Expo-
nential Smoothing. Journal of the Operational Research Society 54, 799–805 (2003)

3. Taylor, J.W.: Exponentially Weighted Methods for Forecasting Intraday Time Series with
Multiple Seasonal Cycles. International Journal of Forecasting 26(4), 627–646 (2010)

4. Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J., Vahid-Araghi, F.:
Forecasting Time-Series with Multiple Seasonal Patterns. European Journal of Operational
Research 191, 207–222 (2008)

5. Zhang, G.P., Qi, M.: Neural Network Forecasting for Seasonal and Trend Time Series. Eu-
ropean Journal of Operational Research 160, 501–514 (2005)

6. Dudek, G.: Similarity-based Approaches to Short-Term Load Forecasting. In: Zhu, J.J.,
Fung, G.P.C. (eds.): Forecasting Models: Methods and Applications, pp. 161–178.
iConcept Press (2010) http://www.iconceptpress.com/www/site/download.paper.php?
paperID=100917020141

7. Foresee F.D., Hagan M.T.: Gauss-Newton Approximation to Bayesian Regularization.
Proc. 1997 International Joint Conference on Neural Networks, 1930–1935 (1997)

8. Hyndman, R.J., Khandakar, Y.: Automatic Time Series Forecasting: The Forecast Package
for R. Journal of Statistical Software 27(3), 1–22 (2008)

9. Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential
Smoothing: The State Space Approach. Springer (2008)

