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Abstract. In the article a simple neural model with locariging for forecast-
ing time series with multiple seasonal cycles isspnted. This model uses pat-
terns of the time series seasonal cycles: inpus oegresenting cycles preced-
ing the forecast moment and forecast ones repiagetiite forecasted cycles.
Patterns simplify the forecasting problem especiatien a time series exhibits
nonstationarity, heteroscedasticity, trend and nmsggsonal cycles. The artifi-
cial neural network learns using the training sangalected from the neighbor-
hood of the query pattern. As a result the tangettion is approximated locally
which leads to a reduction in problem complexityl @mables the use of sim-
pler models. The effectiveness of the proposedaampr is illustrated through
applications to electrical load forecasting and pared with ARIMA and ex-
ponential smoothing approaches. In a day ahead flm@dasting simulations
indicate the best results for the one-neuron nétwor

Keywords: seasonal time series forecasting, short-termflo@tasting, local
learning, neural networks.

1 I ntroduction

Time series may contain four different componetrend, seasonal variations, cycli-
cal variations, and irregular component. Seasonalitlefined to be the tendency of
time series data to exhibit some pattern that tsgeeriodically with variation. Some-
times a time series contains multiple seasonaksyof different lengths. Fig. 1 shows
such a time series, where we can observe annuaklyvand daily variations. This
series represents hourly electrical load of thésRgower system. From this figure it
can be seen that the daily and weekly profiles gbaturing the year. In summer they
are more flat than in winter. The daily profile @eps on the day of the week as well.
The profiles of the weekdays are similar to eadteoin the same period of the year.
To the characteristic features of this time serigs nonstationarity and
heteroscedasticity should be included as well. @ladkfeatures have to be captured
by the flexible forecasting model.

The most commonly employed methods to modelingasedgime series include
[1]: seasonal autoregressive integrated movingaaeemodel (ARIMA), exponential
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smoothing (ES), artificial neural networks (ANNsg)ynamic harmonic regression,
vector autoregression, random effect models, andy/rathers.
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Fig. 1. The load time series of the Polish power systerthire-year (a) and one-week (b)
intervals.

The base ARIMA model with just one seasonal patt&an be extended for the
case of multiple seasonalities. An example of ;artlextension was presented in [2].
A combinatorial problem of selecting appropriated@ioorders is an inconvenience in
the time series modeling using multiple seasonalM¥R Another disadvantage is
the linear character of the ARIMA model.

Another popular model — the Holt-Winters expondrdimaoothing was adapted by
Taylor so that it can accommodate two and moreosesdisies [2]. An advantage of
the ES models is that they can be nonlinear. Orother hand it can be viewed as
being of high dimension, as it involves initialimat and updating of a large number
of terms (level, periods of the intraday and inteaw cycles). In [1] more parsimoni-
ous formulation of ES is proposed. New exponentiattighted methods for forecast-
ing time series that consist of both intraweek arcaday seasonal cycles can be
found in [3].

Gould et al. [4] introduced the innovation statexa models that underlie ES
methods for both additive and multiplicative seadibyy This procedure provides a
theoretical foundation for ES methods and improeesthe current approaches by
providing a common sense structure to the modkzgibflity in modeling seasonal



patterns, a potential reduction in the number opeeters to be estimated, and model
based prediction intervals.

ANNSs being nonlinear and data-driven in nature, fnayvell suited to the season-
al time series modeling. They can extract unknowd general information from
multi-dimensional data using their self-learningliab This feature releases a design-
er from a difficult task of a priori model seleatioBut new problems appear: the se-
lection of network architecture as well as thenéay algorithm. From many types of
ANN most often in forecasting tasks the multilaperceptron is used, which has a
property of universal approximation. ANNs are atdedeal with the seasonal time
series without the prior seasonal adjustment bseéa®onalization and also detrending
is recommended [5].

The time series decomposition is used not only NNA&, but also in other models,
e.g. ARIMA and ES. The components showing less dexity than the original time
series can be modeled independently and more decWwaually the time series is
decomposed on seasonal, trend and stochastic cemjgo®©ther methods of decom-
positions apply the Fourier or wavelet transforrhe Bimple way to remove seasonal-
ity is to define the separate time series for esgservation in a cycle, i.e. in the case
of cycle of lengthn, n time series is defined including observationshia $ame posi-
tion in successive cycles.

This paper considers simple neural forecasting intide approximates the target
function using patterns of seasonal cycles. Dedimatterns we do not need to de-
compose a time series. A trend and many seasonelescyas well as the
nonstationarity and heteroscedasticity is not &@lera here when using proper pattern
definitions. The proposed neural model learns ilocal learning procedure which
allows to model the target function in the neighimard of the query pattern. As a
result we get a local model which is better fitiedhis neighborhood.

2 Patter ns of the Time Series Seasonal Cycles

Our goal is to forecast the time series elementsperiod of one seasonal cycle of
the shortest length. In the case of the time setiesvn in Fig. 1 this is a daily cycle
containingn = 24 elements (hourly loads). The time series viddd into sequences
containing one seasonal cycle of lengthin order to eliminate trend and seasonal
variations of periods longer than(weekly and annual variations in our example), the
sequence elements are preprocessed to obtainptitéérns. The pattern is a vector
with components that are functions of actual timees elements. The input and out-
put (forecast) patterns are defin&ds [, X, ... %] andy = [y1 Y ... Y], respective-
ly. The patterns are paired;,(y;), wherey; is a pattern of the time series sequence
succeeding the sequence represented;.byhe interval between these sequences is
equal to the forecast horizan

The way of how the andy patterns are defined depends on the time sertesena
(seasonal variations, trend), the forecast periodl the forecast horizon. Functions
transforming series elements into patterns shoeldéfined so that patterns carry
most information about the process. Moreover, fonst transforming forecast se-



quences into patterrysshould ensure the opposite transformation: froenftinecasted
patterny to the forecasted time series sequence.

The forecast pattemy = [vi1Vi2 ... Vin] €ncodes the successive actual time series
elementx in the forecast periott . z,; = [Z+71 Zi+72 ... Z+znl, @nd the correspond-
ing input patternx; = [X 1 %> ... Xin] Maps the time series elements in the period
preceding the forecast periatl= [z, 7, ... 7. Vectorsy are encoded using current
process parameters from the nearest past, whiolwslto take into consideration
current variability of the process and ensures ipdisg of decoding. Some defini-
tions of the functions mapping the original spZdato the pattern spacésandy, i.e.
fy:Z -~ Xandf,: Z - Y are presented in [6]. The most popular definitiare of the
form:

Zi,t_zi fy(Zth): Zi+T,t_Zi (l)

(7)) = ———, . ,
D@ -2) 1/2(4,.—2)2
1=1 1=1

where:i = 1, 2, ...,N — the period numbet,= 1, 2, ...,n — the time series element
number in the periodl 7— the forecast horizow,; — thetth time series element in the
periodi, Z — the mean value of elements in period

The functionf, defined using (1) expresses normalization of teetarsz;,. After
normalization these vectors have the unity lengénp mean and the same variance.
When we use the standard deviation of the vetoomponents in the denominator
of equation (1), we receive vectarwith the unity variance and zero mean. Note that
the nonstationary and heteroscedastic time seviepresented by patterns having the
same mean and variance.

Forecast patterp is defined using analogous functions to inputgratfunctionf,,
but it is encoded using the time series charatie(i ) determined from the process

history, what enables decoding of the forecastadove;, ; after the forecast of pat-
terny is determined. To calculate the forecasted timegeserlement values on the

basis of their patterns we use the inverse funcﬁ@’r(yivt) .

3 L ocal learning

The training data can have different propertieslifferent regions of the input and
output spaces thus it is reasonable to model thia cally. The local learning [7]
concerns the optimization of the learning systena@ubset of the training sample,
which contains points from the neighborhood arothel current query point*. By
the neighborhood of* in the simplest case we mean the set of itearest neighbors.
A result of the local learning is that the modetwately adjusts to the target function
in the neighborhood of* but shows weaker fitting outside this neighbortio®hus
we get model which is locally competent but itshglb generalization property is
weak. Modeling the target function in different i@mts of the space requires re-
learning of the model or even to construct différemdel, e.g. we can use a linear



model for linear fragments of the target functiohiles for the nonlinear fragments we
can use a nonlinear model. The generalization eaachieved by using a set of local
models that are competent for different regionthefinput space. Usually these mod-
els are learned when a new query point is presented

The error criterion minimized in local learning efdhm can be defined as fol-
lows:

EOe) = 2 KA, My, F () @

where:N — number of training patterng(d(x;,x*),h) — kernel function with band-
width h, d(x;,x*) — distance between the query pattefhand training patterrx;,
ayi,f(x;) — error between the model respoifsg) and the target respongewhen
input patterrx; is presented (this response can be a scalar value)

Various kernel functions might be used, includingfarm kernels and Gaussian
kernels which are ones of the most popular. Thaédas centered on the query point
x* and the bandwidtth determines the weight of thth training pattern error in (2).
When we use uniform kernel the training patternswibich d(x;,x*) < h = d(x,,x*),
wherexy is thekth nearest neighbor of, have unity weights. More distant patterns
have zero weights, and therefore there is no neede these points in the learning
process. For Gaussian kernels all training pdiradge nonzero weights calculated
from the formula exp@(x;,x*)/(2h?), which means that their weights decrease mon-
otonically with the distance from* and with the speed dependent fanin order to
reduce the computational cost of determinationradre and weights for all training
points we can combine both kernels and calculatght& according to the Gaussian
kernel for onlyk nearest neighbors af. The computational cost is now independent
of the total number of training patterns, but ootythe number of considered neigh-
borsk.

In the experimental part of this paper we use légaining procedure with uniform
kernel.

4 Experimental Results

As an illustrative example of forecasting time ssrivith multiple seasonal cycles
using neural networks with local learning we sttigy short-term electrical load fore-
casting problem. Short-term load forecasting pkay®y role in control and schedul-
ing of power systems and is extremely importanteioergy suppliers, system opera-
tors, financial institutions, and other participaim electric energy generation, trans-
mission, distribution, and markets.

In the first experiments we use the time seriethefhourly electrical load of the
Polish power system from the period 2002—2004. $hkiges is shown in Fig. 1. The
time series were divided into training and testgarhe test set contained 31 pairs of
patterns from July 2004. The training p#ftcontained patterns from the period from
1 January 2002 to the day preceding the day oté&ste



We define the forecasting tasks as forecastingtiveer system load at hour 1,
2, ...,24 of the day =1, 2, ..., 31, whergis the day number in the test set. So we
get 744 forecasting tasks. In local learning apghdar each task the separate ANNs
were created and learned. The training set for dadtasting task is prepared as
follows:

« first we prepare the s€ = {(x;, iy}, wherei indicates pairs of patterns frot
representing days of the same type (Monday, ..., &)rals days represented by a
query pair *, i),

« then based on the Euclidean distandfes x*) we select fronQ k nearest neigh-
bors of the query pair getting the training ®et {(x;, yiy} 0 Q O W.

For example when the forecasting task is to fortettessystem load at hotion Sun-
day, model learns okinearest neighbors of the query pattern which elecged from
X-patterns representing the Saturday patterngtancbmponents of y-patterns repre-
senting the Sunday patterns.

ANN (the multilayer perceptron) learns the mappofghe input patterns to the
components of output patterrfs: X - Y,. Number of ANN inputs is equal to the x-
pattern components. To prevent overfitting ANN marhed using Levenberg-
Marquardt algorithm with Bayesian regularizatior, [Fhich minimizes a combina-
tion of squared errors and net weights. The respitietwork has good generalization
qualities.

In the first experiment we assurke 12. Since the target functidris modeled lo-
cally, using a small number of learning pointsheata simple form of this function
should be expected, which implies small numbereefrans. We tested the networks:

« composed of only one neuron with linear or bipsigmoidal activation function,

« with one hidden layer consisting of= 2, ..., 8 neurons with sigmoidal activation
functions and one output neuron with linear actbratfunction. Such a network
architecture can be seen as a universal approximato

APE and MAPE (absolute percentage error and meds) AfPadopted here to as-
sess the performance of the forecasting models.résidts (MAPE for the training
and test samples and the interquartile ran@&R) of MAPE,y) of the 9 variants of
ANNSs are presented in tab. 1. Test errors for thesents are statistically indistin-
guishable (to check this we use the Wilcoxon ramk $est for equality of APE medi-
ans;a = 0,05). It is observed that for the two-layeredworks in many cases most
weights tends to zero (weights decay is a resulegfilarization), thus some neurons
can be eliminated. As an optimal ANN architecturattone with one neuron with
sigmoidal activation function is chosen. This ome#ton ANN is used in the next
experiments.

In the second experiment we examine the networfopeance depending on the
number of the nearest neighbdesi.e. the size of the training s&t We changek
from 2 to 50. The results are shown in Fig. 2, WhfAPE for the cases when the
ANN is trained using all training points represagtidays of the same type as days
represented by query pair, i.e. points from the(Gets also shown. As we can see



from this figure the test error remains around lemvk O [6, 50]. For these cases
MAPE, are statistically indistinguishable when using &ion test. When we train

ANN using patterns from the s@ MAPE is statistically distinguishable greater than
for k O [6, 50].

Table 1. Results of 9 variants of ANNSs.

Number of neurons
llin 1sig 2+1 3+1 441 5+1 6+1 7+1 8+1
MAPE,, 0.80 0.88 1.12 1.11 109 1.09 1.08 1.09 1.10
MAPEy 1.03 0.98 098 098 1.00 1.00 1.02 1.02 1.01
IQR¢ 1.09 1.03 1.02 103 1.06 1.02 1.05 0.99 1.04
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Fig. 2. MAPE for the training sets (rings) and test sedgses) depending dn

In the local learning approach the thorny issuéhésratio of the training points
number to the number of free parameters of the oxtwl his ratio for our example
even for one-neuron ANN is too small (12/25), whinbans that the model is over-
sized (it has too many degrees of freedom in welatd the problem complexity ex-
pressed by only a few training points). The redgmédion which has a form of a pen-
alty for complexity is a good idea to solve thislglem. Another idea is the feature
selection or feature extraction as a form of dinmmedity reduction. The most popu-
lar method of feature extraction is the principamnponent analysis (PCA). This pro-
cedure uses an orthogonal transformation to corveet of multidimensional vectors
of possibly correlated components into a set ofarscof linearly uncorrelated com-
ponents called principal components. The numbeprofcipal components is less
than or equal to the dimension of original vectdnsthe next experiment we trans-
form the 24-dimensional x-patterns into patterntghsi smaller number of uncorrelat-
ed components using PCA. Fig. 3 shows relationlsbtpreen MAPE and the number
of principal components. From this figure it candsen that the levels of errors are
very similar.MAPE,4 are statistically indistinguishable for differemimber of princi-
pal components. Using only first principal companese can built good neural fore-
casting model for our data. Such a model has amygarameters. The percent vari-



ance explained by the corresponding principal carepts are shown in Fig. 4.
The first principal component explains 30% of thl variance.
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Fig. 3. MAPE for the training sets (rings) and test sebgses) depending on the number of
principal components.
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Fig. 4. The percent variance explained by the correspgnglimcipal components.

Now we compare the proposed one-neuron ANN witlerogfopular models of the
seasonal time series forecasting: ARIMA and ES.s&éhmodels were tested in the
next day electrical load curve forecasting problemthree time series of electrical
load:

e PL: time series of the hourly load of the Polishavpo system from the period
2002-2004 (this time series was used in the exgerisrdescribed above). The test
sample includes data from 2004 with the exceptiob3ountypical days (e.g. holi-
days),

* FR: time series of the half-hourly load of the Frepower system from the period
2007-2009. The test sample includes data from 2@66pt for 21 untypical days,

» GB: time series of the half-hourly load of the Biit power system from the period
2007-2009. The test sample includes data from 2868pt for 18 untypical days.



In ARIMA the time series were decomposed intseries, i.e. for eadha separate
series was created. In this way a daily seasonabity removed. For the independent
modeling of these series ARIMB(d, g)x(P, D, Q),, model was used:

®(B™M@B)(L-B™)° (1-B)*z =c+O(B™EH(B)S,, 3

where {} is the time series, §} is a white noise process with mean zero and vari-
anced’, B is the backshift operato®(.), «.), ©(.), and@.) are polynomials of order
P, p, Q andq, respectivelym is the seasonal period (for our daia= 7),d andD are
orders of nonseasonal and seasonal differenciagectivelly, ana is a constant.

To find the best ARIMA model for each time series use a step-wise procedure
for traversing the model space which is implemertetheforecast package for the
R system for statistical computing [8]. This autoimgirocedure returns the model
with the lowest Akaike's Information Criterion (A)®alue.

ARIMA model parameters, as well as the parametéthe ES model described
below, were estimated using 12-week time seriegnfents immediately preceding
the forecasted daily period. Untypical days in ¢htagments were replaced with the
days from the previous weeks.

The ES state space models [9] are classified iAttyBes depending on how the
seasonal, trend and error components are takeragtmunt. These components can
be expressed additively or multiplicatively, ané thend can be damped or not. For
example, the ES model with a dumped additive tremdliplicative seasonality and
multiplicative errors is of the form:

Level: L, =(,_+d_)A+as),

Growth: b =gb ,+A(,_,+db )&,
Seasonal § =s_,1+)&),

Forecast /4 =(l,;+¢b_1)S

(4)

wherel, represents the level of the series at tini® denotes the growth (or slope) at
timet, s is the seasonal component of the series at timeis the expected value of
the forecast at timg a, 5, y0O (0, 1) are the smoothing parameters, arid (0, 1)
denotes a damping parameter.

In model (4) there is only one seasonal comporieatt.this reason, as in the case
of the ARIMA model, time series is decomposed intseries, each of which repre-
sents the load at the same titnaf a day. These series were modeled independently
using an automated procedure implemented irfdhecast package for th&® system
[8]. In this procedure the initial states of thedk growth and seasonal components
are estimated as well as the smoothing and dammangmeters. AIC was used for
selecting the best model for a given time series.

In Table 2 results of PL, FR and GB time seriegd¢asts are presented. In this ta-
ble the results of forecast determined by the naieéhod are also shown. The fore-
cast rule in this case is as follows: the foreahslgly cycle is the same as seven days
ago. The Wilcoxon test indicates statistically gigant differences betweeMAPE;



for each pair of models and each time series, soamendicate the one-neuron ANN
as the best model for this data and ES as the ddamst model.

Table 2. Results of forecasting.

Model PL FR GB
MAPE 4 IQR MAPE 4 IQR MAPE 4 IQR
ANN 1.44 1.41 1.64 1.70 1.65 1.70
ARIMA 1.82 1.71 2.32 2.53 2.02 2.07
ES 1.66 1.57 2.10 2.29 1.85 1.84
Naive 3.43 3.42 5.05 5.96 3.52 3.82

The last experiment concerns time series foregaaim to seven daily periods
ahead. In such tasks the y-patterns are definedy usi 1, 2, ..., 7. For each horizan
the one-neuron ANN is trained using the same l@ahing scheme as far= 1 de-
scribed above. The forecast errors for PL, FR aBdti@®e series in Fig. 5 are pre-
sented. For FR and GB data ANN gave the lowestr®rfor PL data and > 2 ES
model is better, and far> 3 also ARIMA model is better. The actual ancefiasted
fragments of the time series are shown in Fig. 6.

Forecast horizon Forecast horizon Forecast horizon

Fig. 5. The forecast errors for different horizons.

Note that in the case of ARIMA and ES the modebpaaters are estimated on the
basis of the time series fragment (12 weeks inex@mple) directly preceding the
forecasted fragment. ANN learns on the trainingcesposed of patterns represented
daily periods from longer history. In local learginase the training patterns are se-
lected using criterion based on the similarityite turrent input pattern.

5 Conclusions

In this article we examine a simple neural modehwacal learning for forecasting
seasonal time series. At the initial stage of tivedasting procedure data are prepro-
cessed to get patterns of the time series seapenalds. An approach based on the
patterns of the seasonal cycles simplify the pmoblef forecasting of the
nonstationary and heteroscedastic time series tnéthid and many seasonal varia-



tions. After simplification the problem can be mtadkusing simpler tools. The exist-
ence of many seasonal cycles is not a problem wieense forecasting model based
on patterns. We resign from the global modelingiclvtdoes not necessarily brings
good results for the current query point. Insteae,approximate the target function
locally in the neighborhood of the query point. Tdisadvantage of the local learning
is the need to learn the model for each query p8inice the local complexity is low-

er than the global one, we can use a simple mbdeig quickly learned.
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Fig. 6. The fragments of load time series and their faector different horizons.



This approach is acceptable when we have enough ($ome seconds) to learn
model and prepare forecast. The learning speeérialigzed by the selection of the
nearest neighbors. As shown by simulation studiestdel the local relationship
between input and output patterns the one-neurodeis sufficient. This model
turned out to be better than the conventional mMod@IRIMA and exponential
smoothing) in one-day ahead forecasting of thetidat load time series and compet-
itive in forecasting over longer time horizons.
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